JP2000221170A - Nondestructive inspection apparatus of structures - Google Patents

Nondestructive inspection apparatus of structures

Info

Publication number
JP2000221170A
JP2000221170A JP11020903A JP2090399A JP2000221170A JP 2000221170 A JP2000221170 A JP 2000221170A JP 11020903 A JP11020903 A JP 11020903A JP 2090399 A JP2090399 A JP 2090399A JP 2000221170 A JP2000221170 A JP 2000221170A
Authority
JP
Japan
Prior art keywords
signal
pipe
nondestructive inspection
sequence
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11020903A
Other languages
Japanese (ja)
Inventor
Akiharu Kitamura
暁晴 北村
Yukihiro Terada
幸博 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP11020903A priority Critical patent/JP2000221170A/en
Publication of JP2000221170A publication Critical patent/JP2000221170A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the inspection up to a remote distance so as to be capable of reducing detection errors. SOLUTION: A nondestructive inspection apparatus is equipped with an M-system signal generator 3, the transmitter-receiver 2 attached to a pipe 1 to be subjected to nondestructive inspection to transmit the signal outputted from the M-system signal generator into the pipe 1 to receive the signal of the reflected wave from the discontinuous place of the pipe 1, and a correlation detector 10 for detecting the discontinuous place of the pipe 1 by the correlational processing of the receiving signal received by the transmitter- receiver 2 and the same M-system signal of the M-system signal generator 3. With this constitution, the discontinuous place can be detected by transmitting the M-system signal (spectrum diffusing signal) and performing correlational processing by using the same spectrum diffusing signal being the reflection signal of the pipe 1, the measuring error of a detection place can be improved, and an S/N ratio can be also enhanced and the measurement up to a remote distance is enabled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構造物、たとえば
少なくとも一部が埋設されたパイプ等の傷や腐食等を非
破壊で検出可能な非破壊検査装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive inspection apparatus capable of non-destructively detecting a structure, for example, a flaw or corrosion of a pipe or the like at least partially buried therein.

【0002】[0002]

【従来の技術】従来、少なくとも一部が埋設されたパイ
プの傷や腐食等の検査においては、超音波をパイプに印
加し、この超音波の反射エコーの位置から、傷や腐食等
を信号波形で見ることにより直接判別していた。この方
法は、送信波形としてパルスを使用するため、パルスエ
コー法と呼ばれている。
2. Description of the Related Art Conventionally, in an inspection of a pipe at least partially buried for damage or corrosion, an ultrasonic wave is applied to the pipe, and from the position of the reflected echo of the ultrasonic wave, a signal waveform of the damage or corrosion is given. Was directly discriminated by looking at. This method is called a pulse echo method because a pulse is used as a transmission waveform.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記パルスエ
コー法では、反射波の位置を目視、もしくは波形の立ち
上がりによって、検出していることから、計測上の誤差
が1/2波長に及び、傷の位置を正確に特定することが
できないという問題があり、さらに非破壊検査対象の構
造物のノイズにより、遠距離まで検査する際に、波形が
埋もれ、検出が難しくなるという問題があった。
However, in the above-mentioned pulse echo method, since the position of the reflected wave is detected by visual observation or by the rise of the waveform, the measurement error extends to a half wavelength, and In addition, there is a problem that the position cannot be specified accurately, and furthermore, when inspecting to a long distance, the waveform is buried due to the noise of the structure to be subjected to the nondestructive inspection, and the detection becomes difficult.

【0004】そこで、本発明は、検出誤差を改善でき、
かつ遠距離まで検査可能な構造物の非破壊検査装置を提
供することを目的としたものである。
Therefore, the present invention can improve the detection error,
It is another object of the present invention to provide a nondestructive inspection device for a structure that can be inspected up to a long distance.

【0005】[0005]

【課題を解決するための手段】前述した目的を達成する
ために、本発明の構造物の非破壊検査装置は、スペクト
ラム拡散信号を発生する信号発生手段と、非破壊検査対
象の構造物に取付けられ、前記信号発生手段より発生さ
れた信号を構造物内へ送信する送信手段と、前記構造物
に取付けられ、構造物の不連続な箇所より反射される前
記送信信号の反射信号を受信する受信手段と、前記受信
手段により受信された受信信号と前記信号発生手段より
発生されたスペクトラム拡散信号との相関処理により、
前記構造物の不連続な箇所を検出する検出手段を備えた
ことを特徴とするものである。
In order to achieve the above-mentioned object, a non-destructive inspection apparatus for a structure according to the present invention includes a signal generating means for generating a spread spectrum signal, and a signal generation means for attaching the signal to a non-destructive inspection target structure. Transmitting means for transmitting a signal generated by the signal generating means into a structure; and receiving means for receiving a reflected signal of the transmission signal attached to the structure and reflected from a discontinuous portion of the structure. Means, by correlation processing of the received signal received by the receiving means and the spread spectrum signal generated by the signal generating means,
It is characterized by comprising a detecting means for detecting a discontinuous portion of the structure.

