JP2000220641A - Rolling bearing and motor using the same - Google Patents

Rolling bearing and motor using the same

Info

Publication number
JP2000220641A
JP2000220641A JP2146799A JP2146799A JP2000220641A JP 2000220641 A JP2000220641 A JP 2000220641A JP 2146799 A JP2146799 A JP 2146799A JP 2146799 A JP2146799 A JP 2146799A JP 2000220641 A JP2000220641 A JP 2000220641A
Authority
JP
Japan
Prior art keywords
thermal expansion
motor
rolling
bearing
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2146799A
Other languages
Japanese (ja)
Inventor
Takamasa Imichi
隆正 井通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2146799A priority Critical patent/JP2000220641A/en
Publication of JP2000220641A publication Critical patent/JP2000220641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolling bearing to suppress the variation of the pre-load by a temperature variation, and a motor with little variation of the consuming current and the ligidity, by applying materials with different thermal expansion coefficients to inner rings and outer rings respectively, as well as using a material of small thermal expansion coefficient such as a ceramic material, to the material of the rolling element of rolling bearings assembled to a motor. SOLUTION: A material with the thermal expansion coefficient less than 9.0×10-6 is used to the rolling elements 13 of rolling bearings 3 and 4, a material with the thermal expansion coefficient (9.0 to 11.0)×10-6 is used to outer rings 12, and a material with the thermal expansion coefficient (11.0 to 14.0)×10-6 is used to inner rings 11, so as to suppress the variation of the pre- load by the temperature variation. In a motor assembling such rolling bearings, the reduction of the rigidity, and the increase of the motor consuming current are small, even though the circumferential temperature is changed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、転がり軸受及びこ
れを組み込んだモータに関し、特に、温度変化に対し
て、転がり軸受の予圧荷重特性を安定させると共にモー
タ消費電流や剛性を安定させたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling bearing and a motor incorporating the same, and more particularly to a rolling bearing which stabilizes a preload load characteristic of a rolling bearing against a temperature change and stabilizes a motor consumption current and a rigidity. is there.

【0002】[0002]

【従来の技術】回転機械である各種のモータに用いられ
る転がり軸受は、内輪・外輪・転動体の材料として、同
一材料である軸受鋼(高炭素クロム鋼)が使用されるの
が一般的であるが、軸受の損傷を低減するために転動体
のみをセラミック材料で構成することがある。
2. Description of the Related Art Rolling bearings used for various motors as rotary machines generally use the same bearing steel (high carbon chromium steel) as a material for an inner ring, an outer ring and rolling elements. However, in order to reduce damage to the bearing, only the rolling elements may be made of a ceramic material.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、転動体
をセラミック材料とした場合、使用するセラミック材料
の熱膨張係数が(2〜8)×10-6m/m/degであ
るのに対して、軸受内輪と外輪を構成する軸受鋼の熱膨
張係数は12.7×10-6m/m/degであり、その
熱膨張係数の差から、環境温度が高くなると軸受すきま
が大きくなり、逆に環境温度が低くなると軸受隙間が小
さくなる。そのために、転がり軸受に付与されている予
圧が、温度の変化とともに大きく増大または減少し、結
果的にモータの消費電流や剛性を変化させてしまうとい
う問題があった。
However, when the rolling element is made of a ceramic material, the ceramic material used has a coefficient of thermal expansion of (2-8) × 10 −6 m / m / deg. The coefficient of thermal expansion of the bearing steel constituting the inner ring and the outer ring of the bearing is 12.7 × 10 −6 m / m / deg. Due to the difference in the coefficient of thermal expansion, the bearing clearance increases as the environmental temperature increases. As the environmental temperature decreases, the bearing clearance decreases. Therefore, there is a problem that the preload applied to the rolling bearing greatly increases or decreases with a change in temperature, and as a result, current consumption and rigidity of the motor change.

【0004】そこで本発明は、このような従来の問題点
に着目してなされたものであり、モータに組み込まれる
転がり軸受の転動体の材料にセラミック材等の熱膨張係
数の小さいものを用いると共に、内輪と外輪とにそれぞ
れ熱膨張係数の異なる材料を適用することにより、温度
変化による予圧の変化を抑制した転がり軸受と、消費電
流や剛性の変化が小さいモータを提供することを目的と
する。
Accordingly, the present invention has been made in view of such a conventional problem, and uses a material having a small thermal expansion coefficient such as a ceramic material as a material of a rolling element of a rolling bearing incorporated in a motor. An object of the present invention is to provide a rolling bearing in which a change in preload due to a temperature change is suppressed by applying materials having different coefficients of thermal expansion to an inner ring and an outer ring, and a motor having small changes in current consumption and rigidity.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る転がり軸受は、転動体に熱膨張係
数が9.0×10-6以下の材料を用い、外輪に熱膨張係
数が(9.0〜11.0)×10-6の材料を用い、内輪
に熱膨張係数が(11.0〜14.0)×10 -6の材料
を用いてなる転がり軸受である。
Means for Solving the Problems To achieve the above object,
In the rolling bearing according to the first aspect, the rolling element has a thermal expansion function.
The number is 9.0 × 10-6Using the following materials, the outer ring
Number is (9.0-11.0) × 10-6Material of inner ring
Has a coefficient of thermal expansion of (11.0 to 14.0) × 10 -6Material
Is a rolling bearing using the same.

【0006】また、請求項2に係るモータは、転動体に
熱膨張係数が9.0×10-6以下の材料を用い、外輪に
熱膨張係数が(9.0〜11.0)×10-6の材料を用
い、内輪に熱膨張係数が(11.0〜14.0)×10
-6の材料を用いてなる転がり軸受を組み込んだモ一タで
ある。
According to a second aspect of the present invention, the rolling element uses a material having a thermal expansion coefficient of 9.0 × 10 −6 or less, and the outer ring has a thermal expansion coefficient of (9.0 to 11.0) × 10 6. -6 , and the inner ring has a coefficient of thermal expansion of (11.0-14.0) × 10
This is a motor incorporating a rolling bearing made of the material No. -6 .

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、本発明に係る転がり軸受
が組み込まれている磁気ディスク装置(HDD、ハ一ド
ディスクドライブ)用スピンドルモータの代表例の断面
図である。先ず構成を説明すると、モータ台座1に立設
した固定軸2に、上下一対の転がり軸受3,4を介し
て、ハブ5が回転自在に取り付けてある。そのハブ5に
は、図示されないが被回転体であるディスクが搭載され
る。モータ台座1の外周部にはコイルを有するステータ
7が固定され、一方、ハブ5の内径面には、ステータ7
とギャップを隔てて対向するロータ磁石8が固着されて
いる。この実施の形態のスピンドルモータの場合、転が
り軸受3,4として深溝玉軸受が使用されており、内輪
11は固定軸2に、外輪12はハブ5にそれぞれ接着ま
たは焼き嵌め等の手段で固着して取り付けられ、玉13
には予圧がかけられている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a representative example of a spindle motor for a magnetic disk device (HDD, hard disk drive) in which a rolling bearing according to the present invention is incorporated. First, the configuration will be described. A hub 5 is rotatably mounted on a fixed shaft 2 erected on a motor base 1 via a pair of upper and lower rolling bearings 3 and 4. Although not shown, a disk which is a rotating body is mounted on the hub 5. A stator 7 having a coil is fixed to an outer peripheral portion of the motor pedestal 1, while a stator 7
The rotor magnets 8 facing each other with a gap therebetween are fixed. In the case of the spindle motor of this embodiment, deep groove ball bearings are used as the rolling bearings 3 and 4, and the inner ring 11 is fixed to the fixed shaft 2 and the outer ring 12 is fixed to the hub 5 by means such as bonding or shrink fitting. Ball 13
Is pre-loaded.

【0008】その予圧の形態は定位置予圧である。定位
置予圧の場合は、温度変化に伴う軸受間距離の変化や軸
受のラジアル方向への膨張/収縮によって、予圧の大き
さが変化しやすいので、一般に、転がり軸受の温度変化
による予圧の変動を小さくしたい場合には、ばね等を用
いて一定の大きさの予圧を負荷する定圧予圧が用いられ
る。しかし、HDDは小型化が強く望まれており、その
ためスピンドルモータ内のスペースが減少して定圧予圧
を用いることができない事情がある。
[0008] The form of the preload is a fixed position preload. In the case of fixed-position preload, the magnitude of the preload tends to change due to changes in the bearing distance due to temperature changes and the expansion / contraction of the bearing in the radial direction. When it is desired to reduce the pressure, a constant-pressure preload for applying a predetermined preload using a spring or the like is used. However, there is a strong demand for miniaturization of HDDs, which leads to a situation in which the space in the spindle motor is reduced and a constant pressure preload cannot be used.

【0009】ディスクが搭載されるハブ5は、軽量化,
加工性等を考慮してアルミニウム合金製、これに対し軸
2は組立性の点からステンレス合金製とされている。こ
こに、前記アルミニウム合金の代表的熱膨張係数は2
3.7×10-6、またマルテンサイト系ステンレス鋼の
代表的熱膨張係数は10.4×10-6である。本発明に
あっては、転がり軸受3,4の材料に関して、転動体で
ある玉13に熱膨張係数が9.0×10-6以下の範囲に
あるものを用いるものとする。この実施の形態では、代
表的熱膨張係数が3.2×10-6のセラミックである窒
化ケイ素(Si34)を用いている。なお、その他ジル
コニア,アルミナ,炭化ケイ素等のセラミックを用いる
こともできる。
The hub 5 on which the disk is mounted is lightweight,
In consideration of workability and the like, the shaft 2 is made of a stainless alloy from the viewpoint of assemblability. Here, a typical thermal expansion coefficient of the aluminum alloy is 2
3.7 × 10 −6 , and a typical coefficient of thermal expansion of martensitic stainless steel is 10.4 × 10 −6 . In the present invention, as the material of the rolling bearings 3 and 4, a ball 13 as a rolling element having a coefficient of thermal expansion of 9.0 × 10 -6 or less is used. In this embodiment, silicon nitride (Si 3 N 4 ) which is a ceramic having a typical coefficient of thermal expansion of 3.2 × 10 −6 is used. In addition, ceramics such as zirconia, alumina, and silicon carbide can also be used.

【0010】転動体の材料の熱膨張係数が9.0×10
-6を超えると、適用する内輪,外輪との熱膨張差が小さ
くなり、予圧変化が問題視されなくなる。軸受内輪の材
料としては、熱膨張係数が(11.0〜14.0)×1
-6の範囲にあるものを用いるものとする。この実施の
形態では、内輪11の材料に、代表的熱膨張係数が1
2.7×10-6の高炭素クロム鋼(軸受鋼・SUJ2)
を用いている。なお、その他高速度鋼,浸炭鋼等の金属
を、内輪材として例示することもできる。
The material of the rolling element has a thermal expansion coefficient of 9.0 × 10
If it exceeds -6 , the difference in thermal expansion between the inner ring and the outer ring to be applied becomes small, and the change in preload is not regarded as a problem. As the material of the bearing inner ring, the coefficient of thermal expansion is (11.0 to 14.0) × 1
It shall be used those in the range of 0 -6. In this embodiment, the material of the inner ring 11 has a typical coefficient of thermal expansion of 1
2.7 × 10 -6 high carbon chrome steel (bearing steel, SUJ2)
Is used. In addition, other metals such as high-speed steel and carburized steel can be exemplified as the inner race material.

【0011】内輪の材料の熱膨張係数が11.0×10
-6未満であると、対象とする転動体との熱膨張差が小さ
くなって予圧変化が小さくなるから問題視されなくな
る。一方、内輪の材料の熱膨張係数が14.0×10-6
を超えると、転がり軸受材料として適当なものがない。
軸受外輪の材料には、熱膨張係数が(9.0〜11.
0)×10-6の範囲にあるものを用いるものとする。
The coefficient of thermal expansion of the material of the inner ring is 11.0 × 10
If it is less than -6 , the difference in thermal expansion between the rolling element and the rolling element is small, and the change in preload is small. On the other hand, the thermal expansion coefficient of the material of the inner ring is 14.0 × 10 −6.
If it exceeds 300, there is no suitable rolling bearing material.
The material of the bearing outer ring has a coefficient of thermal expansion of (9.0-11.
0) It is assumed that a material in the range of 10-6 is used.

【0012】すなわち、本発明にあっては、軸受の転動
体にセラミック等の熱膨張係数の小さい材料を用いるこ
とを前提として、内輪の熱膨張係数よりも小さい熱膨張
係数を有する外輪を用いる。これにより温度変化による
軸受すきま変化、ひいてはモータの軸受予圧の変化を小
さく抑えて、モ一タの消費電流や剛性の変化を抑制する
ことを可能とする。
That is, in the present invention, an outer ring having a smaller coefficient of thermal expansion than the inner ring is used on the assumption that a material having a small coefficient of thermal expansion such as ceramic is used for the rolling elements of the bearing. As a result, it is possible to suppress a change in bearing clearance due to a temperature change, and consequently a change in bearing preload of the motor, and to suppress a change in current consumption and rigidity of the motor.

【0013】この実施の形態では、外輪12の材料に、
代表的熱膨張係数が10.3×10 -6であるマルテンサ
イト系ステンレス鋼を用いている。なお、その他炭素鋼
等の金属を外輪材料として例示することもできる。次
に、本発明の作用を述べる。上記転がり軸受3,4の軸
受すきまの変化に及ぼす温度並びに内・外輪,転動体の
寸法、それらの材料の熱膨張係数等の影響を説明する
と、いま、上記転がり軸受の組立温度と運転温度との違
いによる軸受すきまの変化量を△とすれば、 △=(de ・αe −di ・αi −2・Da ・αa )δT ……(1) ここに de =軸受外輪軌道径寸法 di =軸受内輪軌道径寸法 Da :転動体寸法 αe :外輪材料の熱膨張係数 αi :内輪材料の熱膨張係数 αa :転動体材料の熱膨張係数 δT =運転温度と軸受組立て温度の差 となる。
In this embodiment, the material of the outer ring 12 is
Typical coefficient of thermal expansion is 10.3 × 10 -6Martensa
It uses stainless steel. In addition, other carbon steel
And the like can be exemplified as the outer ring material. Next
Next, the operation of the present invention will be described. Shafts of the above rolling bearings 3 and 4
Effect of temperature and inner / outer ring and rolling element on the change of clearance
Explain the effects of dimensions, thermal expansion coefficients, etc. of those materials
Now, the difference between the assembly temperature and the operating temperature of the rolling bearing
Assuming that the amount of change in the bearing clearance is Δ, Δ = (de · αe−di · αi−2 · Da · αa) δT (1) where de = bearing outer ring raceway diameter di = bearing inner ring raceway Diameter Da: rolling element dimension αe: thermal expansion coefficient of outer ring material αi: thermal expansion coefficient of inner ring material αa: thermal expansion coefficient of rolling element material δT = difference between operating temperature and bearing assembly temperature.

【0014】そこで、この式(1)に基づいて、従来の
軸受である転動体をセラミック製とし、軸受内外輪を共
に軸受鋼製とした場合をみると、 α=αe =αi de −di =2・Da として △=2・Da (α−αa )δT ……(2) となり、この△量だけ軸受すきまが変化するから、モ一
タ構造により相応の玉軸受予圧量の変化が生じる。
[0014] Therefore, based on this equation (1), and the rolling element is a conventional bearing and ceramic, looking at the case of the both bearing steel bearings in the outer ring, α = αe = α i de -di = 2 · Da, Δ = 2 · Da (α−αa) δ T (2) Since the bearing clearance changes by this Δ amount, the motor structure causes a corresponding change in the ball bearing preload amount. .

【0015】図2,図3に、本発明の転がり軸受を用い
たスピンドルモータと従来の転がり軸受を用いたスピン
ドルモータとについて、温度環境を変化させた時の予圧
変化を、それぞれ上記式(1)又は(2)により求めた
結果を例示する。図2は、図1と同構造のスピンドルモ
ータで、その転がり軸受に従来のものを用いた例であ
り、転がり軸受の材料構成は、 転動体:窒化ケイ素セラミック球(熱膨張係数αa =
3.2×10-6) 外輪 :軸受鋼(熱膨張係数αe =12.7×10-6) 内輪 :軸受鋼(熱膨張係数αi =12.7×10-6) αe =αi =αである。
FIG. 2 and FIG. 3 show the preload change when the temperature environment is changed for the spindle motor using the rolling bearing of the present invention and the spindle motor using the conventional rolling bearing, respectively, by the above equation (1). ) Or (2). FIG. 2 shows an example of a spindle motor having the same structure as that of FIG. 1 in which a conventional rolling bearing is used. The material composition of the rolling bearing is a rolling element: a silicon nitride ceramic ball (thermal expansion coefficient αa =
3.2 × 10 -6) outer ring: Bearing steel (thermal expansion coefficient αe = 12.7 × 10 -6) inner ring: Bearing steel (thermal expansion coefficient αi = 12.7 × 10 -6) αe = α i = α It is.

【0016】図3は、図1に示す本発明の転がり軸受を
用いたスピンドルモータで、当該転がり軸受の材料構成
は、 転動体:窒化ケイ素セラミック球(熱膨張係数αa =
3.2×10-6) 外輪:マルテンサイト系ステンレス鋼(熱膨張係数αa
=10.3×10-6) 内輪:軸受鋼(熱膨張係数αi =12.7×10-6) である。
FIG. 3 shows a spindle motor using the rolling bearing of the present invention shown in FIG. 1. The material of the rolling bearing is a rolling element: a silicon nitride ceramic ball (coefficient of thermal expansion αa =
3.2 × 10 -6 ) Outer ring: martensitic stainless steel (thermal expansion coefficient αa
= 10.3 × 10 −6 ) Inner ring: Bearing steel (coefficient of thermal expansion αi = 12.7 × 10 −6 ).

【0017】図2から明らかなように、従来例では環境
温度が高温側に変化すると、予圧は急速に減少する。同
時にモータ剛性も低下する。また、環境温度が低温側に
変化すると、予圧は急速に増加し、同時にモータ消費電
流も増大する。これに対して、図3から明らかなよう
に、本発明の実施例の場合は環境温度の変化による予圧
の変化は小さく、したがってモータ剛性の低下やモータ
消費電流の増大が抑制されて安定したモータ特性が得ら
れている。
As is apparent from FIG. 2, in the conventional example, when the environmental temperature changes to a high temperature side, the preload rapidly decreases. At the same time, the motor stiffness decreases. Further, when the environmental temperature changes to a low temperature side, the preload increases rapidly, and at the same time, the motor current consumption also increases. On the other hand, as is apparent from FIG. 3, in the case of the embodiment of the present invention, the change in the preload due to the change in the environmental temperature is small, so that the motor rigidity and the increase in the current consumption of the motor are suppressed, and the stable motor Characteristics have been obtained.

【0018】なお、本発明に係る転がり軸受の各構成部
材の寸法(すなわち軸受外輪軌道径寸法de ,軸受内輪
軌道径寸法di ,転動体寸法Da )と熱膨張係数(外輪
材料の熱膨張係数αe ,内輪材料の熱膨張係数αi ,転
動体材料の熱膨張係数αa )とを次式(3)の関係が成
り立つように設定する。 (de ・αe −di ・αi −2・Da ・αa )=0 ……(3) これにより、環境温度の変動いかんにかかわらず軸受す
きまが変化せず予圧が安定した転がり軸受が得られ、こ
れを組み込めば、環境温度が変化しても剛性の低下やモ
ータ消費電流の増大がないモータが得られる。
The dimensions of each component of the rolling bearing according to the present invention (namely, bearing outer ring raceway diameter de, bearing inner ring raceway diameter di, rolling element size Da) and thermal expansion coefficient (thermal expansion coefficient αe of outer ring material) , The thermal expansion coefficient αi of the inner ring material and the thermal expansion coefficient αa of the rolling element material are set so as to satisfy the following equation (3). (De · αe−di · αi−2 · Da · αa) = 0 (3) As a result, a rolling bearing in which the bearing clearance does not change and the preload is stable irrespective of the fluctuation of the environmental temperature is obtained. Incorporating this makes it possible to obtain a motor that does not decrease in rigidity or increase motor current consumption even when the environmental temperature changes.

【0019】[0019]

【発明の効果】以上、説明したように、請求項1に係る
発明によれば、転動体にセラミック等の熱膨張係数の小
さい材料を用いると共に、内輪と外輪の熱膨張係数の大
きさを規制したことにより、温度変化に対する軸受すき
まの変化を小さく抑制した転がり軸受を提供できるとい
う効果を奏する。
As described above, according to the first aspect of the present invention, a material having a small coefficient of thermal expansion such as ceramic is used for the rolling element, and the magnitude of the coefficient of thermal expansion of the inner ring and the outer ring is restricted. This has the effect of providing a rolling bearing in which a change in bearing clearance with respect to a temperature change is suppressed to a small value.

【0020】また、請求項2に係る発明によれば、モー
タに上記請求項1に係る発明である転がり軸受を搭載し
たため、環境温度が変化しても剛性の低下やモータ消費
電流の増大が小さいモータを提供できるという効果を奏
する。
According to the second aspect of the present invention, since the rolling bearing according to the first aspect of the present invention is mounted on the motor, a decrease in rigidity and an increase in motor current consumption are small even when the environmental temperature changes. This has the effect of providing a motor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る転がり軸受を組み込んだモータの
一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a motor incorporating a rolling bearing according to the present invention.

【図2】従来の転がり軸受における温度と予圧変化との
相関関係を示すグラフである。
FIG. 2 is a graph showing a correlation between a temperature and a preload change in a conventional rolling bearing.

【図3】本発明の転がり軸受における温度と予圧変化と
の相関関係を示すグラフである。
FIG. 3 is a graph showing a correlation between a temperature and a change in preload in the rolling bearing of the present invention.

【符号の説明】[Explanation of symbols]

2 モータ軸 3,4 転がり軸受 5 ハブ 7 ステータ 8 ロータ磁石 11 内輪 12 外輪 13 転動体 2 Motor shaft 3, 4 Rolling bearing 5 Hub 7 Stator 8 Rotor magnet 11 Inner ring 12 Outer ring 13 Rolling element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 転動体に熱膨張係数が9.0×10-6
下の材料を用い、外輪に熱膨張係数が(9.0〜11.
0)×10-6の材料を用い、内輪に熱膨張係数が(1
1.0〜14.0)×10-6の材料を用いてなる転がり
軸受。
The rolling element is made of a material having a thermal expansion coefficient of 9.0 × 10 −6 or less, and the outer ring has a thermal expansion coefficient of (9.0-11.
0) × 10 -6 material and the inner ring has a coefficient of thermal expansion of (1)
A rolling bearing made of a material of (1.0-14.0) × 10 −6 .
【請求項2】 転動体に熱膨張係数が9.0×10-6
下の材料を用い、外輪に熱膨張係数が(9.0〜11.
0)×10-6の材料を用い、内輪に熱膨張係数が(1
1.0〜14.0)×10-6の材料を用いてなる転がり
軸受を組み込んだモ一タ。
2. The rolling element is made of a material having a thermal expansion coefficient of 9.0 × 10 −6 or less, and the outer ring has a thermal expansion coefficient of (9.0-11.
0) × 10 -6 material and the inner ring has a coefficient of thermal expansion of (1)
(1.0-14.0) A motor incorporating a rolling bearing using a material of 10-6 .
JP2146799A 1999-01-29 1999-01-29 Rolling bearing and motor using the same Pending JP2000220641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2146799A JP2000220641A (en) 1999-01-29 1999-01-29 Rolling bearing and motor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2146799A JP2000220641A (en) 1999-01-29 1999-01-29 Rolling bearing and motor using the same

Publications (1)

Publication Number Publication Date
JP2000220641A true JP2000220641A (en) 2000-08-08

Family

ID=12055801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2146799A Pending JP2000220641A (en) 1999-01-29 1999-01-29 Rolling bearing and motor using the same

Country Status (1)

Country Link
JP (1) JP2000220641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002630A1 (en) 2021-07-21 2023-01-26 株式会社ハーモニック・ドライブ・システムズ Space rolling bearing and space strain wave gearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002630A1 (en) 2021-07-21 2023-01-26 株式会社ハーモニック・ドライブ・システムズ Space rolling bearing and space strain wave gearing device
KR20230172006A (en) 2021-07-21 2023-12-21 가부시키가이샤 하모닉 드라이브 시스템즈 Space rolling bearings and space wave gear devices

Similar Documents

Publication Publication Date Title
JPH05240241A (en) Spindle motor
EP1069669B1 (en) Bearing structure for flat motor
JP3400632B2 (en) Spindle motor
US6246137B1 (en) Spindle motor
JP2599707B2 (en) Magnetic disk device
JP2005069252A (en) Rolling bearing unit
JP2000220641A (en) Rolling bearing and motor using the same
JP2002005157A (en) Composite bearing device
US5793135A (en) Flat type brushless motor
JP2776173B2 (en) Squeeze film damper type bearing device
JP2002017065A (en) Spindle motor
US20020125778A1 (en) Motor
JP2505916B2 (en) Bearing structure
JP2000074069A (en) Rolling bearing
JPH0631199Y2 (en) Cooling fan motor
JPH06261490A (en) Bearing unit for brushless motor
JP3176070B2 (en) Dynamic pressure air bearing type rotating device
JP2000262004A (en) Spindle motor
JP2000078815A (en) Spindle motor for driving recording disk
JP2002257143A (en) Motor
JP2003074573A (en) Electric motor
JP2000110830A (en) Spindle motor
JP2002168243A (en) Bearing device
US20020121825A1 (en) Motor
JPH03256547A (en) Spindle motor