JP2000223337A - Rare-earth bonded magnet and its manufacture - Google Patents

Rare-earth bonded magnet and its manufacture

Info

Publication number
JP2000223337A
JP2000223337A JP11019691A JP1969199A JP2000223337A JP 2000223337 A JP2000223337 A JP 2000223337A JP 11019691 A JP11019691 A JP 11019691A JP 1969199 A JP1969199 A JP 1969199A JP 2000223337 A JP2000223337 A JP 2000223337A
Authority
JP
Japan
Prior art keywords
magnet
powder
particle size
rare
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11019691A
Other languages
Japanese (ja)
Other versions
JP4077572B2 (en
Inventor
Atsushi Sato
佐藤  惇司
庸介 ▲榊▼原
Yasusuke Sakakibara
Eikichi Sashita
栄吉 指田
Hideharu Miyauchi
秀晴 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP01969199A priority Critical patent/JP4077572B2/en
Publication of JP2000223337A publication Critical patent/JP2000223337A/en
Application granted granted Critical
Publication of JP4077572B2 publication Critical patent/JP4077572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare-earth bonded magnet, having superior corrosion resistance and high characteristic in the metal-plated rare-earth bonded magnet. SOLUTION: Into a molded body base, in which a compound mixing a binder with rare-earth magnet powders is compressed and molded to be cured, a liquid resin binder into which magnetic powders having a particle smaller in size than a base part having the same compound as the base are mixed is permeated and coated, or impregnated vacuum, whereby the magnetic powder having small particle sizes are made to adhere to a front layer, and thereafter subjected to metal plating, so that it becomes possible to provide a bonded magnet having high corrosion resistance and high characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属メッキをした
希土類ボンド磁石に関し、特に高耐食性と高特性を合わ
せ持った希土類ボンド磁石とその製造方法に関するもの
である。
The present invention relates to a rare earth bonded magnet plated with metal, and more particularly to a rare earth bonded magnet having both high corrosion resistance and high characteristics, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】希土類ボンド磁石は、高いコストパフォ
ーマンスを有することから、近年、その生産高は著しく
伸びてきている。しかし、希土類金属やFeのような遷
移金属が主成分であるために耐食性が劣り、エポキシ樹
脂、フッ素樹脂、シリコン系樹脂等を浸漬塗装、スプレ
ー塗装、電着塗装をして使用するのが一般的となってい
る。また、量産性または機械的強度の補強の目的での気
相メッキ、電解または無電解メッキのように金属メッキ
も行われる。さらに耐食性を向上する目的で、表面の平
滑化を行ってから金属メッキを行うもの(特開平7−2
63212号公報)、樹脂またはガラス無機物を含浸後
金属メッキを行うもの(特開平7−201620号公
報)等が提案されている。いずれも、ボンド磁石表面の
空孔に、耐食性上有害な洗浄液とかメッキ液の侵入を防
止するためである。
2. Description of the Related Art Since rare earth bonded magnets have high cost performance, their production has been remarkably increased in recent years. However, it is poor in corrosion resistance because it is mainly composed of transition metals such as rare earth metals and Fe, and it is common to use epoxy resin, fluorine resin, silicon resin, etc. by dip coating, spray coating, electrodeposition coating. It has become a target. Also, metal plating such as vapor phase plating, electrolytic or electroless plating for the purpose of mass production or reinforcement of mechanical strength is performed. In order to further improve corrosion resistance, the surface is smoothed before metal plating (Japanese Patent Application Laid-Open No.
No. 63212), and a method of impregnating a resin or a glass inorganic substance and then performing metal plating (Japanese Patent Laid-Open No. Hei 7-201620) has been proposed. In either case, the purpose is to prevent the cleaning solution or plating solution that is harmful to corrosion resistance from entering the pores on the surface of the bonded magnet.

【0003】[0003]

【発明が解決しようとする課題】以上述べたように、ボ
ンド磁石に金属メッキを行うと、一般的にはボンド磁石
の空孔または表面の凹凸のくぼみにメッキ液が残留し、
耐食性が低下してまうことが避けられなかった。このた
めに、凹凸を有する希土類ボンド磁石の表面を平滑化す
る目的で樹脂またはガラス無機物を塗布し、その後メッ
キする方法、またはメッキの前にバレル研磨等で表面を
平滑化する方法がとられる。しかし、これらの場合、樹
脂、ガラス無機物のコーテイングの被膜厚さは20〜5
0μmは必要であり、非磁性材料をコーテイングするこ
とから必然的に磁気特性は低下するという課題があっ
た。本発明は、希土類ボンド磁石の磁気特性を低下させ
ずに耐食性の付与を同時に与えるものであり、新規な希
土類ボンド磁石とその製造方法を提供するものである。
As described above, when metal plating is performed on a bonded magnet, the plating solution generally remains in the voids of the bonded magnet or in the concaves and convexes on the surface of the bonded magnet.
It was inevitable that the corrosion resistance deteriorated. To this end, a method of applying a resin or glass inorganic substance and smoothing the surface by applying a resin or a glass inorganic material for the purpose of smoothing the surface of the rare earth bonded magnet having irregularities, or smoothing the surface by barrel polishing or the like before plating is adopted. However, in these cases, the coating thickness of the coating of resin and glass inorganic material is 20 to 5
The thickness is required to be 0 μm, and there is a problem that the magnetic properties are necessarily reduced due to the coating of the non-magnetic material. The present invention simultaneously provides corrosion resistance without deteriorating the magnetic properties of the rare-earth bonded magnet, and provides a novel rare-earth bonded magnet and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の希土類ボンド磁石では以下に示す構成を採
用する。すなわち、本発明は、表層部に基体部と同一磁
石系の成分を有する粉末層を有し、その粉末層に含まれ
る磁石粉末の最大粒径が基体部に含まれる磁石粉末の平
均粒径よりも小さく、さらに、その表層部のうえに金属
メッキが被覆されていることを特徴とする。本発明で、
基体部とは、最終的に製造される希土類ボンド磁石にお
いて、希土類本磁石粉末とバインダとを混合してコンパ
ウンドを作製し、そのコンパウンドを圧縮成形した後に
硬化させたときに形成された部分である。すなわち、粉
末層を形成する前の成形体である。また、表層部とは、
最終的に製造される希土類ボンド磁石において、基体部
とメッキとの間に形成された層の部分である。また、請
求項2記載の希土類ボンド磁石では、請求項1記載の構
成に加えて、粉末層に含まれる磁石粉末の最大粒径が3
2μm〜54μmであることを特徴とする。また、請求
項3記載の希土類ボンド磁石では、請求項1または請求
項2記載の構成に加えて、金属メッキがNi−P系、N
i−B系もしくはNi−P−W系それぞれの単層または
これらの組み合わせからなる複層であることを特徴とす
る。また、請求項4記載の希土類ボンド磁石では、請求
項1、請求項2または請求項3記載の構成に加えて、希
土類ボンド磁石が、NdFeB系、SmFeN系または
SmCo系のいずれか一つの系の磁石であることを特徴
とする。また、本発明の希土類ボンド磁石の製造方法で
は、以下に示す構成を採用する。すなわち、バインダと
希土類磁石粉末を混合したコンパウンドを圧縮成形した
のち硬化させた成形体基体部に、基体部と同一磁石系の
成分を有し、その最大粒径が基体部に含まれる磁石粉末
の平均粒径よりも小さい希土類磁石粉末を混合した液体
樹脂バインダーを浸漬塗布することによって、表層部に
基体部と同一磁石系の成分を有し、その最大粒径が基体
部に含まれる磁石粉末の平均粒径よりも小さい粉末層を
形成し、さらに、その表層部のうえに金属メッキを被覆
することを特徴とする。また、請求項6記載の希土類ボ
ンド磁石の製造方法では、バインダと希土類磁石粉末を
混合したコンパウンドを圧縮成形したのち硬化させた成
形体基体部に、基体部と同一磁石系の成分を有し、その
最大粒径が基体部に含まれる磁石粉末の平均粒径よりも
小さい希土類磁石粉末を混合した液体樹脂バインダーを
真空含浸させることによって、表層部に基体部と同一磁
石系の成分を有し、その最大粒径が基体部に含まれる磁
石粉末の平均粒径よりも小さい粉末層を形成し、さら
に、その表層部のうえに金属メッキを被覆することを特
徴とする。 〔作用〕本発明では、主に、以下に示す二つの方法によ
って、本発明の目的を達成することができる。すなわ
ち、第1に、バインダと希土類磁石粉末を混合したコン
パウンドを圧縮成型し硬化した成形体基体に、基体と同
成分の32μm以下の希土類磁石粉末を混合した液体樹
脂バインダーを浸漬塗布することによって表層に32μ
m以下の希土類磁石粉末を付着し、その後、NiPまた
はNiBまたはNiPWをメッキすることを特徴とする
製造方法によって達せられる。第2に、バインダと希土
類磁石粉末を混合したコンパウンドを圧縮成型し硬化し
た成形体基体に、基体と同成分の32μm以下の希土類
磁石粉末を混合した液体樹脂バインダーを真空含浸する
ことによって表層に32μm以下の希土類磁石粉末を付
着し、その後、NiPまたはNiBまたはNiPWをメ
ッキすることを特徴とする製造方法によって達せられ
る。すなわち、ボンド磁石の表面に存在する空孔を主に
基体と同成分の磁石粉によって封孔し、同時に表層の粒
径を限定することによって表面平滑度を改善し、その後
金属メッキを施すことにより磁石特性を低下させず、か
つ耐食性を向上させることが可能となる。また、ここで
述べた希土類磁石は、NdFeB系またはSmFeN系
またはSmCo系に対して特に有効である。
Means for Solving the Problems To solve the above problems, the rare earth bonded magnet of the present invention employs the following configuration. That is, the present invention has a powder layer having the same magnet system components as the base portion in the surface layer portion, and the maximum particle size of the magnet powder contained in the powder layer is larger than the average particle size of the magnet powder contained in the base portion. And a metal plating is coated on the surface layer. In the present invention,
The base portion is a portion formed when a rare-earth bonded magnet is finally manufactured, a compound is prepared by mixing the rare-earth main magnet powder and a binder, and the compound is compression-molded and then cured. . That is, the formed body before the powder layer is formed. The surface layer is
In the rare earth bonded magnet finally manufactured, it is a layer portion formed between the base portion and the plating. In the rare earth bonded magnet according to the second aspect, in addition to the configuration according to the first aspect, the maximum particle size of the magnet powder contained in the powder layer is 3
It is characterized by being 2 μm to 54 μm. Further, in the rare-earth bonded magnet according to the third aspect, in addition to the configuration according to the first or second aspect, the metal plating is made of a Ni-P-based, N-based metal.
It is characterized by being a single layer of each of the iB or Ni-PW system or a multi-layer composed of a combination thereof. Further, in the rare-earth bonded magnet according to the fourth aspect, in addition to the configuration according to the first, second, or third aspect, the rare-earth bonded magnet is formed of one of NdFeB-based, SmFeN-based, and SmCo-based magnets. It is a magnet. In the method for manufacturing a rare-earth bonded magnet of the present invention, the following configuration is employed. That is, the molded body base part obtained by compression-molding the compound obtained by mixing the binder and the rare earth magnet powder has the same magnet system components as the base part, and the maximum particle size of the magnetic powder contained in the base part is obtained. By dip-coating a liquid resin binder mixed with a rare earth magnet powder smaller than the average particle size, the surface layer has the same magnet system components as the base portion, and the maximum particle size of the magnet powder contained in the base portion is It is characterized in that a powder layer smaller than the average particle size is formed, and a metal plating is coated on the surface layer. Further, in the method for manufacturing a rare earth bonded magnet according to claim 6, the molded body base part obtained by compression-molding a compound obtained by mixing a binder and a rare earth magnet powder and then hardening has the same magnet system component as the base part, By vacuum impregnating a liquid resin binder mixed with a rare earth magnet powder whose maximum particle size is smaller than the average particle size of the magnet powder contained in the base portion, the surface layer has the same magnet system components as the base portion, It is characterized in that a powder layer whose maximum particle size is smaller than the average particle size of the magnet powder contained in the base portion is formed, and the surface layer portion is coated with metal plating. [Operation] In the present invention, the object of the present invention can be achieved mainly by the following two methods. First, the surface layer is formed by dip-coating a liquid resin binder mixed with a rare earth magnet powder of 32 μm or less of the same component as the base, on a molded base obtained by compression molding and hardening a compound obtained by mixing a binder and rare earth magnet powder. 32μ
m or less of rare earth magnet powder, followed by plating with NiP or NiB or NiPW. Secondly, the surface layer is vacuum-impregnated with a liquid resin binder mixed with a rare earth magnet powder of 32 μm or less having the same component as that of the base, and the surface layer is compressed to a thickness of 32 μm. This is achieved by a manufacturing method characterized in that the following rare earth magnet powder is deposited and then plated with NiP or NiB or NiPW. That is, the pores present on the surface of the bonded magnet are mainly sealed with magnet powder of the same component as the substrate, and at the same time, the surface smoothness is improved by limiting the particle size of the surface layer, followed by metal plating. It is possible to improve the corrosion resistance without lowering the magnet properties. The rare earth magnets described here are particularly effective for NdFeB, SmFeN or SmCo.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を実施
例を基に詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below in detail based on examples.

【0006】本発明における磁石粉末は、NdFeB
系、SmCo系、SmFeN系の希土類ボンド磁石でと
くに効果があり、それらの系では、通常の金属メッキで
は大抵腐食を生ずるものである。また、ボンド磁石とし
ては、圧縮成型磁石、射出成形磁石いずれでもよいが、
より空孔率の高い圧縮ボンド磁石に効果的である。ま
た、基体部のボンド磁石の粒径はその最大粒径が500
μm以下のものであれば特に粒度調整をしない粉体でよ
い。また、基体部のボンド磁石に用いるバインダーの種
類はどのようなものでも使用できるが、基体部より小さ
い粒径の磁石粉と混合し、表層部に付着せしめるバイン
ダーは液体であればよく、好ましくは安価で作業性の良
いエポキシ樹脂、フェノール樹脂、ウレタン樹脂等の熱
硬化性樹脂から選ばれ、含浸を行う場合は浸透性の高い
低粘度の樹脂を用いることが望ましい。ここで、本発明
では、基体部より小さい粉体としては、基体部と同成分
で粒径は32μm以下のもの(目開き32μmの篩い通
しを行った )を用いることがとくに好ましい。ここで
32μm〜54μmと限定したのは、実施例で示すよう
に、32μm以上の粒径ではメッキ後の耐食性が低下
し、54μm以下では初期の磁気特性が低下することを
見い出したためである。また、その後の金属メッキは、
メッキ厚さの制御が容易な無電解メッキであることが望
ましく、密着性、機械的強度を高めるために、本発明で
は、NiPまたはNiBまたはNiPW無電解メッキの
単層またはこれらの組み合わせからなることが好まし
い。
[0006] The magnet powder in the present invention is NdFeB.
System, SmCo system, and SmFeN system rare earth bonded magnets are particularly effective. In these systems, ordinary metal plating usually causes corrosion. As the bonded magnet, any of a compression molded magnet and an injection molded magnet may be used.
It is effective for a compression bonded magnet having a higher porosity. Further, the maximum particle size of the bonded magnet of the base portion is 500
As long as the particle size is not more than μm, a powder that is not particularly subjected to particle size adjustment may be used. Further, any kind of binder can be used for the bonded magnet in the base portion, but the binder to be mixed with the magnet powder having a smaller particle size than the base portion and adhered to the surface portion may be a liquid, and is preferably used. It is selected from thermosetting resins such as an epoxy resin, a phenol resin, and a urethane resin, which are inexpensive and have good workability. When impregnation is performed, it is desirable to use a resin having high permeability and low viscosity. Here, in the present invention, as the powder smaller than the base portion, it is particularly preferable to use a powder having the same component as that of the base portion and having a particle size of 32 μm or less (sieved with a mesh size of 32 μm). Here, the reason why the particle diameter is limited to 32 μm to 54 μm is that, as shown in the examples, it has been found that the corrosion resistance after plating is reduced when the particle diameter is 32 μm or more, and the initial magnetic properties are reduced when the particle diameter is 54 μm or less. Also, the subsequent metal plating
It is desirable that the electroless plating be easy to control the plating thickness, and in order to enhance the adhesion and mechanical strength, the present invention uses a single layer of NiP or NiB or NiPW electroless plating or a combination thereof. Is preferred.

【0007】[0007]

【実施例】(実施例1)粒径250μm以下のNdFe
B磁石粉末(MQP−A:MQI社)に、主剤としてエ
ピコート1004(油化シェル社製エポキシ)と硬化剤
としてYH308H(油化シェル社製エポキシ)からな
るエポキシ樹脂バインダを磁石粉末に対して2重量%混
合したコンパウンドを作成し、5t/cm2の圧力で、
外径4.0mm×内径1.5mm×厚さ6.0mmの円
筒状に圧縮成型を行い、成形体を得た。この成形体を1
80℃で5時間加熱硬化させ、これを基体とした。
(Example 1) NdFe having a particle size of 250 μm or less
B magnet powder (MQP-A: MQI) was coated with an epoxy resin binder consisting of Epicoat 1004 (epoxy manufactured by Yuka Shell Co., Ltd.) as a base material and YH308H (epoxy manufactured by Yuka Shell Co., Ltd.) as a curing agent. By making a compound with a weight% mixture, under a pressure of 5 t / cm2,
Compression molding was performed into a cylindrical shape having an outer diameter of 4.0 mm, an inner diameter of 1.5 mm and a thickness of 6.0 mm to obtain a molded body. This molded body is
The composition was cured by heating at 80 ° C. for 5 hours to obtain a substrate.

【0008】次に、主剤としてエピコート802(油化
シェル社製エポキシ)、硬化剤としてYH306(油化
シェル社製エポキシ)からなるエポキ樹脂を当量混合
し、1kgの混合液を作成した。これに、目開きが20
μm、32μm、54μm、75μmの篩い通しを行
い、それぞれ25μm以下、32μm以下、54μm以
下、75μm以下に調整したNdFeB磁石粉末(MQ
P−A:MQI社)1kgずつを混ぜ、ミキサーで混合
しエポキシ樹脂磁石粉の混合液4種を作成し、先に作成
した基体に浸漬塗布を行った。
Next, an equivalent amount of an epoxy resin consisting of Epicoat 802 (epoxy manufactured by Yuka Shell Co., Ltd.) as a main agent and YH306 (epoxy manufactured by Yuka Shell Co., Ltd.) as a hardener was mixed to prepare a 1 kg mixed solution. In addition, the aperture is 20
NdFeB magnet powder (MQ) adjusted to 25 μm or less, 32 μm or less, 54 μm or less, or 75 μm or less by sieving through μm, 32 μm, 54 μm or 75 μm respectively
(PA: MQI) 1 kg each was mixed and mixed with a mixer to prepare four types of mixed liquids of epoxy resin magnet powder, and dip coating was performed on the previously prepared base material.

【0009】浸漬塗布は、基体を混合液に浸漬し、続い
て浸漬した基体を取り出し、余分な混合液を遠心分離器
で除去したのち、180℃で2時間加熱硬化させ、塗布
硬化体を得た。
In the dip coating, the substrate is immersed in the mixed solution, the immersed substrate is taken out, the excess mixed solution is removed by a centrifugal separator, and the mixture is heated and cured at 180 ° C. for 2 hours to obtain a cured coating. Was.

【0010】以上の工程により、基体内部の空孔にはエ
ポキシ樹脂が塗布され、基体表層には、基体より小さな
粒径のNdFeBの粉体が、エポキシ樹脂がバインダー
となって付着し、初めの基体表面より滑らかな表面が得
られた。なお、表層に付着するNdFeBの粉体の厚さ
は、塗布させるエポキシ樹脂と磁石粉混合液の磁石粉の
濃度で制御できる。磁石粉濃度は低い方が厚さは薄く、
濃度が高い方が厚さは厚くなるが、その濃度は基体に浸
漬できる粘度であればよく、特に限定するものではな
い。さらに、塗布硬化体に、無電解NiPを厚さ10μ
mメッキし、最終磁石体を得た。なお、比較例として、
基体にそのまま無電解NiPを厚さ10μmメッキした
ものを作製した。
Through the above steps, the epoxy resin is applied to the pores inside the substrate, and NdFeB powder having a smaller particle size than the substrate adheres to the surface layer of the substrate as the epoxy resin as a binder. A smoother surface than the substrate surface was obtained. The thickness of the NdFeB powder adhering to the surface layer can be controlled by the concentration of the magnet powder in the mixed liquid of the epoxy resin and the magnet powder to be applied. The lower the magnet powder concentration, the thinner the thickness,
The higher the concentration, the thicker the thickness. However, the concentration is not particularly limited as long as it is a viscosity that can be immersed in the substrate. Further, the electroless NiP is applied to the applied cured body to a thickness of 10 μm.
m plating to obtain a final magnet body. In addition, as a comparative example,
A base was directly plated with electroless NiP to a thickness of 10 μm.

【0011】ここで得られた4種の磁石体と比較例で示
す1種の磁石体について、80℃×95H%×100時
間の恒温恒湿試験を行い、耐食性と磁気特性の変化を比
較した。その結果を表1に示す。これより、浸漬させた
混合液に含まれる磁石粉の粒径が75μm以下の試料と
比較例で示す磁石体は茶褐色に変色して腐食が進行し、
磁気特性の低下が大きかった。また、浸漬させた混合液
に含まれる磁石粉の粒径が20μm以下ではやや点状の
腐食物がみられ、磁気特性の低下が見られた。なお、2
0μm以下で初期の磁気特性は低いのは、NdFeB磁
石粉の粒径が比較的小さいために表面に付着した磁石粉
自体の特性が低下していることに起因している。一方、
32μm以下では、耐食性は良好で、しかも磁気特性の
劣化も見られなかった。ここで、メッキ材として、Ni
B、NiWPのいずれでも同様の結果が得られた。ま
た、ここで希土類ボンド磁石としてSmCo系、SmF
eN系においても同様の良好な結果が得られた。
The four types of magnets obtained here and one type of magnet shown in Comparative Example were subjected to a constant temperature and humidity test at 80 ° C. × 95 H% × 100 hours to compare the corrosion resistance and the change in magnetic properties. . Table 1 shows the results. From this, the magnet powder shown in Comparative Example and the particle size of the magnetic powder contained in the immersed mixture liquid of 75 μm or less discolored brown, corrosion progressed,
The decrease in magnetic properties was large. When the particle diameter of the magnet powder contained in the immersed mixed solution was 20 μm or less, a slightly pointed corrosive substance was observed, and a decrease in magnetic properties was observed. In addition, 2
The reason why the initial magnetic properties are low at 0 μm or less is due to the fact that the properties of the magnet powder itself attached to the surface are degraded due to the relatively small particle size of the NdFeB magnet powder. on the other hand,
At 32 μm or less, the corrosion resistance was good, and no deterioration in magnetic properties was observed. Here, Ni is used as a plating material.
Similar results were obtained for both B and NiWP. Also, here, SmCo-based, SmF-based rare earth bonded magnets are used.
Similar good results were obtained in the eN system.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例2)粒径250μm以下のNdF
eB磁石粉末(MQP−A:MQI社)に、主剤として
エピコート1004(油化シェル社製エポキシ)と硬化
剤としてYH308H(油化シェル社製エポキシ)から
なるエポキシ樹脂バインダを磁石粉末に対して2重量%
混合したコンパウンドを作成し、5t/cm2の圧力
で、外径4.0mm×内径1.5mm×厚さ6.0mm
の円筒状に圧縮成型を行い成形体を得た。この成形体を
180℃で5時間加熱硬化し、これを基体とした。
Example 2 NdF having a particle size of 250 μm or less
An epoxy resin binder composed of Epicoat 1004 (epoxy manufactured by Yuka Shell Co., Ltd.) as a base material and YH308H (epoxy manufactured by Yuka Shell Co., Ltd.) as a curing agent was added to the eB magnet powder (MQP-A: MQI). weight%
A mixed compound was prepared, and under a pressure of 5 t / cm 2, an outer diameter of 4.0 mm × an inner diameter of 1.5 mm × a thickness of 6.0 mm
Was subjected to compression molding to obtain a molded product. The molded body was cured by heating at 180 ° C. for 5 hours to obtain a substrate.

【0014】次に、主剤としてエピコート802(油化
シェル社製エポキシ)、硬化剤としてYH306(油化
シェル社製エポキシ)からなるエポキ樹脂を当量混合
し、1kgの混合液を作成した。これに、20μm、3
2μm、54μm、75μmの篩い通しを行い、それぞ
れ25μm以下、32μm以下、54μm以下、75μ
m以下に調整したNdFeB磁石粉末(MQP−A:M
QI社)1kgずつを混ぜ、ミキサーで混合し、エポキ
シ樹脂と磁石粉の混合液4種を作成し、先に作成した基
体に真空含浸を行った。
Next, an equivalent amount of an epoxy resin consisting of Epicoat 802 (epoxy manufactured by Yuka Shell Co., Ltd.) as a main agent and YH306 (epoxy manufactured by Yuka Shell Co., Ltd.) as a hardener was mixed to prepare a 1 kg mixed solution. 20 μm, 3
Perform 2 μm, 54 μm, and 75 μm sieving, and use 25 μm or less, 32 μm or less, 54 μm or less,
m of NdFeB magnet powder (MQP-A: M
1 kg each was mixed and mixed with a mixer to prepare four types of mixed liquids of epoxy resin and magnet powder, and the previously prepared substrate was subjected to vacuum impregnation.

【0015】真空含浸は、基体の脱気を0.1Torr
で10分行い、この圧力を保持した状態で上述の混合液
をそそぎ込み30分間浸漬積し、続いて大気圧に戻し、
さらに基体への含浸を十分に行うために5気圧で10分
保持した後、大気圧に戻した。次に浸漬した基体を取り
出し、余分な混合液を遠心分離器で除去したのち、18
0℃で2時間加熱硬化し、含浸硬化体を得た。
[0015] The vacuum impregnation reduces the deaeration of the substrate by 0.1 Torr.
The mixture is poured for 30 minutes while maintaining the pressure, and then immersed for 30 minutes.
Further, the substrate was kept at 5 atm for 10 minutes in order to sufficiently impregnate the substrate, and then returned to atmospheric pressure. Next, the immersed substrate is taken out, and an excess mixed solution is removed by a centrifugal separator.
It was cured by heating at 0 ° C. for 2 hours to obtain an impregnated cured product.

【0016】以上の工程により、基体内部の空孔にはエ
ポキシ樹脂が含浸され、基体表層には、基体より小さな
粒径のNdFeBの粉体が、エポキシ樹脂がバインダー
となって付着し、初めの基体表面より滑らかな表面が得
られた。なお、表層に付着するNdFeBの粉体の厚さ
は、含浸させるエポキシ樹脂と磁石粉との混合液の磁石
粉の濃度で制御できる。磁石粉濃度は低い方が厚さは薄
く、濃度が高い方が厚さは厚くなるが、その濃度は基体
に真空含浸できる粘度であればよく、特に限定するもの
ではない。さらに、含浸硬化体に、無電解NiPを厚さ
10μmメッキし、最終磁石体を得た。なお、比較例と
して、基体にそのまま無電解NiPを厚さ10μmメッ
キしたものを作製した。
Through the above steps, the pores inside the substrate are impregnated with the epoxy resin, and NdFeB powder having a smaller particle diameter than the substrate adheres to the surface layer of the substrate as the epoxy resin as a binder. A smoother surface than the substrate surface was obtained. Note that the thickness of the NdFeB powder adhering to the surface layer can be controlled by the concentration of the magnet powder in the mixture of the epoxy resin and the magnet powder to be impregnated. The lower the concentration of the magnet powder, the thinner the thickness, and the higher the concentration, the thicker the thickness. However, the concentration is not particularly limited as long as it is a viscosity capable of impregnating the substrate in vacuum. Further, the impregnated and cured body was plated with electroless NiP to a thickness of 10 μm to obtain a final magnet body. As a comparative example, a substrate was prepared by directly plating electroless NiP on a substrate at a thickness of 10 μm.

【0017】ここで得られた4種の磁石体と比較例で示
す1種の磁石体について、80℃×95H%×100時
間の恒温恒湿試験を行い、耐食性と磁気特性の変化を比
較した。その結果を表1に示す。これより、比較例で示
す磁石体は茶褐色に変色し、腐食が進行し、磁気特性の
低下が大きかった。また、含浸した混合液の磁石粉が7
5μmではやや点状の腐食物がみられ、磁気特性の低下
が見られた。また、20μm以下では、耐食性は良好で
磁気特性の劣化も無かったが、他の3種に比べ初期の磁
気特性が低かった。これは、NdFeB磁石粉の粒径が
比較的小さいために表面に付着した磁石粉自体の特性が
低下していることに起因している。一方、32μm以下
では、耐食性は良好で、しかも磁気特性の劣化も見られ
なかった。ここで、メッキ材として、NiB、NiWP
のいずれでも同様の結果が得られた。また、ここで希土
類ボンド磁石としてSmCo系、SmFeN系において
も同様に良好な結果が得られた。
The four types of magnets obtained here and one type of magnet shown in the comparative example were subjected to a constant temperature and humidity test at 80 ° C. × 95 H% × 100 hours to compare the changes in corrosion resistance and magnetic properties. . Table 1 shows the results. As a result, the magnet body shown in the comparative example turned brown and corroded, and the magnetic properties were significantly reduced. The magnetic powder of the impregnated mixed liquid was 7
At 5 μm, a slightly point-like corrosive substance was observed, and a decrease in magnetic properties was observed. At 20 μm or less, the corrosion resistance was good and the magnetic characteristics were not deteriorated, but the initial magnetic characteristics were lower than those of the other three types. This is due to the fact that the properties of the magnet powder adhering to the surface itself are degraded because the particle size of the NdFeB magnet powder is relatively small. On the other hand, when the thickness was 32 μm or less, the corrosion resistance was good, and no deterioration in the magnetic properties was observed. Here, as a plating material, NiB, NiWP
The same result was obtained with any of the above. Good results were also obtained here with SmCo-based and SmFeN-based rare earth bonded magnets.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上、本発明によれば、金属メッキをし
た希土類ボンド磁石において、表層部に基体部より小さ
い粒径の磁石粉末を付着させ、その後、金属メッキを施
すことにより、高耐食性で高特性を合わせ持った希土類
ボンド磁石を提供することが可能となった。
As described above, according to the present invention, in a rare earth bonded magnet plated with metal, a magnet powder having a particle size smaller than that of the base portion is adhered to the surface layer portion, and then metal plating is performed, thereby achieving high corrosion resistance. It has become possible to provide a rare-earth bonded magnet having high characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮内 秀晴 東京都田無市本町6丁目1番12号 シチズ ン時計株式会社田無製造所内 Fターム(参考) 5E062 CC02 CD05 CE04 CG01 CG07 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideharu Miyauchi 6-11-12 Honcho, Tanashi-shi, Tokyo F-term (reference) in Tanashi Works of Citizen Watch Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表層部に基体部と同一磁石系の成分を有
する粉末層を有し、その粉末層に含まれる磁石粉末の最
大粒径が基体部に含まれる磁石粉末の平均粒径よりも小
さく、さらに、その表層部のうえに金属メッキが被覆さ
れていることを特徴とする希土類ボンド磁石。
1. A powder layer having the same magnet system components as a base portion on a surface layer portion, wherein the maximum particle size of the magnet powder contained in the powder layer is larger than the average particle size of the magnet powder contained in the base portion. A rare-earth bonded magnet, characterized in that it is small and has a surface layer coated with metal plating.
【請求項2】 粉末層に含まれる磁石粉末の最大粒径が
32μm〜54μmの範囲にあることを特徴とする請求
項1記載の希土類ボンド磁石。
2. The rare-earth bonded magnet according to claim 1, wherein the maximum particle size of the magnet powder contained in the powder layer is in a range of 32 μm to 54 μm.
【請求項3】 金属メッキがNi−P系、Ni−B系も
しくはNi−P−W系それぞれの単層またはこれらの組
み合わせからなる複層であることを特徴とする請求項1
または請求項2に記載の希土類ボンド磁石。
3. The method according to claim 1, wherein the metal plating is a single layer of Ni-P, Ni-B or Ni-PW, or a multi-layer made of a combination thereof.
Or the rare earth bonded magnet according to claim 2.
【請求項4】 希土類ボンド磁石が、NdFeB系、S
mFeN系またはSmCo系のいずれか一つの系の磁石
であることを特徴とする請求項1、請求項2または請求
項3に記載の希土類ボンド磁石。
4. The rare-earth bonded magnet is an NdFeB-based magnet,
The rare-earth bonded magnet according to claim 1, 2 or 3, wherein the magnet is one of mFeN-based and SmCo-based magnets.
【請求項5】 バインダと希土類磁石粉末を混合したコ
ンパウンドを圧縮成形したのち硬化させた成形体の基体
部に、基体部と同一磁石系の成分を有し、その最大粒径
が基体部に含まれる磁石粉末の平均粒径よりも小さい希
土類磁石粉末を混合した液体樹脂バインダーを浸漬塗布
することによって、表層部に基体部と同一磁石系の成分
を有し、その最大粒径が基体部に含まれる磁石粉末の平
均粒径よりも小さい粉末層を形成し、さらに、その表層
部のうえに金属メッキを被覆することを特徴とする希土
類ボンド磁石の製造方法。
5. A molded body obtained by compression-molding a compound obtained by mixing a binder and a rare-earth magnet powder and then hardening the molded body has the same magnetic system component as the base part, and the maximum particle size is contained in the base part. By dip coating a liquid resin binder mixed with a rare earth magnet powder smaller than the average particle size of the magnet powder to be formed, the surface layer has the same magnet system components as the base, and the maximum particle size is included in the base. Forming a powder layer smaller than the average particle size of the magnet powder to be produced, and coating the surface layer with metal plating.
【請求項6】 バインダと希土類磁石粉末を混合したコ
ンパウンドを圧縮成形したのち硬化させた成形体基体部
に、基体部と同一磁石系の成分を有し、その最大粒径が
基体部に含まれる磁石粉末の平均粒径よりも小さい希土
類磁石粉末を混合した液体樹脂バインダーを真空含浸さ
せることによって、表層部に基体部と同一磁石系の成分
を有し、その最大粒径が基体部に含まれる磁石粉末の平
均粒径よりも小さい粉末層を形成し、さらに、その表層
部のうえに金属メッキを被覆することを特徴とする希土
類ボンド磁石の製造方法。
6. A molded body base part obtained by compressing and molding a compound obtained by mixing a binder and a rare earth magnet powder has the same magnet system components as the base part, and the maximum particle size is contained in the base part. By vacuum impregnating a liquid resin binder mixed with a rare earth magnet powder smaller than the average particle size of the magnet powder, the surface layer has the same magnet system components as the base, and the maximum particle size is included in the base. A method for producing a rare earth bonded magnet, comprising: forming a powder layer smaller than the average particle diameter of magnet powder; and coating the surface layer with metal plating.
JP01969199A 1999-01-28 1999-01-28 Rare earth bonded magnet manufacturing method Expired - Lifetime JP4077572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01969199A JP4077572B2 (en) 1999-01-28 1999-01-28 Rare earth bonded magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01969199A JP4077572B2 (en) 1999-01-28 1999-01-28 Rare earth bonded magnet manufacturing method

Publications (2)

Publication Number Publication Date
JP2000223337A true JP2000223337A (en) 2000-08-11
JP4077572B2 JP4077572B2 (en) 2008-04-16

Family

ID=12006285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01969199A Expired - Lifetime JP4077572B2 (en) 1999-01-28 1999-01-28 Rare earth bonded magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP4077572B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150028976A1 (en) * 2012-03-26 2015-01-29 Hitachi, Ltd. Rare-Earth Magnet
WO2024058040A1 (en) * 2022-09-12 2024-03-21 ミネベアミツミ株式会社 Magnetic encoder
JP7480614B2 (en) 2020-07-20 2024-05-10 株式会社村田製作所 Manufacturing method of coil parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150028976A1 (en) * 2012-03-26 2015-01-29 Hitachi, Ltd. Rare-Earth Magnet
JP7480614B2 (en) 2020-07-20 2024-05-10 株式会社村田製作所 Manufacturing method of coil parts
WO2024058040A1 (en) * 2022-09-12 2024-03-21 ミネベアミツミ株式会社 Magnetic encoder

Also Published As

Publication number Publication date
JP4077572B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
WO2010067592A1 (en) Rare earth-based bonded magnet
JP2021087008A (en) DIFFUSION PROCESSING METHOD OF HEAVY RARE EARTH ELEMENT FOR Nd-Fe-B-BASED MAGNETIC SUBSTANCE OF CIRCULAR ARC SHAPE IN SECTION
JP4077572B2 (en) Rare earth bonded magnet manufacturing method
EP1028437B1 (en) HIGH CORROSION-RESISTANT R-Fe-B-BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JP2001115125A (en) Adhesive for neodymium magnet, and motor
JP2000124019A (en) Resin-bonded rare-earth magnet
KR100371786B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JPH08186016A (en) Bonded magnet having plating film and manufacturing method thereof
JP2000133541A (en) Manufacture of corrosion-resistant r-fe-b bonded magnet
JP3236813B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JPH04273413A (en) Manufacture of rare-earth bonded magnet
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP2006332311A (en) Bond magnet
JPS62120004A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof
JPH11233325A (en) Highly corrosion-resistant r-fe-b bond magnet and its manufacture
JPS62120003A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof
EP0984464B1 (en) Process for producing Fe-B-R based permanent magnet having a corrosion-resistant film
JP2003100536A (en) Method for sealing cavity of bond magnet
JP2006147830A (en) Resin composite for anisotropic bond magnet and anisotropic bond magnet, and motor
JP2004200387A (en) Corrosion-resistant permanent magnet and its manufacturing method
JP2008078211A (en) Bond magnet, and method for manufacturing the same
JPH11238641A (en) Highly corrosion resistant r-fe-b bonded magnet and its manufacture
JPH11260614A (en) Anticorrosive r-fe-b bonded magnet and manufacture of the same
JP2980122B2 (en) Manufacturing method of rare earth resin bonded magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150208

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term