【0006】ここで、スペクトラム拡散信号には、M系
列符号やJPL符号を使用する。
Here, an M-sequence code or a JPL code is used for the spread spectrum signal.

【0007】上記構成により、スペクトラム拡散信号が
構造物内に送信され、構造物の不連続な箇所からの送信
信号の反射信号が受信され、この受信信号が前記同一の
スペクトラム拡散信号を用いて相関処理されることによ
り、構造物の不連続な箇所が検出される。
According to the above configuration, the spread spectrum signal is transmitted into the structure, the reflected signal of the transmission signal from a discontinuous portion of the structure is received, and the received signal is correlated using the same spread spectrum signal. By performing the processing, discontinuous portions of the structure are detected.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1に本発明の実施の形態における構造物
の非破壊検査装置の構成図を示す。
FIG. 1 shows a configuration diagram of a nondestructive inspection apparatus for a structure according to an embodiment of the present invention.

【0010】1は非破壊検査対象の構造物である金属製
のパイプであり、本発明の非破壊検査装置は、このパイ
プ1の腐食や傷等(不連続な箇所)を非破壊で発見する
ことを目的としている。
Reference numeral 1 denotes a metal pipe which is a structure to be subjected to nondestructive inspection. The nondestructive inspection apparatus of the present invention non-destructively detects corrosion, scratches and the like (discontinuous portions) of the pipe 1. It is intended to be.

【0011】2はパイプ1に取付けられた送受信器(送
信手段および受信手段の一例)であり、この送受信器2
よりパイプ1内へ印加(送信)された信号は、金属中を
長距離にわたって伝搬され、不連続な箇所があると反射
され、この反射波が送受信器2により受信される。
Reference numeral 2 denotes a transceiver (an example of transmission means and reception means) attached to the pipe 1.
The signal applied (transmitted) into the pipe 1 propagates through the metal over a long distance, and is reflected when there is a discontinuous portion. The reflected wave is received by the transceiver 2.

【0012】3は、M系列符号(スペクトラム拡散符号
の一例)の符号系列長を31系列としたディジタルのM
系列信号(スペクトラム拡散信号の一例)を発生するM
系列信号発生器であり、このM系列信号発生器3より出
力されたディジタルのM系列信号はDA変換器4により
アナログ信号に変換され、パワーアンプ5により10〜
1000Vの電圧信号に増幅されて送受信切換器6を介
して前記送受信器2へ出力され、送受信器2よりパイプ
1へ送信される。
Reference numeral 3 denotes a digital M code having an M sequence code (an example of a spread spectrum code) having a code sequence length of 31 sequences.
M that generates a sequence signal (an example of a spread spectrum signal)
A digital M-sequence signal output from the M-sequence signal generator 3 is converted into an analog signal by the DA converter 4, and is converted into an analog signal by the power amplifier 5.
The signal is amplified to a voltage signal of 1000 V, output to the transceiver 2 via the transmission / reception switch 6, and transmitted from the transceiver 2 to the pipe 1.

【0013】また送受信器2により受信された上記反射
波の信号は、前記送受信切換器6を介してノイズフィル
タ7によりノイズが除去され、アンプ8によりAD変換
器9の変換領域まで増幅され、AD変換器9によりディ
ジタル信号に変換され、相関検出器10へ出力され、受信
信号とM系列信号発生器3のM系列信号との相関処理に
より、不連続な箇所の位置が検出され、この検出信号が
出力される。上記AD変換器9のサンプリング速度は高
速であり、たとえば1MHzである。
The reflected wave signal received by the transmitter / receiver 2 is subjected to noise removal by a noise filter 7 via the transmission / reception switch 6 and is amplified by an amplifier 8 to a conversion area of an AD converter 9. The signal is converted into a digital signal by a converter 9 and output to a correlation detector 10. The correlation processing between the received signal and the M-sequence signal of the M-sequence signal generator 3 detects the position of a discontinuous portion. Is output. The sampling rate of the AD converter 9 is high, for example, 1 MHz.

【0014】本実施の形態では、M系列信号発生器3と
相関検出器10を、コンピュータ11によりソフトウェアで
形成している。なお、これらM系列信号発生器3と相関
検出器10を、ハードウェアで形成することもできる。
In this embodiment, the M-sequence signal generator 3 and the correlation detector 10 are formed by a computer 11 using software. The M-sequence signal generator 3 and the correlation detector 10 can be formed by hardware.

【0015】また上記送受信切換器6は送信信号と受信
信号を切り換えるものであり、この送受信切換器6は、
これら信号を切り換えるスイッチ、あるいは送信信号と
受信信号の逆流を阻止するダイオード等により構成され
る。また、上記送受信器2は、たとえば圧電素子を使用
して送信信号を振動に変換して振動でパイプ1を打つこ
とにより、金属中に信号を伝搬する。
The transmission / reception switch 6 switches between a transmission signal and a reception signal.
It is composed of a switch for switching these signals, or a diode for preventing the backflow of the transmission signal and the reception signal. The transmitter / receiver 2 converts a transmission signal into vibration using, for example, a piezoelectric element and strikes the pipe 1 with the vibration, thereby transmitting the signal through the metal.

【0016】上記構成による作用を説明する。The operation of the above configuration will be described.

【0017】M系列信号発生器3により発生されたM系
列信号(ディジタル信号)はDA変換器4によりアナロ
グ信号に変換され、パワーアンプ5により10〜100
0Vの電圧信号に増幅されて送受信切換器6を介して送
受信器2へ出力され、この送受信器2よりパイプ1へ送
信される。この送信信号のパイプ1の不連続箇所からの
反射波は、送受信器2より受信され、この受信信号は、
送受信切換器6を介してノイズフィルタ7によりノイズ
が除去され、アンプ8により増幅され、AD変換器9に
よりディジタル信号に変換されて相関検出器10へ出力さ
れ、受信信号とM系列信号発生器3のM系列信号との相
関処理により、送信信号がどこにあるかが検出され、す
なわちパイプ1の不連続な箇所が検出され、この検出信
号が出力される。
The M-sequence signal (digital signal) generated by the M-sequence signal generator 3 is converted into an analog signal by a DA converter 4, and 10 to 100 by a power amplifier 5.
The signal is amplified to a voltage signal of 0 V, outputted to the transceiver 2 via the transmission / reception switch 6, and transmitted from the transceiver 2 to the pipe 1. The reflected wave of the transmission signal from the discontinuous portion of the pipe 1 is received from the transceiver 2, and the reception signal is
Noise is removed by a noise filter 7 via a transmission / reception switch 6, amplified by an amplifier 8, converted to a digital signal by an AD converter 9, output to a correlation detector 10, and received signals and an M-sequence signal generator 3 , The location of the transmission signal is detected, that is, a discontinuous portion of the pipe 1 is detected, and this detection signal is output.

【0018】図2(a)にパイプ1に傷が発生していな
い正常な場合の検出信号の特性図、図2(b)にパイプ
1に傷が発生している場合の検出信号の特性図を示す。
FIG. 2A is a characteristic diagram of a detection signal in a case where the pipe 1 is not damaged, and FIG. 2B is a characteristic diagram of a detection signal in a case where the pipe 1 is damaged. Is shown.

【0019】いずれも不連続な箇所としてパイプ1の継
ぎ目が所定間隔で検出されており、図2(a)に示すよ
うな正常なパイプ1の特性データを予め収集しておくこ
とにより、継ぎ目の箇所以外の不連続な箇所の検出によ
って、腐食や傷等が発生していることを判断でき、その
位置を特定することができる。
In each case, seams of the pipe 1 are detected at predetermined intervals as discontinuous portions. By collecting characteristic data of a normal pipe 1 as shown in FIG. By detecting a discontinuous location other than the location, it can be determined that corrosion, a flaw, or the like has occurred, and the location can be specified.

【0020】また、M系列信号(スペクトラム拡散信
号)を使用した相関処理により、S/N比を改善するこ
とができ、パイプ1の不連続な箇所の反射波にノイズが
多い場合にでも、相関処理で補ってパイプ1の不連続な
箇所を非破壊で検出することができる。
Further, the S / N ratio can be improved by the correlation processing using the M-sequence signal (spread spectrum signal), and even if the reflected wave at the discontinuous portion of the pipe 1 is noisy, the correlation can be improved. The discontinuous portion of the pipe 1 can be detected in a non-destructive manner by supplementing the process.

【0021】S/N改善=10log(N) 但し、
N=2m−1;系列長 であるので、31系列のM系列符号の場合、15dB改
善できる。またその分、遠距離まで検査を行うことがで
きる。
S / N improvement = 10 log (N) where:
Since N = 2 m -1; sequence length, it can be improved by 15 dB in the case of 31 sequence M sequence codes. In addition, the inspection can be performed to a long distance.

【0022】また不連続な箇所の位置の検出誤差を改善
することができ、正確な傷の位置を検出することができ
る。たとえば、パイプ1の材質がアルミニウムで音速3
000mとし、従来では100kHzのパルスを使用
し、本発明のAD変換器7のサンプリング速度を1MH
zとした場合、従来の測定誤差(波長の1/2)は0.
03m(=λ/2)であるのに対し、本発明の測定誤差
は0.003m(=1/1MHz×3000)となり、
約10倍に改善され、不連続な箇所の位置を正確に特定
することができる。
Further, the detection error of the position of the discontinuous portion can be improved, and the accurate position of the flaw can be detected. For example, the material of the pipe 1 is aluminum and the sound speed is 3
000 m, a pulse of 100 kHz is conventionally used, and the sampling rate of the AD converter 7 of the present invention is 1 MHz.
When z is used, the conventional measurement error (1/2 of the wavelength) is 0.
03m (= λ / 2), the measurement error of the present invention is 0.003m (= 1/1 MHz × 3000),
It is improved by about 10 times, and the position of the discontinuous portion can be accurately specified.

【0023】また従来、目視にて傷の箇所を検出してい
たが、予め収集された正常なパイプ1の計測データと、
検出信号による計測データを比較することにより、自動
で傷の箇所を検出することができる。
Conventionally, the location of the damage was detected visually, but the measurement data of the normal pipe 1 collected in advance and
By comparing the measurement data based on the detection signals, the location of the flaw can be automatically detected.

【0024】なお、本実施の形態では、送信手段と受信
手段をまとめて送受信器2を構成し、同じ位置に設置し
ているが、送信手段と受信手段を切り離して、別の位置
に設置することも可能である。
In this embodiment, the transmitter and the receiver are combined to form the transmitter / receiver 2 and are installed at the same position. However, the transmitter and the receiver are separated and installed at another position. It is also possible.

【0025】また本実施の形態では、M系列の符号系列
長を31系列としているが、符号系列長を長くすること
により、さらに処理利得を向上できる。またM系列信号
に代えて、JPL符号等、他の高速符号の信号を使用す
ることができる。
Further, in the present embodiment, the code sequence length of the M sequence is 31 sequences, but the processing gain can be further improved by increasing the code sequence length. Also, instead of the M-sequence signal, a signal of another high-speed code such as a JPL code can be used.

【0026】また、パイプ1の反射波の信号(受信信
号)が、微小な信号、たとえば1μVの信号のとき、送
受信切換器6とノイズフィルタ7間に別途、アンプを介
装するようにしてもよい。
When the signal (received signal) of the reflected wave from the pipe 1 is a small signal, for example, a signal of 1 μV, an amplifier may be separately provided between the transmission / reception switch 6 and the noise filter 7. Good.

【0027】[0027]

【発明の効果】以上述べたように本発明によれば、スペ
クトラム拡散信号が送信され、この送信信号の構造物の
不連続な箇所からの反射信号が同一のスペクトラム拡散
信号を用いて相関処理されることにより、検出箇所の測
定誤差を改善でき、構造物の不連続な箇所の位置を正確
に特定でき、またS/N比を改善でき、反射信号にノイ
ズが多い場合でも遠距離まで測定することが可能とな
る。
As described above, according to the present invention, a spread spectrum signal is transmitted, and a reflection signal from a discontinuous portion of a structure of the transmission signal is subjected to correlation processing using the same spread spectrum signal. By doing so, it is possible to improve the measurement error of the detection location, accurately identify the position of the discontinuous location of the structure, improve the S / N ratio, and measure even a long distance even if the reflected signal is noisy. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における構造物の非破壊検
査装置の構成図である。
FIG. 1 is a configuration diagram of a nondestructive inspection apparatus for a structure according to an embodiment of the present invention.

【図2】同非破壊検査装置による相関処理の結果の波形
図である。
FIG. 2 is a waveform diagram showing a result of a correlation process performed by the nondestructive inspection apparatus.

【符号の説明】[Explanation of symbols]

1 パイプ(構造物) 2 送受信器 3 M系列信号発生器 4 DA変換器 5 パワーアンプ 6 送受信切換器 7 ノイズフィルタ 8 アンプ 9 AD変換器 10 相関検出器 11 コンピュータ DESCRIPTION OF SYMBOLS 1 Pipe (structure) 2 Transceiver 3 M-sequence signal generator 4 DA converter 5 Power amplifier 6 Transmission / reception switch 7 Noise filter 8 Amplifier 9 A / D converter 10 Correlation detector 11 Computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スペクトラム拡散信号を発生する信号発
生手段と、 非破壊検査対象の構造物に取付けられ、前記信号発生手
段より発生された信号を構造物内へ送信する送信手段
と、 前記構造物に取付けられ、構造物の不連続な箇所より反
射される前記送信信号の反射信号を受信する受信手段
と、 前記受信手段により受信された受信信号と前記信号発生
手段より発生されたスペクトラム拡散信号との相関処理
により、前記構造物の不連続な箇所を検出する検出手段
を備えたことを特徴とする構造物の非破壊検査装置。
1. A signal generating means for generating a spread spectrum signal, a transmitting means attached to a structure to be subjected to nondestructive inspection, and transmitting a signal generated by the signal generating means into the structure; And receiving means for receiving a reflection signal of the transmission signal reflected from a discontinuous portion of the structure, a reception signal received by the reception means, and a spread spectrum signal generated by the signal generation means. A non-destructive inspection device for a structure, comprising: a detecting unit that detects a discontinuous portion of the structure by the correlation processing of (1).
JP11020903A 1999-01-29 1999-01-29 Nondestructive inspection apparatus of structures Pending JP2000221170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11020903A JP2000221170A (en) 1999-01-29 1999-01-29 Nondestructive inspection apparatus of structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11020903A JP2000221170A (en) 1999-01-29 1999-01-29 Nondestructive inspection apparatus of structures

Publications (1)

Publication Number Publication Date
JP2000221170A true JP2000221170A (en) 2000-08-11

Family

ID=12040201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020903A Pending JP2000221170A (en) 1999-01-29 1999-01-29 Nondestructive inspection apparatus of structures

Country Status (1)

Country Link
JP (1) JP2000221170A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005058A (en) * 2009-06-27 2011-01-13 Nec Corp Mechanical characteristic measuring device and method for using mechanical characteristic measuring device
CN112485332A (en) * 2020-11-16 2021-03-12 中国铁建重工集团股份有限公司 Nondestructive testing system and nondestructive testing method based on pseudorandom coding
JP2021076474A (en) * 2019-11-08 2021-05-20 京セラ株式会社 Transmitting and receiving system and transmitting and receiving method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005058A (en) * 2009-06-27 2011-01-13 Nec Corp Mechanical characteristic measuring device and method for using mechanical characteristic measuring device
JP2021076474A (en) * 2019-11-08 2021-05-20 京セラ株式会社 Transmitting and receiving system and transmitting and receiving method
CN112485332A (en) * 2020-11-16 2021-03-12 中国铁建重工集团股份有限公司 Nondestructive testing system and nondestructive testing method based on pseudorandom coding

Similar Documents

Publication Publication Date Title
US6684701B2 (en) System and method of determining porosity in composite materials using ultrasound
TWI408699B (en) Nuclear reactor vibration surveillance system and its method
CN101413926A (en) A kind of sound, supersonic damage-free detection method
US5408880A (en) Ultrasonic differential measurement
JP2000221170A (en) Nondestructive inspection apparatus of structures
JP4405821B2 (en) Ultrasonic signal detection method and apparatus
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
KR101826917B1 (en) Multi-channel ultrasonic diagnostic method for long distance piping
JP4262046B2 (en) Sound inspection system
JP3036387B2 (en) Ultrasonic flaw detection method and device
JP3638248B2 (en) Abnormal point detection device
JPH11295179A (en) Abnormal place detecting device
JP2609647B2 (en) Ultrasonic flaw detector
WO2018135242A1 (en) Inspection method
KR100573967B1 (en) Nondestructive inspection type supersound sensing system
JPS617465A (en) Ultrasonic wave tester
KR100992617B1 (en) Pipe conduit block testing equipment using magnetostrictive effect and the method thereof
JPH1151909A (en) Ultrasonic wave flaw detecting method
JPH09236585A (en) Diagnostic measurement sensor for surface degradation, hardening, fatigue, etc., and diagnostic device and diagnostic method
JP3714934B2 (en) Fluid conveying pipe inspection device
JPH06138102A (en) Method and apparatus for detecting corrosion
JP2739972B2 (en) Ultrasonic flaw detector
JP2005233865A (en) Method and device for determining corrosion in structural member
JP2000162192A (en) Monitoring method of quality in extension of pipe
JP2002365267A (en) Ultrasonic flaw detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201