JP2000217334A - Linear motor - Google Patents

Linear motor

Info

Publication number
JP2000217334A
JP2000217334A JP11015432A JP1543299A JP2000217334A JP 2000217334 A JP2000217334 A JP 2000217334A JP 11015432 A JP11015432 A JP 11015432A JP 1543299 A JP1543299 A JP 1543299A JP 2000217334 A JP2000217334 A JP 2000217334A
Authority
JP
Japan
Prior art keywords
armature
mounting plate
linear motor
core
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11015432A
Other languages
Japanese (ja)
Other versions
JP2000217334A5 (en
JP4277337B2 (en
Inventor
Tadahiro Miyamoto
恭祐 宮本
Tetsuya Yoshida
哲也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP01543299A priority Critical patent/JP4277337B2/en
Publication of JP2000217334A publication Critical patent/JP2000217334A/en
Publication of JP2000217334A5 publication Critical patent/JP2000217334A5/en
Application granted granted Critical
Publication of JP4277337B2 publication Critical patent/JP4277337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a linear motor which can suppress the occurrence of cogging thrust without causing the thermal deformation of an armature attaching plate at the time of manufacturing the motor. SOLUTION: A linear motor 1 is provided with two kinds of first armature cores 41 and second armature cores 42 which are faced to a plurality of permanent magnets 7a, 7b, 7c,... rows for field, which are arranged so that their polarities may alternately change with magnetic gaps in between in the perpendicular direction and have different sizes. The armature cores 41 and 42 are fixed to an armature attaching plate 2 in such a way that coupling members 12 are inserted into dovetail grooves 4d formed on the surfaces of the first armature cores 41 facing the plate 2, and bolts are screwed in the tapped holes 12a of the coupling members 12 inserted into the grooves 4d and tightened. In addition, the entire armature 3 is fixed with a molding resin 8. Therefore, the deformation of the armature attaching plate 2 can be prevented, because the armature cores 41 and 42 can be fixed firmly to the plate 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工作機等のテーブ
ル送りに利用されるフラット形のリニアモータに関す
る。
The present invention relates to a flat linear motor used for feeding a table of a machine tool or the like.

【0002】[0002]

【従来の技術】従来、工作機械等のテーブル送りに利用
される永久磁石同期機形のリニアモータは、図5に示す
ように構成されている。図において、31はリニアモー
タで、移動子である電機子取付板32と、電機子取付板
32に取付けられた電機子33と、電機子33に磁気的
空隙を介して対向し、かつ図示しない架台に固定された
界磁ヨーク36と、この界磁ヨーク36に交互に極性が
異なるように隣接して等ピッチで配置した永久磁石37
a、37b、37c…とから構成されている。電機子3
3は、略I字形に打ち抜いた電磁鋼板の両側面に巻線収
納溝34aと凹凸状の係合部34b、34cとを設け、
かつ電磁鋼板を積層した電機子コア34を備えると共
に、電機子コア34の巻線収納溝34aにU、V、W相
からなる電機子巻線35を整列巻きして収納し、一つの
電機子ブロックを構成する。そして、一つの電機子コア
34の係合部34bに、他の電機子コアの係合部34c
を嵌め込み、複数の電機子コア34を電機子取付板32
の下面に、電機子コア34の長手方向と永久磁石列の長
手方向(リニアモータ31のストローク方向)が直角と
なるよう、順次隣り合わせに並べながら溶接によって固
定している。このような構成において、リニアモータ3
1の電機子巻線35に図示しない電源により交流を通電
すると、この電機子巻線35と永久磁石37a、37
b、37c…との電磁作用により、積層された電機子コ
ア34を貫通するように界磁が発生し、リニアモータ3
1の移動子は電機子コア34の長手方向と直角なストロ
ーク方向に直線移動する。
2. Description of the Related Art Conventionally, a permanent magnet synchronous machine type linear motor used for table feeding of a machine tool or the like is configured as shown in FIG. In the figure, reference numeral 31 denotes a linear motor, which is an armature mounting plate 32 as a moving element, an armature 33 mounted on the armature mounting plate 32, and faces the armature 33 via a magnetic gap and is not shown. A field yoke 36 fixed to a gantry, and permanent magnets 37 arranged at equal pitches adjacent to the field yoke 36 alternately with different polarities.
a, 37b, 37c... Armature 3
3 is provided with a winding accommodating groove 34a and concave and convex engaging portions 34b, 34c on both side surfaces of an electromagnetic steel sheet punched into a substantially I-shape;
And an armature core 34 formed by laminating magnetic steel sheets, and armature windings 35 of U, V, and W phases are aligned and housed in the winding accommodating grooves 34a of the armature core 34, and one armature is provided. Make up the block. Then, the engaging portion 34b of one armature core 34 is connected to the engaging portion 34c of another armature core.
Into the armature mounting plate 32
Are fixed by welding while being arranged side by side so that the longitudinal direction of the armature core 34 and the longitudinal direction of the row of permanent magnets (stroke direction of the linear motor 31) are perpendicular to each other. In such a configuration, the linear motor 3
When an alternating current is supplied to the first armature winding 35 from a power source (not shown), the armature winding 35 and the permanent magnets 37a, 37
b, 37c..., generate a magnetic field so as to penetrate the laminated armature core 34,
One mover moves linearly in a stroke direction perpendicular to the longitudinal direction of the armature core 34.

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
従来のいわゆる磁束貫通形のリニアモータは、電機子取
付板と電機子コアの結合に溶接が用いられているため、
溶接時に熱変形が生じ、その結果、機械寸法の歪みや、
磁気歪みの影響によりコギング推力が増大して、モータ
特性が悪くなるという問題があった。そこで、本発明
は、製造時に電機子取付板が熱変形することなく、コギ
ング推力の発生を抑えることができるリニアモータを提
供することを目的とする。
However, in such a conventional so-called magnetic flux penetrating linear motor, welding is used to join the armature mounting plate and the armature core.
Thermal deformation occurs during welding, resulting in distortion of machine dimensions,
There is a problem that the cogging thrust increases due to the influence of the magnetostriction and the motor characteristics deteriorate. Therefore, an object of the present invention is to provide a linear motor capable of suppressing generation of cogging thrust without causing thermal deformation of an armature mounting plate during manufacturing.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、請求項1記載の本発明は、交互に極性が異なる複数
の界磁用の永久磁石を隣り合わせに並べて固定子を構成
する界磁ヨークと、前記永久磁石列と直角方向に磁気的
空隙を介して対向すると共に、略長方形状に打ち抜いた
電磁鋼板の両側面に形成してなる巻線収納溝と凹凸状の
係合部を有し、かつこの電磁鋼板を積層した電機子コア
と、前記電機子コアの巻線収納溝に整列巻きして収納し
た電機子巻線と、前記電機子巻線を巻装した複数の電機
子コアの係合部を係合して構成する電機子と、前記電機
子の上面に固定された移動子を構成する電機子取付板と
を備え、前記電機子を前記永久磁石列の長手方向に向か
って走行するようにしたリニアモータにおいて、前記電
機子コアは、略T字形と略I字形の形状からなるそれぞ
れ大小異なる第1電機子コアおよび第2電機子コアから
構成してあり、前記第1電機子コアは、前記電機子取付
板との対向面側に形成されたアリ溝と、前記アリ溝に挿
入され、かつタップ孔を内部に有する結合部材とが設け
てあり、前記電機子取付板は、前記結合部材に設けたタ
ップ孔と対向するように同一径に形成してなる孔部が設
けてあり、前記結合部材のタップ孔と前記電機子取付板
の孔部をボルトネジにより締め付け固定し、前記電機子
巻線および前記電機子コアの全体を覆うようにモールド
樹脂により固着したものである。また、請求項2記載の
本発明は、請求項1に記載のリニアモータにおいて、前
記アリ溝に挿入された結合部材と前記電機子取付板とを
一体化したものである。また、請求項3記載の本発明
は、請求項1または2に記載のリニアモータにおいて、
前記電機子取付板の内部に、前記電機子から発生した熱
を熱交換するように冷媒を流す冷媒通路を設けたもので
ある。上記手段により、電機子取付板と電機子間の固定
に溶接を用いることなく、両部材間を、電機子コアに設
けたアリ溝に挿入した結合部材を介してボルトネジによ
り締め付け固定し、かつ電機子全体をモールド樹脂によ
り固着したので、従来に比べて強固に接合し固定するこ
とができ、電機子取付板の変形を防止することができ
る。その結果、機械寸法の歪みや、磁気歪みの影響によ
るコギング推力の発生を抑えることができ、モータ特性
への悪影響を低減できる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention according to the first aspect of the present invention is directed to a field yoke which constitutes a stator by arranging a plurality of field permanent magnets having different polarities alternately side by side. And a winding accommodating groove and a concave-convex engaging portion formed on both sides of a magnetic steel sheet punched out in a substantially rectangular shape while facing the permanent magnet row at right angles via a magnetic gap. And an armature core formed by laminating the electromagnetic steel sheets, an armature winding lined and housed in a winding accommodating groove of the armature core, and a plurality of armature cores wound with the armature winding. An armature configured by engaging an engaging portion, and an armature mounting plate that forms a mover fixed to the upper surface of the armature, wherein the armature is moved in a longitudinal direction of the permanent magnet row. In the linear motor adapted to run, the armature core is substantially T-shaped. And a first armature core and a second armature core having a substantially I-shape and differing in size from each other. The first armature core is formed on the surface facing the armature mounting plate. A dovetail groove and a coupling member inserted into the dovetail groove and having a tap hole therein are provided, and the armature mounting plate is formed to have the same diameter so as to face the tap hole provided in the coupling member. The tapping hole of the coupling member and the hole of the armature mounting plate are tightened and fixed with bolt screws, and molded resin is formed so as to cover the entire armature winding and the armature core. Is fixed by the According to a second aspect of the present invention, in the linear motor according to the first aspect, the coupling member inserted into the dovetail groove and the armature mounting plate are integrated. According to a third aspect of the present invention, in the linear motor according to the first or second aspect,
A refrigerant passage is provided inside the armature mounting plate, through which a refrigerant flows so as to exchange heat generated from the armature. By means of the above, without using welding for fixing between the armature mounting plate and the armature, the two members are fastened and fixed by bolt screws via a coupling member inserted into a dovetail groove provided in the armature core, and Since the entire armature is fixed by the mold resin, the armature can be joined and fixed more firmly than before, and the armature mounting plate can be prevented from being deformed. As a result, it is possible to suppress the occurrence of cogging thrust due to the influence of the mechanical dimension distortion and the magnetic distortion, and it is possible to reduce the adverse effect on the motor characteristics.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。図1は、本発明の実施例を示すリニアモ
ータの側断面図である。図2は、図1におけるリニアモ
ータの電機子取付板を取り除いた状態を示す斜視図であ
る。なお、9個の電機子コアブロックに対して、8個の
界磁磁極が対向するリニアモータの例を用いて説明す
る。図1において、1はリニアモータで、2は移動子を
構成する電機子取付板、3は電機子取付板2に取付けら
れた電機子、6は電機子3に磁気的空隙を介して対向し
図示しない架台に固定された界磁ヨーク、7a、7b、
7c…は界磁ヨーク6に交互に極性が異なるように等ピ
ッチで並べて配置した永久磁石であり、従来と同じ基本
構成を示している。本発明が従来と異なる特徴は、以下
のとおりである。電機子3において、41は略T字形状
をした第1電機子コア、42は略I字形状をした第2電
機子コアであって、大小異なる2種類のそれぞれのコア
両側面には電機子巻線5を巻装する巻線収納溝4aと凹
凸状の係合部4b、4cを有するとともに、第1電機子
コア41を5個、第2電機子コア42を4個交互に並べ
て結合している。4dは第1電機子コア41の電機子取
付板2との対向面側に形成したアリ溝、12はアリ溝4
dに紙面に対して垂直方向から挿入した結合部材であ
り、この結合部材12の内部に雌ねじを有するタップ孔
12aを形成している。また、電機子取付板2におい
て、2aは結合部材12に設けたタップ孔12aと対向
するように同一径に形成した孔部であって、電機子取付
板2の上面側から沈み孔加工を施して背面側に貫通させ
ている。この電機子取付板2の孔部2aからボルトネジ
11を挿入し、結合部材12のタップ孔12aに向かっ
てねじ込んだ後、電機子コアを剛に固定している。8は
モールド樹脂であり、図2にも示すように電機子巻線5
および各電機子コア41、42全体を覆うように固着
し、外部との絶縁も兼用している。また、9は電機子取
付板2内部に設けた冷媒通路である。この冷媒通路9内
に冷媒が充填してある。図3にリニアモータの冷媒通路
を有する電機子取付板2の斜視図を示している。9a、
9bは電機子取付板2の側面に設けた冷媒注入口および
冷媒排出口で、冷媒注入口9aから注入した冷媒を電機
子取付板2内部に設けた冷媒通路9およびバイパスパイ
プ10を流通して冷媒排出口9bより外部に排出させ、
電機子3より発生した熱を熱交換するようにしている。
次に、このような構成のリニアモータの動作について説
明する。前記電機子巻線5に通電すると、この電機子巻
線5と永久磁石7a、7b、7c…との電磁作用によ
り、各電機子コア41、42を貫通する界磁が発生して
電機子3を直線方向に移動させる。この際電機子3は、
電機子取付板2と各電機子コア41、42の高剛性構造
により、機械寸法の歪みや磁気歪み等を生じることはな
く、永久磁石との間で一定のギャップを維持した状態
で、一定の速度で移動する。また、電機子3を電機子巻
線5と永久磁石7a…との電磁作用により直線方向に移
動させると、電機子巻線5に流れる電流により電機子巻
線5に損失熱(銅損)が発生し、電機子コアの温度が上
昇する。このとき、電機子取付板2の側面に設けた冷媒
注入口9aより注入した冷媒が電機子取付板2内部に設
けた冷媒通路9内を流通すると共に、冷媒が冷媒排出口
9bより外部に排出しながら、各電機子コア41、42
を介して電機子取付板2に伝導した熱を熱交換し除去す
る。したがって、電機子巻線からの発熱によって、電機
子取付板が熱変形を生じない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view of a linear motor showing an embodiment of the present invention. FIG. 2 is a perspective view showing a state where an armature mounting plate of the linear motor in FIG. 1 is removed. A description will be given using an example of a linear motor in which eight field poles face nine armature core blocks. In FIG. 1, reference numeral 1 denotes a linear motor, 2 denotes an armature mounting plate constituting a moving element, 3 denotes an armature mounted on the armature mounting plate 2, and 6 faces the armature 3 via a magnetic gap. Field yokes 7a, 7b fixed to a frame (not shown)
.. Are permanent magnets arranged at equal pitches on the field yoke 6 alternately so as to have different polarities, and show the same basic configuration as the conventional one. The features of the present invention different from those of the related art are as follows. In the armature 3, reference numeral 41 denotes a first armature core having a substantially T-shape, and reference numeral 42 denotes a second armature core having a substantially I-shape. It has a winding accommodating groove 4a for winding the winding 5 and engaging portions 4b and 4c having irregularities. Five first armature cores 41 and four second armature cores 42 are alternately arranged and connected. ing. 4d is a dovetail groove formed on the side of the first armature core 41 facing the armature mounting plate 2, and 12 is a dovetail groove 4.
d is a connecting member inserted from a direction perpendicular to the paper surface, and a tap hole 12 a having a female screw is formed inside the connecting member 12. In the armature mounting plate 2, reference numeral 2 a denotes a hole portion formed to have the same diameter so as to face the tap hole 12 a provided in the coupling member 12, and is provided with a sink hole from the upper surface side of the armature mounting plate 2. Through the rear side. A bolt screw 11 is inserted through the hole 2a of the armature mounting plate 2 and screwed toward the tap hole 12a of the coupling member 12, and the armature core is rigidly fixed. Numeral 8 denotes a molding resin, and as shown in FIG.
Further, the armature cores 41 and 42 are fixed so as to cover the whole thereof, and also serve as insulation from the outside. Reference numeral 9 denotes a refrigerant passage provided inside the armature mounting plate 2. The refrigerant is filled in the refrigerant passage 9. FIG. 3 shows a perspective view of the armature mounting plate 2 having the refrigerant passage of the linear motor. 9a,
Reference numeral 9b denotes a refrigerant inlet and a refrigerant outlet provided on the side surface of the armature mounting plate 2, and the refrigerant injected from the refrigerant inlet 9a flows through the refrigerant passage 9 and the bypass pipe 10 provided inside the armature mounting plate 2. Discharged to the outside through the refrigerant discharge port 9b,
The heat generated by the armature 3 is exchanged.
Next, the operation of the linear motor having such a configuration will be described. When the armature winding 5 is energized, a magnetic field penetrating the armature cores 41, 42 is generated by the electromagnetic action of the armature winding 5 and the permanent magnets 7a, 7b, 7c. Is moved in the linear direction. At this time, the armature 3
Due to the high rigidity structure of the armature mounting plate 2 and each of the armature cores 41 and 42, there is no occurrence of mechanical dimension distortion or magnetic distortion, and a constant gap is maintained between the armature mounting plate 2 and the permanent magnet. Move at speed. When the armature 3 is moved in a linear direction by the electromagnetic action of the armature winding 5 and the permanent magnets 7a, the heat flowing through the armature winding 5 causes heat loss (copper loss) to the armature winding 5. Occurs and the temperature of the armature core rises. At this time, the refrigerant injected from the refrigerant inlet 9a provided on the side surface of the armature mounting plate 2 flows through the refrigerant passage 9 provided inside the armature mounting plate 2, and the refrigerant is discharged to the outside through the refrigerant outlet 9b. Meanwhile, each armature core 41, 42
The heat conducted to the armature mounting plate 2 through the heat exchange is removed by heat exchange. Therefore, heat generation from the armature winding does not cause thermal deformation of the armature mounting plate.

【0006】次に本発明の第2の実施例を説明する。図
4は、本発明の第2の実施例を示すリニアモータの側断
面図である。第2実施例では、第1実施例における第1
電機子コアのアリ溝内に挿入された結合部材と電機子取
付板とを一体化している。すなわち、図4に示すよう
に、電機子取付板2のアリ溝4dとの対向部分に、結合
部材(図示せず)を電機子取付板2に一体化する構成に
より、アリ溝4dの部分のみで電機子取付板2と電機子
3を強固に固定するようにしている。このような構成に
することにより、部品点数を削減できるとともに、電機
子取付板2の上面にワーク、工具などを固定する別の用
途として充分活用できる。また、動作については第1の
実施例と同じなので省略する。なお、図4では説明を簡
単にするためにタップ孔および孔部を省略している。し
たがって、本発明の各実施例は、大きさが異なる一方の
電機子コアの電機子取付板との対向面側に形成されたア
リ溝に結合部材を挿入し、電機子コアのアリ溝に挿入し
た結合部材のタップ孔と電機子取付板内の孔部をボルト
ネジにより締め付け固定すると共に、電機子全体をモー
ルド樹脂により固着したので、電機子取付板と電機子コ
アを強固に固定でき、電機子取付板の変形を防止するこ
とができる。また、電機子取付板の内部に冷媒通路を設
け、冷媒通路内に冷媒を流通させることで、電機子巻線
より発生した熱を冷媒により熱交換するので、電機子取
付板の温度はほとんど上昇することなく、電機子取付板
の熱変形を防止することができる。なお、本発明の第2
の実施例においても、第1実施例と同様に電機子取付板
内部に、電機子巻線から発生した熱を熱交換するように
冷媒を流す冷媒通路を設けるようにしても構わない。ま
た、本発明の第1および第2実施例において、電機子取
付板の孔部並びに電機子コアのアリ溝内に設けたタップ
孔の数と位置は、電機子コアの幅に応じて適宜選択すれ
ば良い。このようなリニアモータを工作機械のユーザ等
に提供する際、電機子取付板や電機子コアにおいて、任
意の位置にあるいは任意の数のタップ孔をユーザ側の用
途に応じて取り付けることが可能で、上記実施例に限定
されるものではない。
Next, a second embodiment of the present invention will be described. FIG. 4 is a side sectional view of a linear motor according to a second embodiment of the present invention. In the second embodiment, the first embodiment
The coupling member inserted into the dovetail groove of the armature core and the armature mounting plate are integrated. That is, as shown in FIG. 4, a coupling member (not shown) is integrated with the armature mounting plate 2 at a portion of the armature mounting plate 2 facing the dovetail groove 4 d, so that only the portion of the dovetail groove 4 d is provided. The armature mounting plate 2 and the armature 3 are firmly fixed. With such a configuration, the number of components can be reduced, and it can be sufficiently utilized as another application for fixing a work, a tool, or the like on the upper surface of the armature mounting plate 2. Further, the operation is the same as that of the first embodiment, so that the description is omitted. In FIG. 4, tap holes and holes are omitted for simplicity of description. Therefore, in each embodiment of the present invention, the coupling member is inserted into the dovetail groove formed on the side of the one armature core having a different size facing the armature mounting plate, and inserted into the dovetail groove of the armature core. The armature mounting plate and armature core can be firmly fixed because the tapped hole of the coupling member and the hole in the armature mounting plate are tightened and fixed with bolt screws, and the entire armature is fixed with mold resin. Deformation of the mounting plate can be prevented. In addition, by providing a refrigerant passage inside the armature mounting plate and allowing the refrigerant to flow through the refrigerant passage, the heat generated from the armature winding is exchanged by the refrigerant, so that the temperature of the armature mounting plate almost rises. Without doing so, thermal deformation of the armature mounting plate can be prevented. The second embodiment of the present invention
In this embodiment, similarly to the first embodiment, a refrigerant passage for flowing a refrigerant may be provided inside the armature mounting plate so as to exchange heat generated from the armature winding. In the first and second embodiments of the present invention, the number and positions of the holes of the armature mounting plate and the tap holes provided in the dovetail groove of the armature core are appropriately selected according to the width of the armature core. Just do it. When such a linear motor is provided to a user of a machine tool or the like, it is possible to attach an arbitrary number of tap holes or an arbitrary number of tap holes in an armature mounting plate or an armature core according to a user's application. However, the present invention is not limited to the above embodiment.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、次
のような効果がある。 (1)大小異なる2種類の電機子ブロックを交互に配列
した構成において、電機子取付板と電機子コアの両部材
間を、電機子コアに設けたアリ溝に挿入した結合部材を
介してボルトネジにより締め付け固定し、かつ電機子全
体をモールド樹脂により剛に固着することで、従来のよ
うに電機子コアと電機子取付板の固定に溶接を用いるこ
となく、電機子取付板の変形を防止することができる。 (2)電機子取付板の内部に冷媒通路を設け、冷媒通路
内に冷媒を流通させることにより、電機子巻線から発生
した熱を電機子取付板内において熱交換することができ
るため、電機子取付板の温度上昇を抑えて、電機子取付
板の熱変形を防止することができる。 (3)上記(1)、(2)により、機械寸法の歪みや、
磁気歪みの影響によるコギング推力の発生を抑えること
ができ、モータ特性への悪影響を低減することができ
る。
As described above, according to the present invention, the following effects can be obtained. (1) In a configuration in which two types of armature blocks having different sizes are alternately arranged, a bolt screw is inserted between both members of the armature mounting plate and the armature core via a coupling member inserted into a dovetail groove provided in the armature core. And the armature as a whole is rigidly fixed with mold resin to prevent deformation of the armature mounting plate without using welding to fix the armature core and the armature mounting plate as in the past. be able to. (2) By providing a refrigerant passage inside the armature mounting plate and allowing the refrigerant to flow through the refrigerant passage, heat generated from the armature winding can be exchanged within the armature mounting plate. The temperature rise of the armature mounting plate can be suppressed, and thermal deformation of the armature mounting plate can be prevented. (3) According to the above (1) and (2), distortion of machine dimensions and
The occurrence of cogging thrust due to the influence of magnetostriction can be suppressed, and adverse effects on motor characteristics can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示すリニアモータの側
断面図である。
FIG. 1 is a side sectional view of a linear motor according to a first embodiment of the present invention.

【図2】図1におけるリニアモータの電機子取付板を取
り除いた状態を示す斜視図である。
FIG. 2 is a perspective view showing a state where an armature mounting plate of the linear motor in FIG. 1 is removed.

【図3】図1におけるリニアモータの冷媒通路を有する
電機子取付板の斜視図である。
FIG. 3 is a perspective view of an armature mounting plate having a refrigerant passage of the linear motor in FIG. 1;

【図4】本発明の第2の実施例を示すリニアモータの側
断面図である。
FIG. 4 is a side sectional view of a linear motor showing a second embodiment of the present invention.

【図5】従来のリニアモータの側断面図である。FIG. 5 is a side sectional view of a conventional linear motor.

【符号の説明】[Explanation of symbols]

1:リニアモータ 2:電機子取付板(移動子) 2a:孔部 3:電機子 41:第1電機子コア 42:第2電機子コア 4a:巻線収納溝 4b:係合部 4c:係合部 4d:アリ溝 5:電機子巻線 6:界磁ヨーク(固定子) 7a、7b、7c:永久磁石 8:モールド樹脂 9:冷媒通路 9a:冷媒注入口 9b:冷媒排出口 10:バイパスパイプ 11:ボルトネジ 12:結合部材 12a:タップ孔 1: linear motor 2: armature mounting plate (moving element) 2a: hole 3: armature 41: first armature core 42: second armature core 4a: winding accommodating groove 4b: engagement portion 4c: engagement Joint 4d: Dovetail groove 5: Armature winding 6: Field yoke (stator) 7a, 7b, 7c: Permanent magnet 8: Mold resin 9: Refrigerant passage 9a: Refrigerant inlet 9b: Refrigerant outlet 10: Bypass Pipe 11: Bolt screw 12: Coupling member 12a: Tapped hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】交互に極性が異なる複数の界磁用の永久磁
石を隣り合わせに並べて固定子を構成する界磁ヨーク
と、前記永久磁石列と直角方向に磁気的空隙を介して対
向すると共に、略長方形状に打ち抜いた電磁鋼板の両側
面に形成してなる巻線収納溝と凹凸状の係合部を有し、
かつこの電磁鋼板を積層した電機子コアと、前記電機子
コアの巻線収納溝に整列巻きして収納した電機子巻線
と、前記電機子巻線を巻装した複数の電機子コアの係合
部を係合して構成する電機子と、前記電機子の上面に固
定された移動子を構成する電機子取付板とを備え、前記
電機子を前記永久磁石列の長手方向に向かって走行する
ようにしたリニアモータにおいて、 前記電機子コアは、略T字形と略I字形の形状からなる
それぞれ大小異なる第1電機子コアおよび第2電機子コ
アから構成してあり、 前記第1電機子コアは、前記電機子取付板との対向面側
に形成されたアリ溝と、前記アリ溝に挿入され、かつタ
ップ孔を内部に有する結合部材とが設けてあり、 前記
電機子取付板は、前記結合部材に設けたタップ孔と対向
するように同一径に形成してなる孔部が設けてあり、 前記結合部材のタップ孔と前記電機子取付板の孔部をボ
ルトネジにより締め付け固定し、前記電機子巻線および
前記電機子コアの全体を覆うようにモールド樹脂により
固着してあることを特徴とするリニアモータ。
1. A field yoke constituting a stator by arranging a plurality of field permanent magnets having different polarities alternately adjacent to each other, and facing a permanent magnet row at right angles to the row of magnetic fields via a magnetic gap. It has a winding receiving groove formed on both sides of an electromagnetic steel plate punched into a substantially rectangular shape and an uneven engaging portion,
And an armature core formed by laminating the electromagnetic steel sheets, an armature winding aligned and housed in a winding accommodating groove of the armature core, and a plurality of armature cores wound with the armature winding. An armature formed by engaging the joint portion, and an armature mounting plate forming a mover fixed to the upper surface of the armature, the armature traveling in the longitudinal direction of the permanent magnet row. In the linear motor, the armature core includes a first armature core and a second armature core, each having a substantially T-shape and a substantially I-shape, and each having a different size. The core is provided with a dovetail groove formed on the side facing the armature mounting plate, and a coupling member inserted into the dovetail groove and having a tap hole therein. Same diameter so as to face the tap hole provided in the coupling member A hole formed is provided, and a tap hole of the coupling member and a hole of the armature mounting plate are tightened and fixed with bolt screws, and molded so as to cover the entire armature winding and the armature core. A linear motor fixed by resin.
【請求項2】前記アリ溝に挿入された結合部材と前記電
機子取付板とを一体化したことを特徴とする請求項1に
記載のリニアモータ。
2. The linear motor according to claim 1, wherein the coupling member inserted into the dovetail groove and the armature mounting plate are integrated.
【請求項3】前記電機子取付板の内部に、前記電機子か
ら発生した熱を熱交換するように冷媒を流す冷媒通路を
設けたことを特徴とする請求項1または2に記載のリニ
アモータ。
3. The linear motor according to claim 1, wherein a refrigerant passage for flowing a refrigerant so as to exchange heat generated from the armature is provided inside the armature mounting plate. .
JP01543299A 1999-01-25 1999-01-25 Linear motor and table feeder using the same Expired - Fee Related JP4277337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01543299A JP4277337B2 (en) 1999-01-25 1999-01-25 Linear motor and table feeder using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01543299A JP4277337B2 (en) 1999-01-25 1999-01-25 Linear motor and table feeder using the same

Publications (3)

Publication Number Publication Date
JP2000217334A true JP2000217334A (en) 2000-08-04
JP2000217334A5 JP2000217334A5 (en) 2006-01-12
JP4277337B2 JP4277337B2 (en) 2009-06-10

Family

ID=11888642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01543299A Expired - Fee Related JP4277337B2 (en) 1999-01-25 1999-01-25 Linear motor and table feeder using the same

Country Status (1)

Country Link
JP (1) JP4277337B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095232A (en) * 2000-09-18 2002-03-29 Yaskawa Electric Corp Armature structure of linear motor
US6747376B2 (en) 2002-04-23 2004-06-08 Mitsubishi Denki Kabushiki Kaisha Linear motor
US7199492B2 (en) 2003-06-20 2007-04-03 Mitsubishi Denki Kabushiki Kaisha Armature of linear motor
WO2007066500A1 (en) * 2005-12-06 2007-06-14 Thk Co., Ltd. Linear motor actuator
EP1863155A2 (en) * 2006-05-29 2007-12-05 Mitsubishi Electric Corporation Linear motor
JP2010063193A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Linear motor
JP2010115042A (en) * 2008-11-07 2010-05-20 Yaskawa Electric Corp Linear motor armature, linear motor, and table feed device using the linear motor
JP2010233418A (en) * 2009-03-30 2010-10-14 Mitsubishi Electric Corp Linear motor
KR101151840B1 (en) * 2010-11-25 2012-06-01 (주) 나노모션테크놀러지 Moving part for linear motor and manufacturing method of the same
CN103430435A (en) * 2011-04-29 2013-12-04 三菱电机株式会社 Laminated core for linear motor and manufacturing method therefor
CN107147269A (en) * 2017-05-31 2017-09-08 广州市昊志机电股份有限公司 A kind of permanent-magnetism linear motor is secondary
JP2018098997A (en) * 2016-12-16 2018-06-21 ファナック株式会社 Armature for linear motor and linear motor
JP2018102081A (en) * 2016-12-21 2018-06-28 ファナック株式会社 Armature for linear motor, linear motor, and method for manufacturing armature for linear motor
DE102018004442A1 (en) 2017-06-19 2018-12-20 Fanuc Corporation linear motor
CN114567140A (en) * 2022-04-26 2022-05-31 星宇电子(宁波)有限公司 Linear motor and production process thereof
DE112022000248T5 (en) 2021-01-12 2023-09-07 Fanuc Corporation ARMATURE OF A LINEAR MOTOR

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095232A (en) * 2000-09-18 2002-03-29 Yaskawa Electric Corp Armature structure of linear motor
US6747376B2 (en) 2002-04-23 2004-06-08 Mitsubishi Denki Kabushiki Kaisha Linear motor
US6879066B2 (en) 2002-04-23 2005-04-12 Mitsubishi Denki Kabushiki Kaisha Linear motor
DE10318411B4 (en) * 2002-04-23 2012-08-23 Mitsubishi Denki K.K. linear motor
CN100336287C (en) * 2002-04-23 2007-09-05 三菱电机株式会社 Linear motor
DE102004028926B4 (en) * 2003-06-20 2016-07-21 Mitsubishi Denki K.K. Anchor of a linear motor
US7199492B2 (en) 2003-06-20 2007-04-03 Mitsubishi Denki Kabushiki Kaisha Armature of linear motor
CN100379128C (en) * 2003-06-20 2008-04-02 三菱电机株式会社 Armature of linear motor
JP4877834B2 (en) * 2005-12-06 2012-02-15 Thk株式会社 Linear motor actuator
US8067862B2 (en) 2005-12-06 2011-11-29 Thk Co., Ltd. Linear motor actuator
WO2007066500A1 (en) * 2005-12-06 2007-06-14 Thk Co., Ltd. Linear motor actuator
EP1863155A3 (en) * 2006-05-29 2012-03-28 Mitsubishi Electric Corporation Linear motor
EP1863155A2 (en) * 2006-05-29 2007-12-05 Mitsubishi Electric Corporation Linear motor
JP2010063193A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Linear motor
JP2010115042A (en) * 2008-11-07 2010-05-20 Yaskawa Electric Corp Linear motor armature, linear motor, and table feed device using the linear motor
JP2010233418A (en) * 2009-03-30 2010-10-14 Mitsubishi Electric Corp Linear motor
KR101151840B1 (en) * 2010-11-25 2012-06-01 (주) 나노모션테크놀러지 Moving part for linear motor and manufacturing method of the same
CN103430435A (en) * 2011-04-29 2013-12-04 三菱电机株式会社 Laminated core for linear motor and manufacturing method therefor
US10135324B2 (en) 2016-12-16 2018-11-20 Fanuc Corporation Armature for linear motor and linear motor
JP2018098997A (en) * 2016-12-16 2018-06-21 ファナック株式会社 Armature for linear motor and linear motor
US10158279B2 (en) 2016-12-21 2018-12-18 Fanuc Corporation Armature for linear motor, linear motor, and method of manufacturing armature for linear motor
CN108233667A (en) * 2016-12-21 2018-06-29 发那科株式会社 Linear motor, linear motor armature and its manufacturing method
JP2018102081A (en) * 2016-12-21 2018-06-28 ファナック株式会社 Armature for linear motor, linear motor, and method for manufacturing armature for linear motor
CN108233667B (en) * 2016-12-21 2019-09-24 发那科株式会社 Linear motor, linear motor armature and its manufacturing method
CN107147269A (en) * 2017-05-31 2017-09-08 广州市昊志机电股份有限公司 A kind of permanent-magnetism linear motor is secondary
DE102018004442A1 (en) 2017-06-19 2018-12-20 Fanuc Corporation linear motor
US10483835B2 (en) 2017-06-19 2019-11-19 Fanuc Corporation Linear motor
DE102018004442B4 (en) 2017-06-19 2023-02-16 Fanuc Corporation linear motor
DE112022000248T5 (en) 2021-01-12 2023-09-07 Fanuc Corporation ARMATURE OF A LINEAR MOTOR
CN114567140A (en) * 2022-04-26 2022-05-31 星宇电子(宁波)有限公司 Linear motor and production process thereof
CN114567140B (en) * 2022-04-26 2022-07-29 星宇电子(宁波)有限公司 Linear motor and production process thereof

Also Published As

Publication number Publication date
JP4277337B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP2000217334A (en) Linear motor
TWI338431B (en)
KR20070114653A (en) Linear motor
JP2000037070A (en) Linear motor
US8179001B2 (en) Linear motor armature and linear motor
JP2000217334A5 (en) Linear motor and table feed device using it
JP7151698B2 (en) linear motor
JP2003209963A (en) Linear motor
JP2001218444A (en) High thrust linear motor and method of manufacturing the same
KR101896858B1 (en) Armature core, armature and linear motor
JP2007185033A (en) Linear motor
JP2010115042A (en) Linear motor armature, linear motor, and table feed device using the linear motor
JP3849128B2 (en) Linear motor
JP2002165434A (en) Coreless linear motor
JP2003219627A (en) Armature for linear motor and linear motor
JPH11206100A (en) Linear motor
JP4372319B2 (en) Linear motor and manufacturing method thereof
JPH11178310A (en) Linear motor
JP2004304932A (en) Cooling structure of linear motor
JP4110335B2 (en) Linear motor
JP2001095225A (en) Linear motor
JP3539140B2 (en) Machine tool table feeder
JP4048557B2 (en) Linear motor cooling system
JP2006527576A (en) Linear brushless DC motor with an iron core with reduced detent power
JP2001145327A (en) Armature for linear motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150319

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees