JP2000220036A - Hollow fibrous silica and its production - Google Patents

Hollow fibrous silica and its production

Info

Publication number
JP2000220036A
JP2000220036A JP11021347A JP2134799A JP2000220036A JP 2000220036 A JP2000220036 A JP 2000220036A JP 11021347 A JP11021347 A JP 11021347A JP 2134799 A JP2134799 A JP 2134799A JP 2000220036 A JP2000220036 A JP 2000220036A
Authority
JP
Japan
Prior art keywords
silica
collagen
hollow
fiber
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11021347A
Other languages
Japanese (ja)
Other versions
JP3869142B2 (en
Inventor
Yoshiyuki Ono
善之 小野
Seiji Shinkai
征治 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP02134799A priority Critical patent/JP3869142B2/en
Publication of JP2000220036A publication Critical patent/JP2000220036A/en
Application granted granted Critical
Publication of JP3869142B2 publication Critical patent/JP3869142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new technique for producing an inorganic porous material by utilizing a bio-related substance as a mold. SOLUTION: This method for producing a hollow fibrous silica contains a process removing by holding collagen (preferably collagen of type I) and alkoxysilane (e.g. tetraethoxysilane) in an aqueous solution having neutral pH and added with a salt at a normal temperature, depositing silica on the surface of a collagen fiber, freeze-drying and baking. By the process, a hollow fibrous silica in which a hollow part having 25-50 nm inner diameter inside a cylindrical shape having 50-100 nm outer diameter, especially composed of a bundle of plural hollow silica hollow fibers having about 3 nm inner diameter of the hollow part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒もしくは触媒
担体、生体有機分子固定化用担体(バイオリアクター、
バイオセンサー)、吸着剤または断熱材などへの応用が
期待される新規な形状のシリカとその製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a catalyst or a catalyst carrier, a carrier for immobilizing a bioorganic molecule (bioreactor,
The present invention relates to a silica having a novel shape expected to be applied to a biosensor, an adsorbent or a heat insulating material, and a method for producing the same.

【0002】[0002]

【従来の技術】シリカに代表される無機多孔材料はその
表面積の大きさおよび孔径に起因する分子の選択性か
ら、触媒やその担体、バイオリアクターやバイオセンサ
ー用支持体、吸着剤、クロマトグラフ用材料等として多
用され、更なる改良が試みられている。これらの多孔材
料の調製には何らかの鋳型を用いる方法が使われてい
る。鋳型を用いた材料調製法としてはこれまでにも様々
な手法が提示されている。例えば、両親媒性物質の自己
組織化を利用して無機の多孔材料を調製できることなど
が知られている(例えば、P. Yang他、Nature, 396, 152
(1998)。本発明者らも、イオン性低分子ゲル中に形成
される繊維状自己組織体を鋳型に中空糸状シリカを調製
できることを示した(特願平10-325920)。
2. Description of the Related Art Inorganic porous materials represented by silica are used for catalysts and their carriers, supports for bioreactors and biosensors, adsorbents, chromatographs, because of the selectivity of molecules due to their surface area and pore size. It is widely used as a material and the like, and further improvement is being attempted. For preparing these porous materials, a method using a certain mold is used. Various methods have been proposed as a material preparation method using a mold. For example, it is known that an inorganic porous material can be prepared by utilizing self-assembly of an amphiphile (for example, P. Yang et al., Nature, 396 , 152).
(1998). The present inventors have also shown that hollow fiber silica can be prepared using a fibrous self-assembly formed in an ionic low molecular gel as a template (Japanese Patent Application No. 10-325920).

【0003】生体関連物質の中にはこれらの自己組織体
と同様に様々な高次構造を有するものがあり、鋳型とし
て用いることが試みられている。例えばバクテリアと無
機塩の混合溶液からバクテリアの分泌した網状の組織体
を引き上げると数百μmの直径を有する無機繊維を得ら
れることが報告されている(N. H. Mendelson, Scienc
e, 258, 1633 (1992))。このように生体材料を鋳型と
して用いれば、その特異な性状に応じた特徴的な性状の
材料を得ることができると期待されるが、実用性のある
材料を製造できる技術として具現化されたものは少な
い。
[0003] Some bio-related substances have various higher-order structures like these self-organized bodies, and attempts have been made to use them as templates. For example, it has been reported that an inorganic fiber having a diameter of several hundred μm can be obtained by pulling up a reticulated tissue secreted by bacteria from a mixed solution of bacteria and inorganic salts (NH Mendelson, Scienc).
e, 258 , 1633 (1992)). As described above, it is expected that the use of a biomaterial as a template will yield a material with characteristic properties corresponding to its unique properties, but it has been embodied as a technology that can produce practical materials. Is less.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、生体
関連物質を鋳型として利用して無機多孔材料を製造する
新しい技術を確立することにある。
SUMMARY OF THE INVENTION An object of the present invention is to establish a new technique for producing an inorganic porous material by using a biological substance as a template.

【0005】[0005]

【課題を解決するための手段】本発明は、コラーゲンの
特性に注目して上記目的を達成したものであり、中性の
pHを有し塩が添加された水溶液中でコラーゲンとアル
コキシシランを常温下に保持して、コラーゲン繊維の表
面にシリカを沈着させた後、凍結乾燥および焼成を行い
コラーゲンを除去する工程を含むことを特徴とする中空
糸状シリカの製造方法を提供する。本発明の中空糸状シ
リカの製造方法の好ましい態様においては、アルコキシ
シランはテトラエトキシシランであり、また、コラーゲ
ンはI型のコラーゲンである。
DISCLOSURE OF THE INVENTION The present invention has achieved the above object by focusing on the properties of collagen, and comprises the steps of preparing collagen and alkoxysilane in an aqueous solution having a neutral pH and containing a salt at room temperature. A method for producing hollow fiber silica, comprising a step of depositing silica on the surface of a collagen fiber while holding it underneath, followed by freeze-drying and baking to remove collagen. In a preferred embodiment of the method for producing hollow fiber silica of the present invention, the alkoxysilane is tetraethoxysilane, and the collagen is type I collagen.

【0006】本発明はさらに、上記のごとき方法によっ
て製造され、外径50〜100nmの円柱形状内部に内径25〜5
0nmの中空部分が存在する中空糸状シリカを提供する。
特に、本発明の好ましい態様に従えば、これまでに見ら
れなかったユニークな形状のシリカ、すなわち、上記中
空部分が内径3nm程度(2〜4nm)の更に細いシリカ中空
繊維の束から構成された蓮根様形状から成る中空糸状シ
リカが提供される。
[0006] The present invention further relates to a method of manufacturing the above-described method, wherein a cylindrical shape having an outer diameter of 50 to 100 nm has an inner diameter of 25 to 5 nm.
A hollow fiber silica having a hollow portion of 0 nm is provided.
In particular, according to a preferred embodiment of the present invention, a silica having a unique shape that has not been seen so far, that is, the hollow portion is formed of a bundle of finer silica hollow fibers having an inner diameter of about 3 nm (2 to 4 nm). A hollow fiber silica having a lotus root-like shape is provided.

【0007】[0007]

【発明の実施の形態】アルコキシシランなどのゾルが水
素イオンなどを触媒として重合、架橋しながら酸化物重
合体を生成してゲル化することはよく知られている。本
発明は、このようなゾル‐ゲル重合反応がコラーゲン繊
維を鋳型としてこのコラーゲン繊維上で進行したことに
基づくものと考えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It is well known that a sol such as an alkoxysilane is polymerized and crosslinked with hydrogen ions or the like as a catalyst to form an oxide polymer and gel. It is believed that the present invention is based on the fact that such a sol-gel polymerization reaction has progressed on collagen fibers using collagen fibers as a template.

【0008】すなわち、本発明の方法に従えば、中性の
pH、すなわちpH=7付近(一般にpH=6.5〜7.5)におい
てコラーゲンとアルコキシシランを長時間保持すること
により、コラーゲン繊維の表面にシリカが沈着するが、
これは、主として、以下のような静電的な相互作用によ
るものと解される:コラーゲンは両性電解質であり、そ
の等電点はpH=8〜9であるので、pH=7付近ではカチオ
ン電荷を帯びていると考えられる。一方、アルコキシシ
ランのシラノール基の等電点は約pH=2であるから、pH
=7付近ではアニオンとして挙動するものと考えられる。
しかも、コラーゲンはpH=7付近でのみ特徴的な安定し
た繊維構造をとる。かくして、コラーゲン繊維の表面に
シラノール基を介してシリカが吸着され、ゾル‐ゲル重
合反応が進行してシリカの繊維が形成するものと思われ
る。
That is, according to the method of the present invention, by maintaining collagen and alkoxysilane for a long time at a neutral pH, ie, around pH = 7 (generally pH = 6.5 to 7.5), silica gel Is deposited,
It is understood that this is mainly due to the following electrostatic interaction: Collagen is an amphoteric electrolyte, and its isoelectric point is pH = 8-9, so that the cationic charge is near pH = 7. It is thought to be carrying. On the other hand, since the isoelectric point of the silanol group of alkoxysilane is about pH = 2,
It is thought that it behaves as an anion around = 7.
Moreover, collagen has a characteristic stable fiber structure only around pH = 7. Thus, it is considered that silica is adsorbed on the surface of the collagen fiber via the silanol group, and the sol-gel polymerization reaction proceeds to form silica fiber.

【0009】コラーゲン繊維が鋳型となってシリカの吸
着、成長(重合)が生じたことは得られた生成物を顕微鏡
観察すると中空糸形状のシリカが生成しており、特にそ
の中空構造が多数のチューブの束(細いシリカ中空繊維
の束)から構成されていることからも推測される。さら
に、この構造は焼成前後でほとんど異なるところはな
く、また一旦コラーゲン繊維を生成してからシリケート
溶液に浸漬しても形成すること等から、コラーゲンが鋳
型となったことは明らかである。
[0009] The collagen fiber used as a template to cause adsorption and growth (polymerization) of silica. Observation of the obtained product under a microscope revealed that hollow fiber-shaped silica was formed. It is inferred from the fact that the tube is composed of a bundle of tubes (a bundle of thin silica hollow fibers). Furthermore, this structure has almost no difference before and after firing, and it is apparent that collagen was used as a template since collagen fibers were formed once and then immersed in a silicate solution.

【0010】本発明の方法に従い、コラーゲン繊維を鋳
型にして中空糸状シリカ(シリカ繊維)を調製するには、
予めコラーゲン繊維を形成しておき、これをアルコキシ
シラン水溶液に浸漬してシリカを沈着させる手法と、適
当なバッファーによりpHが調整された水溶液に当初か
らコラーゲンとケイ素アルコキシドを添加、混合する手
法とがあるが、中空形状の明瞭な中空糸状シリカを得る
ためには、通常、後者の方が好ましい。またコラーゲン
溶液は粘稠なのでこれを他の成分と混合するのに激しく
攪拌するか、静置して自然に混合していくのを待つかと
いう選択もあるが、表面の荒れの少ないシリカ繊維を得
ることができる点から後者の方が好ましい。恐らく激し
い攪拌はコラーゲン分子に何らかの損傷を与え繊維の形
成を阻害するものと考えられ、むしろ静置することで生
じる濃度勾配のついた初期状態から繊維の成長が始まる
ことにより分子間の配向が揃い繊維構造の形成に有利に
働くものと考えられる。
In order to prepare hollow fiber silica (silica fiber) using collagen fiber as a template according to the method of the present invention,
A method in which collagen fibers are formed in advance and then immersed in an aqueous solution of alkoxysilane to deposit silica, and a method in which collagen and silicon alkoxide are added and mixed from an aqueous solution whose pH is adjusted with an appropriate buffer from the beginning. However, in order to obtain hollow fiber silica having a clear hollow shape, the latter is usually preferred. In addition, since the collagen solution is viscous, there is a choice of stirring vigorously to mix it with other components, or leaving it to stand and waiting for it to mix naturally, but use silica fibers with less rough surface. The latter is preferred because it can be obtained. Probably, vigorous agitation may cause some damage to the collagen molecules and inhibit fiber formation.Rather, the growth of the fibers starts from an initial state with a concentration gradient caused by standing, and the orientation between the molecules becomes uniform. It is believed that it favors the formation of the fibrous structure.

【0011】本発明に従い、コラーゲン繊維にシリカを
沈着(吸着)させた後、凍結乾燥および焼成することによ
って中空糸状のシリカ、特に中空糸形状が複数束になっ
た構造を得るための要因の一つは、コラーゲン繊維にシ
リカを沈着させる水溶液中のイオン強度である。すなわ
ち、十分量のシリケート(アルコキシシラン)を存在さ
せるとともに、コラーゲン分子間の静電反発力を遮蔽し
得るような塩を添加することが必要である。
According to the present invention, after depositing (adsorbing) silica onto collagen fibers, freeze-drying and baking are performed to obtain hollow fiber silica, particularly one of the factors for obtaining a structure in which a plurality of hollow fibers are bundled. First is the ionic strength in the aqueous solution that deposits silica on the collagen fibers. That is, it is necessary to have a sufficient amount of silicate (alkoxysilane) and to add a salt capable of shielding the electrostatic repulsion between collagen molecules.

【0012】このような塩を添加すると、コラーゲン分
子間の凝集が促進され、より凝集した形状のコラーゲン
繊維(すなわち鋳型)を得ることができ、その結果、こ
れにシリカが吸着すると中空構造の明瞭な中空糸状シリ
カ(シリカ繊維)を調製できる。但し、塩が高濃度すぎる
とコラーゲン表面へのシリカの静電的吸着を阻害する方
向に働くと考えられ、塩の濃度には最適な値が存在す
る。本発明において用いられる塩の例としては、NaClな
どの塩化物や、硝酸塩、過塩素酸塩、酢酸塩などが挙げ
られ、これらの塩は、一般に、コラーゲンの重量に対し
て1/10〜30倍程度、濃度1〜1000(mmol dm-3)で用いら
れるのが好ましく、更に好ましくは、コラーゲンの重量
に対して2〜10倍、濃度として50〜600(mmol dm-3)で
用いられる。
When such a salt is added, the aggregation between the collagen molecules is promoted, and a collagen fiber having a more aggregated shape (ie, a template) can be obtained. As a result, when silica is adsorbed on the collagen fiber, the hollow structure becomes clear. A hollow fiber silica (silica fiber) can be prepared. However, if the salt concentration is too high, it is considered that the salt acts to inhibit electrostatic adsorption of silica on the collagen surface, and there is an optimum value for the salt concentration. Examples of the salts used in the present invention include chlorides such as NaCl, nitrates, perchlorates, acetates, and the like. These salts are generally 1/10 to 30% based on the weight of collagen. Preferably, it is used at a concentration of 1 to 1000 (mmol dm -3 ), more preferably 2 to 10 times the weight of collagen, at a concentration of 50 to 600 (mmol dm -3 ).

【0013】本発明の方法に従い中空糸状シリカを製造
するのに用いられるアルコキシシランとしては、テトラ
メトキシシラン(TMOS)、テトラエトキシシラン(TEO
S)などが挙げられる。得られる中空糸状シリカ(シリカ
繊維)の表面が滑らかであり、繊維内部の中空状態の微
細構造が明確に出現する点から、TEOSを使用することが
好ましい。これは、TEOSの反応速度がTMOSより遅いため
鋳型表面に吸着した後の成長が鋳型に沿った形で平均的
に生じやすいためではないかと考えられる。中空糸状シ
リカを得るのに好ましいTEOSの量と濃度は、コラーゲン
重量に対して0.5〜200倍、10〜2000(mmol dm-3)であ
り、更に好ましくは、5〜100倍、100〜1000(mmol d
m-3)である。
The alkoxysilane used to produce hollow fiber silica according to the method of the present invention includes tetramethoxysilane (TMOS), tetraethoxysilane (TEO)
S) and the like. It is preferable to use TEOS because the surface of the obtained hollow fiber silica (silica fiber) is smooth and a hollow microstructure inside the fiber clearly appears. This is probably because the reaction rate of TEOS is slower than that of TMOS, so that the growth after adsorbing on the surface of the template tends to occur on average along the template. The preferred amount and concentration of TEOS for obtaining hollow fiber silica is 0.5 to 200 times, 10 to 2000 (mmol dm -3 ), more preferably 5 to 100 times, 100 to 1000 (mmol dm -3 ) the weight of collagen. mmol d
m- 3 ).

【0014】本発明の方法においては用いられるコラー
ゲンは、一般に、線維性のI、IIまたはIII型のコラーゲ
ンである。特に好ましいのは、生体内の主要タンパク質
であり、安定な繊維構造を有するI型(タイプI)コラー
ゲンである。
The collagen used in the method of the present invention is generally fibrous type I, II or III collagen. Particularly preferred is type I (type I) collagen, which is a major protein in vivo and has a stable fiber structure.

【0015】コラーゲン繊維を鋳型としてこれにシリカ
を吸着(沈着)させる工程は、塩が添加され、コラーゲン
とシリカ(アルコキシシラン)を含有する中性pHの水溶
液を、常温、一般的には30〜40℃(例えば37℃)におい
て、保持することによって実施される。該水溶液をこの
ように保持して2日間位経過するとコラーゲン繊維にシ
リカが沈着した形状が出現し始め、以後、時間の経過と
ともにその形状が安定化する。したがって、コラーゲン
繊維にシリカを沈着させるこの工程は、少なくとも2日
間以上、好ましくは10日間以上、一般的には12〜16日
間、コラーゲンとアルコキシシランを含有する水溶液を
保持することにより実施される。
In the step of adsorbing (depositing) silica onto a collagen fiber as a template, a salt-added aqueous solution of neutral pH containing collagen and silica (alkoxysilane) is added at room temperature, generally 30 to It is performed by holding at 40 ° C. (for example, 37 ° C.). About two days after the aqueous solution is held in this manner, a form in which silica is deposited on the collagen fibers starts to appear, and thereafter, the form is stabilized with the passage of time. Therefore, this step of depositing silica on the collagen fibers is performed by maintaining the aqueous solution containing collagen and alkoxysilane for at least 2 days or more, preferably 10 days or more, generally 12 to 16 days.

【0016】この工程の後、生成物を凍結乾燥し、さら
に、焼成を行い、コラーゲン等の有機物を除去する。焼
成処理は、低温(例えば200℃)および高温(例えば500℃)
において窒素雰囲気で加熱した後、最終的に高温(例え
ば500℃)において空気中で加熱することによって行
う。
After this step, the product is freeze-dried and further calcined to remove organic substances such as collagen. The baking treatment is performed at a low temperature (for example, 200 ° C) and a high temperature (for example, 500 ° C).
, And finally by heating in air at a high temperature (for example, 500 ° C.).

【0017】以上のようにして、外径50〜100nm、内径2
5〜50nmの中空糸状シリカが得られるが、中空部分は単
一の場合に限られず、条件によって、複数の微細なチュ
ーブ(細いシリカ中空繊維)が束状に集合しているもの
も作製可能である。アルコキシシランの濃度が適正であ
ると、微細なチューブ構造が一本毎に分離して見え、絡
み合いながら繊維内部を繊維軸に沿って貫通しているよ
うな中空糸状シリカが得られる。アルコキシシランの濃
度(シリカの濃度)が高いと一本毎の輪郭が明瞭に分離し
て見えにくくなり、一方、アルコキシシラン濃度が低い
と内部の微細なチューブ構造が不明確になる上にシリカ
繊維自体が網のように結合して1本毎に分離して見える
本数が少なくなる傾向がある。この内部チューブの1本
毎の直径はいずれも2〜4nmである。また、塩濃度に関し
ても微細チューブによる束状構造形成に関して適正な値
があり、高いと微細構造のないチューブとなり、低すぎ
るとチューブ構造は不明確となる。
As described above, the outer diameter is 50-100 nm and the inner diameter is 2
Hollow fiber silica of 5 to 50 nm can be obtained, but the hollow part is not limited to a single hollow part. Depending on the conditions, it is possible to produce a bundle of multiple fine tubes (fine silica hollow fibers). is there. When the concentration of the alkoxysilane is appropriate, a hollow fiber-like silica is obtained in which fine tube structures appear to be separated one by one and penetrate the inside of the fiber along the fiber axis while being entangled. If the alkoxysilane concentration (silica concentration) is high, the outline of each line is clearly separated and difficult to see, while if the alkoxysilane concentration is low, the fine internal tube structure is unclear and the silica fiber There is a tendency that the number of lines that are connected together like a net and appear separated for each line is reduced. The diameter of each of the inner tubes is 2 to 4 nm. Also, regarding the salt concentration, there is an appropriate value for the formation of the bundle-like structure by the fine tube. If it is high, the tube has no fine structure, and if it is too low, the tube structure becomes unclear.

【0018】本発明の中空糸状シリカの別の特徴は、シ
リカ繊維がその繊維軸に沿って繊維径をほぼ同一の周期
で変化させているものが得られることがあることであ
る。更にその周期は約60〜80nmであり、これはコラーゲ
ン繊維の持つ67nmの周期構造と近い値であり、シリカの
成長がこの周期構造を反映して生じたことを示唆してい
る。アルコキシシランの濃度が高すぎたり低すぎたりす
ると、シリカ繊維表面の細かな凹凸が多くなり、上記の
ような周期構造の存在が不明確になる傾向がある。ま
た、塩濃度が高すぎると外径変動は小さくなり、少なす
ぎると不規則で小さな間隔の変動となる。
Another feature of the hollow fiber silica of the present invention is that silica fibers whose fiber diameter is changed at substantially the same cycle along the fiber axis may be obtained. Further, the period is about 60 to 80 nm, which is close to the 67 nm periodic structure of the collagen fiber, suggesting that the growth of silica occurred reflecting this periodic structure. If the concentration of the alkoxysilane is too high or too low, fine irregularities on the surface of the silica fiber increase, and the existence of the periodic structure as described above tends to be unclear. On the other hand, if the salt concentration is too high, the fluctuation of the outer diameter becomes small, and if it is too low, the fluctuation becomes irregular and at small intervals.

【0019】[0019]

【実施例】以下に、本発明の特徴をさらに明かにするた
め実施例を示すが、本発明はこの実施例によって制限さ
れるものではない。実施例1 塩としてNaClを添加した50mmol/dm3のリン酸緩衝液
(0.1ml)に、TEOSと1mlのコラーゲン溶液(I型、3mg/
ml、pH=3の塩酸水溶液;日本ハム(株)社製)を攪拌
することなく混合した。TEOSおよびNaClの濃度は表1に
示している。実験No.1〜3は、塩(NaCl)濃度を一定に
してTEOS濃度を変えたものであり、実験No.4〜7はTEOS
濃度を一定にして塩濃度を変えたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The characteristics of the present invention will be described below.
An example will be described below, but the present invention is limited by this example.
It is not something to be done.Example 1  50 mmol / dm with NaCl added as saltThreePhosphate buffer
(0.1 ml), TEOS and 1 ml of collagen solution (type I, 3 mg /
Hydrochloric acid aqueous solution at pH = 3; Nippon Ham Co., Ltd.)
Mixed without doing. Table 1 shows the concentrations of TEOS and NaCl.
Is shown. Experiment Nos. 1 to 3 maintain a constant salt (NaCl) concentration
Experiment Nos. 4 to 7 were TEOS concentrations.
The salt concentration was changed while keeping the concentration constant.

【0020】各試料は、サンプル管に入れ蓋をし、恒温
槽中(37℃)で14日間保存した後、凍結乾燥(−2℃、真
空中)した。各々のサンプルの一部は焼成してコラーゲ
ン等の有機物を除去した。それぞれ電子顕微鏡にて観察
した。焼成条件:窒素流通下、200℃で1時間→窒素流通
下(1リットル/分)、500℃で2時間→空気流通下(1リッ
トル/分)、500℃で4時間。結果は表1にまとめてい
る。
Each sample was put in a sample tube, covered, stored in a thermostat (37 ° C.) for 14 days, and then lyophilized (−2 ° C., in vacuum). A part of each sample was calcined to remove organic substances such as collagen. Each was observed with an electron microscope. Firing conditions: 1 hour at 200 ° C under nitrogen flow → 2 hours at 500 ° C under nitrogen flow (1 liter / minute) → 4 hours at 500 ° C under air flow (1 liter / minute). The results are summarized in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】実験No.2で得られた生成物の焼成前(凍結
乾燥後)および焼成後のTEM(透過電子顕微鏡)写真を、そ
れぞれ、図1および図2として示す。コラーゲン、TEOS
およびNaClの量比により、微細なチューブ(繊維)が束
になって中空部分を形成し、コラーゲン繊維の周期構造
に相応して外径が変動している中空糸状シリカが得られ
ることが観察される。
FIGS. 1 and 2 show TEM (transmission electron microscope) photographs of the product obtained in Experiment No. 2 before firing (after freeze-drying) and after firing, respectively. Collagen, TEOS
It is observed that, depending on the ratio of NaCl and NaCl, fine tubes (fibers) are bundled to form a hollow part and hollow fiber silica whose outer diameter fluctuates according to the periodic structure of collagen fibers is obtained. You.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によって得られる中空糸状シリカの1例
の焼成前の繊維の形状を示す透過電子顕微鏡写真であ
る。
FIG. 1 is a transmission electron micrograph showing the shape of a fiber before firing of one example of hollow fiber silica obtained by the present invention.

【図2】本発明によって得られる中空糸状シリカの1例
の焼成後の繊維の形状を示す透過電子顕微鏡写真であ
る。
FIG. 2 is a transmission electron micrograph showing the shape of a fired fiber of one example of hollow fiber silica obtained by the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中性のpHを有し塩が添加された水溶液中
でコラーゲンとアルコキシシランを常温下に保持して、
コラーゲン繊維の表面にシリカを沈着させた後、凍結乾
燥および焼成を行いコラーゲンを除去する工程を含むこ
とを特徴とする中空糸状シリカの製造方法。
Claims: 1. Collagen and alkoxysilane are kept at room temperature in an aqueous solution having a neutral pH and a salt added,
A method for producing hollow fiber silica, comprising a step of removing collagen by freeze-drying and baking after depositing silica on the surface of collagen fibers.
【請求項2】 アルコキシシランがテトラエトキシシラ
ンであることを特徴とする請求項1の中空糸状シリカの
製造方法。
2. The method for producing hollow fiber silica according to claim 1, wherein the alkoxysilane is tetraethoxysilane.
【請求項3】 コラーゲンがI型のコラーゲンであること
を特徴とする請求項1または請求項2の中空糸状シリカの
製造方法。
3. The method for producing hollow fiber silica according to claim 1, wherein the collagen is type I collagen.
【請求項4】 外径50〜100nmの円柱形状内部に内径25
〜50nmの中空部分が存在することを特徴とする中空糸状
シリカ。
4. An inner diameter of 25 within a cylindrical shape having an outer diameter of 50 to 100 nm.
Hollow fiber silica characterized by having a hollow part of 〜50 nm.
【請求項5】 中空部分が内径3nm程度の複数のシリカ
中空繊維の束から構成されていることを特徴とする請求
項4の中空糸状シリカ。
5. The hollow fiber silica according to claim 4, wherein the hollow portion is formed of a bundle of a plurality of silica hollow fibers having an inner diameter of about 3 nm.
JP02134799A 1999-01-29 1999-01-29 Hollow fiber silica and method for producing the same Expired - Fee Related JP3869142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02134799A JP3869142B2 (en) 1999-01-29 1999-01-29 Hollow fiber silica and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02134799A JP3869142B2 (en) 1999-01-29 1999-01-29 Hollow fiber silica and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000220036A true JP2000220036A (en) 2000-08-08
JP3869142B2 JP3869142B2 (en) 2007-01-17

Family

ID=12052571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02134799A Expired - Fee Related JP3869142B2 (en) 1999-01-29 1999-01-29 Hollow fiber silica and method for producing the same

Country Status (1)

Country Link
JP (1) JP3869142B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159848A (en) * 2000-11-27 2002-06-04 Japan Science & Technology Corp Method for producing organic-inorganic composite and metal oxide using saccharide derivertive
KR100514600B1 (en) * 2004-02-19 2005-09-14 구상만 Method for Modificating Surface of Hollow Particles
JP2009108155A (en) * 2007-10-29 2009-05-21 Jgc Catalysts & Chemicals Ltd Fibrous hollow silica fine particle dispersion, fibrous hollow silica fine particles, antireflection film forming composition containing the fine particles, and substrate with antireflection film
JP2009143754A (en) * 2007-12-12 2009-07-02 Jgc Catalysts & Chemicals Ltd Conductive, fibrous, hollow silica particulate dispersoid and method for producing the same
JP2018145026A (en) * 2017-03-02 2018-09-20 新田ゼラチン株式会社 Porous silica and production method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199122A (en) * 1975-02-27 1976-09-01 Mitsubishi Rayon Co CHUKUMUKISENINOSEIZOHOHO
JPH03152216A (en) * 1989-11-07 1991-06-28 Hecheng Xinye Co Ltd Production of ceramic fiber
JPH03180513A (en) * 1987-10-29 1991-08-06 Exxon Res & Eng Co Fine pipe-like ceramic substance and its manufacture
JPH06293574A (en) * 1993-04-06 1994-10-21 Res Dev Corp Of Japan Silica porous body distributed with macropore and micropore and its production
JPH11502906A (en) * 1996-01-21 1999-03-09 レンベック,クラウス Micro hollow fiber made of ceramic material, its production method and its use
JP2000203826A (en) * 1998-04-17 2000-07-25 Japan Science & Technology Corp Organic-inorganic composite material having cylindrical structure, hollow metal oxide, and their production
JP2001508301A (en) * 1997-01-13 2001-06-26 ノバ ジェン,インコーポレーテッド Preparation of collagen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199122A (en) * 1975-02-27 1976-09-01 Mitsubishi Rayon Co CHUKUMUKISENINOSEIZOHOHO
JPH03180513A (en) * 1987-10-29 1991-08-06 Exxon Res & Eng Co Fine pipe-like ceramic substance and its manufacture
JPH03152216A (en) * 1989-11-07 1991-06-28 Hecheng Xinye Co Ltd Production of ceramic fiber
JPH06293574A (en) * 1993-04-06 1994-10-21 Res Dev Corp Of Japan Silica porous body distributed with macropore and micropore and its production
JPH11502906A (en) * 1996-01-21 1999-03-09 レンベック,クラウス Micro hollow fiber made of ceramic material, its production method and its use
JP2001508301A (en) * 1997-01-13 2001-06-26 ノバ ジェン,インコーポレーテッド Preparation of collagen
JP2000203826A (en) * 1998-04-17 2000-07-25 Japan Science & Technology Corp Organic-inorganic composite material having cylindrical structure, hollow metal oxide, and their production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159848A (en) * 2000-11-27 2002-06-04 Japan Science & Technology Corp Method for producing organic-inorganic composite and metal oxide using saccharide derivertive
KR100514600B1 (en) * 2004-02-19 2005-09-14 구상만 Method for Modificating Surface of Hollow Particles
JP2009108155A (en) * 2007-10-29 2009-05-21 Jgc Catalysts & Chemicals Ltd Fibrous hollow silica fine particle dispersion, fibrous hollow silica fine particles, antireflection film forming composition containing the fine particles, and substrate with antireflection film
JP2009143754A (en) * 2007-12-12 2009-07-02 Jgc Catalysts & Chemicals Ltd Conductive, fibrous, hollow silica particulate dispersoid and method for producing the same
JP2018145026A (en) * 2017-03-02 2018-09-20 新田ゼラチン株式会社 Porous silica and production method thereof

Also Published As

Publication number Publication date
JP3869142B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
Coradin et al. Silica–alginate composites for microencapsulation
JP3668038B2 (en) Multi-channel porous ceramic fiber
JP4855582B2 (en) Mesoporous silica, mesoporous silica composite and production method thereof
JPS61141645A (en) Porous glass fiber having fixed biologically active materialand manufacture
CN103232989A (en) Preparation method of alginate hybrid hydrogel film and grafting material of immobilized bio-macromolecule
JPS6038111B2 (en) Fixation-dependent cell culture method
JP3869142B2 (en) Hollow fiber silica and method for producing the same
CN110004198B (en) Preparation method of functional nucleic acid hydrogel for rapid self-assembly of soft brush
CN112934000B (en) Modification method of PVDF (polyvinylidene fluoride) microfiltration membrane
CN113416535A (en) Fluorescent carbon quantum dot @ silicon dioxide microsphere and preparation method and application thereof
JP4252188B2 (en) Method for producing organic-inorganic composite having spiral structure with controlled spiral direction
JPH0829952B2 (en) Porous glass manufacturing method
JP5071932B2 (en) Scaffold for tissue regeneration and method for manufacturing the same
CN101087916B (en) DNA supporting fiber and DNA supporting fiber sheet and methods of producing them
JP3933979B2 (en) Surface-modified porous silica and method for producing the same
EP0100660A2 (en) A bioreactor and a process for the production thereof
JP4051432B2 (en) Porous ceramic membrane in which porosity and film thickness are controlled simultaneously and method for producing the same
CN108653802B (en) Three-dimensional interpenetrating network stent based on graphene and 58S bioactive glass and application thereof
JPH11130421A (en) Inorganic polymer material using aluminum and silicon as base material
US5573983A (en) Fine silica tube and process for making same
US4897468A (en) Immobilization of peptide-containing compounds on metal hydroxide gels
JP5514455B2 (en) Treatment method for coating calcium phosphate compound on structure having three-dimensional void shape and method for producing the structure
WO2007081024A1 (en) Process for production of zeolite separation membrane
JPH036794B2 (en)
JP3015548B2 (en) Method for making fine pores in porous material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees