JP2000215915A - Solid electrolyte - Google Patents

Solid electrolyte

Info

Publication number
JP2000215915A
JP2000215915A JP11016298A JP1629899A JP2000215915A JP 2000215915 A JP2000215915 A JP 2000215915A JP 11016298 A JP11016298 A JP 11016298A JP 1629899 A JP1629899 A JP 1629899A JP 2000215915 A JP2000215915 A JP 2000215915A
Authority
JP
Japan
Prior art keywords
electrolyte
film
solid electrolyte
swelling
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11016298A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsui
浩志 松井
Takayuki Imai
隆之 今井
Takashi Edo
崇司 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP11016298A priority Critical patent/JP2000215915A/en
Publication of JP2000215915A publication Critical patent/JP2000215915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent leakage of liquid and provide high ion conductivity and excellent mechanism strength by swelling electrolyte, in an electrolyte, precursor provided by forming a swelling polymer film in the surface layer and the inside of a nonwoven fablic cloth or a porous film having through holes. SOLUTION: As a nonwoven fablic cloth, one that is constituted with a polyolefine resin or the like, and has thickness of 10-500 μm and density of 0.01-0.5 g/cm3 is used. As a porous film having through holes, a polyolefine resin or the like machined in a sheet shape is used. As polymer constituting a swelling polymeric film, polyvinylidene fluoride or the like is used. An electrolyte precursor provided by forming a swelling polymeric film in the surface layer and the inside of a nonwoven fablic cloth or the like, preferably has a tilting structure where inside bulk density is at least 0.1 times of and at most 1 times of the bulk density on the surface layer. This solid electrolyte with such structure constitutes a cell by sandwiching this and laminating an electrolyte composition, and can be used for an electrochemical device such as a secondary battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池、コンデ
ンサー、エレクトロクロミック素子などの電気化学デバ
イスに用いられる固体状の電解質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte used for electrochemical devices such as secondary batteries, capacitors, and electrochromic devices.

【0002】[0002]

【従来の技術】近年、携帯機器に対する更なる小型・軽
量化への要求を反映してリチウムイオン二次電池の需要
が伸びている。従来のリチウムイオン二次電池では、貫
通孔を有する高分子セパレータを挟んで正・負極とを配
してセルを構成し、これに液状の電解質として有機電解
液を含浸させることによってイオン伝導性を付与した形
式のものが一般的である。このように液状の電解質を用
いる場合は電解液の漏液を防ぐために、セルを、金属な
ど十分な強度を備えた材料で造られた容器内に収めて密
封する必要がある。ところが、このような容器は電池全
体の重量に占める割合が一般に大きく、また形状にも制
限があるため、電池の小型・軽量化における障害のひと
つとなっている。更に、このような工夫をしているにも
関わらず、電池の製造過程および使用時に生じる不良に
おいて電解液漏液が占める割合は大きい。
2. Description of the Related Art In recent years, demand for lithium ion secondary batteries has been growing in response to the demand for further miniaturization and weight reduction of portable devices. In a conventional lithium ion secondary battery, a positive / negative electrode is arranged with a polymer separator having a through-hole interposed therebetween to form a cell, and the cell is impregnated with an organic electrolyte as a liquid electrolyte to improve ion conductivity. The type given is generally used. When a liquid electrolyte is used as described above, in order to prevent leakage of the electrolyte, the cell must be sealed in a container made of a material having sufficient strength such as a metal. However, such a container generally accounts for a large portion of the weight of the entire battery and has a limited shape, which is one of the obstacles in reducing the size and weight of the battery. Furthermore, despite such measures, the leakage of the electrolyte solution accounts for a large proportion of defects occurring during the production and use of the battery.

【0003】そこで、このような問題を解決するため
に、液状電解質を固体状電解質に置き換える研究が進め
られている。電解質を固体化した場合の利点としては、
上記のような漏液の問題を解決できる他、積層化や電池
の超薄型化を実現できるなどの点を挙げることができ
る。そして固体状電解質としては無機系、有機系を問わ
ずこれまでに様々な物質が報告されており、有機系に関
してはポリエーテル系完全固体電解質などが広く研究さ
れてきた。しかしながら多くの場合、その電解質特性は
十分とは言い難く、特に室温付近におけるイオン伝導度
に関しては、汎用二次電池へ利用でき得る値はほとんど
報告されていない。これに対し、高分子体を電解液で膨
潤させてイオン伝導度を向上させた、いわゆるゲル状電
解質が開発されている。この種の電解質は、室温におい
ても比較的高いイオン伝導度が得られる上、上記の完全
固体電解質の場合と同様漏液の心配がないため、次世代
の二次電池用電解質として有望視されている。
[0003] In order to solve such a problem, studies are being made to replace a liquid electrolyte with a solid electrolyte. The advantages of solidifying the electrolyte are:
In addition to solving the problem of liquid leakage as described above, there can be mentioned such points that lamination and ultra-thin battery can be realized. Various materials have been reported so far, regardless of whether they are inorganic or organic, as solid electrolytes, and polyether-based complete solid electrolytes have been widely studied for organic ones. However, in many cases, its electrolyte properties are not sufficiently satisfactory. Particularly, with regard to the ionic conductivity at around room temperature, few values that can be used for general-purpose secondary batteries have been reported. On the other hand, a so-called gel electrolyte in which a polymer is swollen with an electrolytic solution to improve ionic conductivity has been developed. This type of electrolyte has relatively high ionic conductivity even at room temperature and has no fear of liquid leakage as in the case of the above-mentioned completely solid electrolyte. I have.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記のよう
なゲル状電解質を汎用二次電池に使用する場合には、高
いイオン伝導度をもつと同時に正・負極間のセパレータ
を兼ねるための十分な強度を有している必要がある。し
かしながら、ゲル状電解質のイオン伝導度を上げるため
には多量の電解液を含ませる必要がある一方で、電解液
含有量が増えると一般にゲル状電解質の機械強度は著し
く低下し、特にリチウム系二次電池に適用されるような
薄膜状態での取扱いが困難になるという問題があった。
In the case where the above-mentioned gel electrolyte is used in a general-purpose secondary battery, it is necessary to have a high ionic conductivity and at the same time, to have a sufficient function as a separator between the positive and negative electrodes. Must have strength. However, in order to increase the ionic conductivity of the gel electrolyte, it is necessary to include a large amount of the electrolytic solution. On the other hand, when the content of the electrolytic solution increases, the mechanical strength of the gel electrolyte generally decreases remarkably. There is a problem that handling in a thin film state as applied to a secondary battery becomes difficult.

【0005】本発明は前記事情に鑑みてなされたもの
で、漏液を防止できるとともに、高いイオン伝導度と優
れた機械的強度とを同時に満足できるような電解質を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrolyte which can prevent liquid leakage, and can simultaneously satisfy high ionic conductivity and excellent mechanical strength.

【0006】[0006]

【課題を解決するための手段】前記課題は、不織布ある
いは貫通孔を有する多孔膜の表層および内部に膨潤可能
な高分子膜を形成してなる電解質前駆体を電解液で膨潤
させて固体状電解質を構成することによって解決でき
る。前記電解質前駆体は、内部におけるかさ密度が表層
におけるかさ密度の0.1〜1倍となる傾斜構造を有す
ることが好ましい。本発明の固体状電解質は、この固体
状電解質を挟んで電極組成物を積層して、電気化学デバ
イスを構成するのに好適に用いられる。本発明の固体状
電解質を用いて電気化学デバイスを製造する場合に、電
解質前駆体に正極組成物および負極組成物の少なくとも
いずれか一方を積層した後、該積層体を電解液で膨潤さ
せることが好ましい。
The object of the present invention is to provide a solid electrolyte obtained by swelling an electrolyte precursor comprising a non-woven fabric or a porous film having a through-hole and a swellable polymer film inside the electrolyte. Can be solved. The electrolyte precursor preferably has a gradient structure in which the bulk density inside is 0.1 to 1 times the bulk density in the surface layer. The solid electrolyte of the present invention is suitably used for forming an electrochemical device by laminating an electrode composition with the solid electrolyte interposed therebetween. When manufacturing an electrochemical device using the solid electrolyte of the present invention, after laminating at least one of the positive electrode composition and the negative electrode composition on the electrolyte precursor, the laminate may be swollen with an electrolytic solution. preferable.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明で用いられる電解質前駆体は、不織布あるいは貫
通孔を有する多孔膜の表層および内部に膨潤可能な高分
子膜を形成して得られるものである。不織布としては、
例えばポリエチレンやポリプロピレンなどに代表される
ポリオレフィン系樹脂、ポリアクリロニトリル、または
ポリエステル系樹脂などで構成されるものを挙げること
ができ、好ましくは厚さ10〜500μmで密度0.0
1〜0.5g/cm3程度のものが用いられる。貫通孔
を有する多孔膜としては、例えばシート状に加工したポ
リオレフィン系樹脂やフッ素系樹脂、あるいはポリアク
リロニトリル、ポリエステル系樹脂などを延伸したもの
や、シート状に加工する際に発泡させたものなどを用い
ることができる。膨潤可能な高分子膜を構成する膨潤性
高分子の例としては、ポリフッ化ビニリデンやポリフッ
化ビニリデン−ヘキサフルオロプロピレン共重合体(P
VdF‐HFP)などに代表されるフッ素系樹脂、ポリ
エチレンオキシドやポリプロピレンオキシドなどに代表
されるポリエーテル類、ポリアクリロニトリル、ポリ酢
酸ビニル、ポリ塩化ビニル、ポリメチルメタクリレー
ト、ポリフォスファゼンなどを挙げることができるがこ
れらに限られるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The electrolyte precursor used in the present invention is obtained by forming a swellable polymer film on the surface and inside of a nonwoven fabric or a porous film having through holes. As a nonwoven fabric,
For example, a polyolefin-based resin represented by polyethylene or polypropylene, polyacrylonitrile, or a resin composed of a polyester-based resin can be used. Preferably, the thickness is 10 to 500 μm and the density is 0.0
Those having a size of about 1 to 0.5 g / cm 3 are used. Examples of the porous membrane having a through-hole include, for example, a sheet-shaped polyolefin-based resin or a fluorine-based resin, or a stretched polyacrylonitrile, polyester-based resin, or a foamed sheet formed into a sheet. Can be used. Examples of the swellable polymer constituting the swellable polymer film include polyvinylidene fluoride and polyvinylidene fluoride-hexafluoropropylene copolymer (P
VdF-HFP), polyethers such as polyethylene oxide and polypropylene oxide, polyacrylonitrile, polyvinyl acetate, polyvinyl chloride, polymethyl methacrylate, polyphosphazene, and the like. It is possible, but not limited to these.

【0008】不織布あるいは多孔膜の表層および内部に
膨潤可能な高分子膜を形成する方法は特に特定されるも
のではないが、得られる電解質前駆体において、内部に
おけるかさ密度が表層におけるかさ密度の0.1倍以上
1倍以下となるような傾斜構造を与えることがより好ま
しい。このような構造を与えるために、例えば以下のよ
うな手法を好ましく用いることができる。すなわち、適
当な濃度の膨潤性樹脂を溶解させた溶液を不織布あるい
は多孔膜に含浸させ、次いで溶媒とは相溶性をもつが膨
潤性高分子に対しては貧溶媒となるような抽出液中へ移
すことにより溶媒成分のみを抽出するといた手法を用い
ることができる。この時、膨潤性高分子の含浸量、つま
り含浸溶液濃度を任意に制御することにより、上述のよ
うな傾斜構造を得ることができる。
The method for forming the swellable polymer film on the surface and inside of the nonwoven fabric or porous film is not particularly specified. However, in the obtained electrolyte precursor, the bulk density in the surface is 0% of the bulk density in the surface layer. It is more preferable to provide an inclined structure that is not less than 1 time and not more than 1 time. In order to provide such a structure, for example, the following method can be preferably used. That is, a non-woven fabric or a porous membrane is impregnated with a solution in which a swellable resin having an appropriate concentration is dissolved, and then into an extract that is compatible with the solvent but is a poor solvent for the swellable polymer. A technique that extracts only the solvent component by transfer can be used. At this time, the above-described gradient structure can be obtained by arbitrarily controlling the impregnation amount of the swellable polymer, that is, the concentration of the impregnation solution.

【0009】本発明の固体状電解質は、上記の電解質前
駆体を電解液で膨潤させてなるものであるが、ここで用
いられる電解液としては、例えば非水電解質系電池に通
常用いられる電解液を使用することができる。すなわ
ち、プロピレンカーボネートやエチレンカーボネートな
どに代表される環状炭酸エステル類、ジエチルカーボネ
ートやジメチルカーボネートなどに代表される鎖状炭酸
エステル類、テトラヒドロフランやその誘導体、γ−ブ
チロラクトン、N−メチルピロリドンなどの単独あるい
は2種以上の混合溶媒中にアルカリ金属塩を溶解させた
ものを挙げることができるがこれらに限られるものでは
ない。アルカリ金属塩のカチオンにはリチウムイオン、
カリウムイオン、ナトリウムイオンなどを、またアニオ
ンには過塩素酸イオン、チオシアン酸イオン、トリフル
オロメタンスルホン酸イオン、テトラフロロホウ酸イオ
ン、ヘキサフロロリン酸イオン(PF6 -)、ビストリフ
ロロメチルスルフォニルィミドイオンなどを用いること
ができるがこれらに限られるものではない。
The solid electrolyte of the present invention is obtained by swelling the above-mentioned electrolyte precursor with an electrolytic solution. Examples of the electrolytic solution used herein include those commonly used in non-aqueous electrolyte batteries. Can be used. That is, cyclic carbonates such as propylene carbonate and ethylene carbonate, chain carbonates such as diethyl carbonate and dimethyl carbonate, tetrahydrofuran and derivatives thereof, γ-butyrolactone, and N-methylpyrrolidone alone or Examples thereof include those obtained by dissolving an alkali metal salt in a mixed solvent of two or more kinds, but the present invention is not limited thereto. The cation of the alkali metal salt is lithium ion,
Potassium ion, sodium ion, etc., and anions as perchlorate ion, thiocyanate ion, trifluoromethanesulfonate ion, tetrafluoroborate ion, hexafluorophosphate ion (PF 6 ), bistrifluoromethylsulfonylimide Ions and the like can be used, but are not limited thereto.

【0010】本発明の固体状電解質は、これを挟んで電
極組成物を積層させてセルを構成し、二次二次電池、コ
ンデンサー、エレクトロクロミック素子などの各種電気
化学デバイスに用いることができ、特にリチウムイオン
二次電池を構成するのに好ましく用いられる。リチウム
イオン二次電池を構成する場合、負極用組成物として
は、活物質1重量部に対して導電助剤0.01〜0.5
重量部、およびバインダーを兼ねたイオン導電性高分子
0.1〜10重量部を加えた複合組成物、またはリチウ
ム金属、リチウムとアルミニウムの合金などを用いるこ
とができる。上記活物質としては、リチウムイオンのイ
ンターカレーションが可能な黒鉛系炭素材料、コークス
系炭素材科、繊維状炭素、高分子焼成体などを用いるこ
とができる。導電助剤としては、アセチレンブラックな
どが好適に用いられる。イオン導電性高分子としては、
前述の膨潤性高分子あるいはこれに前述の電解液を加え
て膨潤させたものなどを用いることができる。
The solid electrolyte of the present invention can be used for various electrochemical devices such as secondary secondary batteries, capacitors, and electrochromic devices by forming a cell by laminating an electrode composition across the solid electrolyte. In particular, it is preferably used for forming a lithium ion secondary battery. When a lithium ion secondary battery is configured, the composition for the negative electrode may include a conductive auxiliary in an amount of 0.01 to 0.5 with respect to 1 part by weight of the active material.
A composite composition containing 0.1 parts by weight of an ion-conductive polymer also serving as a binder, a lithium metal, an alloy of lithium and aluminum, or the like can be used. As the active material, a graphite-based carbon material capable of intercalating lithium ions, a coke-based carbon material family, fibrous carbon, a polymer fired body, or the like can be used. As the conductive assistant, acetylene black or the like is preferably used. As the ion conductive polymer,
The above-mentioned swellable polymer or the one obtained by adding the above-mentioned electrolytic solution to the above-mentioned swellable polymer can be used.

【0011】正極用組成物としては、活物質1重量部に
対して導電助剤0.01〜0.5重量部、バインダーを
兼ねたイオン導電性高分子0.1〜10重量部を加えた
複合組成物を用いることができる。上記活物質として
は、リチウムイオンのインターカレーションが可能な含
リチウム複合金属酸化物(LiCoO2、LiNiO2
LiNi0.8Co0.22、LiMn24など)やV
25、または分子内に複数のメルカプト基を有する2,
5−ジメルカプト−1,3,4−チアシジアゾール、ト
リアジンチオール、ジチオグリコール、N,N,N’,
N’−テトラメルカプトエチレンジアミンなどに代表さ
れる有機イオウ化合物、さらにそれらのアルカリ金属塩
あるいはジスルフィド結合による重合体などを用いるこ
とができる。導電助剤およびイオン導電性高分子に関し
ては、前述の負極用組成物に用いられるものと同様のも
のを用いることができる。
As the composition for the positive electrode, 0.01 to 0.5 parts by weight of a conductive additive and 0.1 to 10 parts by weight of an ionic conductive polymer also serving as a binder were added to 1 part by weight of the active material. Composite compositions can be used. As the active material, lithium-containing composite metal oxides capable of intercalating lithium ions (LiCoO 2 , LiNiO 2 ,
LiNi 0.8 Co 0.2 O 2, such as LiMn 2 0 4) and V
2 O 5 , or 2 having a plurality of mercapto groups in the molecule,
5-dimercapto-1,3,4-thiacidiazole, triazinethiol, dithioglycol, N, N, N ′,
Organic sulfur compounds typified by N'-tetramercaptoethylenediamine and the like, furthermore, alkali metal salts thereof and polymers formed by disulfide bonds can be used. As the conductive auxiliary and the ionic conductive polymer, the same ones as those used in the above-described composition for a negative electrode can be used.

【0012】本発明の電気化学デバイスは、本発明の固
体状電解質を挟んで、正極用組成物および負極用組成物
をそれぞれ積層させた構成を備えたものである。このよ
うな電気化学デバイスの製造方法としては、例えば電解
質前駆体を電解液で膨潤させて固体状電解質を作製し、
これとは別に正極用組成物および負極用組成物をそれぞ
れ膜状に形成した後、これらの正極用組成物膜、固体状
電解質、負極用組成物膜を積層する方法がある。より好
ましくは、前述の電解質前駆体表面の正極側あるいは負
極側の少なくともどちらか一方に、正極用組成物あるい
は負極用組成物を含むスラリーを塗布し、溶媒成分を十
分に除去した後に電解液に浸漬させ、電解質前駆体を含
む積層体を膨潤させる手法、あるいは電極組成物からな
る膜(電解液成分のみを欠く膜)を作製し、これを電解
質前駆体表面に積層し圧着した後に、その積層体を電解
液に浸漬させて膨潤させる手法などが用いられる。この
ようにまず正極用組成物膜、電解質前駆体、負極用組成
物膜からなる積層体を作製しておきこの積層体を電解液
に浸漬させる方法は、前述のように各電極および固体状
電解質をそれぞれ作製した後に積層してパッケージする
方法と比較して、グローブボックスやドライルームを必
要とする工程が電解液による膨潤工程からパッケージ工
程までに限られるため、作業性が向上する、また固体状
電解質と電極との界面の接触状態に起因する界面抵抗を
減少させることが可能になるなどの利点を有する。
The electrochemical device of the present invention has a configuration in which a composition for a positive electrode and a composition for a negative electrode are laminated with the solid electrolyte of the present invention interposed therebetween. As a method for producing such an electrochemical device, for example, a solid electrolyte is produced by swelling an electrolyte precursor with an electrolytic solution,
Separately from this, there is a method in which a positive electrode composition and a negative electrode composition are each formed into a film, and then the positive electrode composition film, the solid electrolyte, and the negative electrode composition film are laminated. More preferably, a slurry containing the composition for the positive electrode or the composition for the negative electrode is applied to at least one of the positive electrode side and the negative electrode side of the aforementioned electrolyte precursor surface, and after sufficiently removing the solvent component, the electrolytic solution A method of immersing and swelling the laminate containing the electrolyte precursor, or preparing a film made of the electrode composition (a film lacking only the electrolyte component), laminating the film on the surface of the electrolyte precursor, pressing the film, and then laminating the film A method of swelling the body by immersing the body in an electrolyte is used. As described above, first, a laminate composed of the composition film for the positive electrode, the electrolyte precursor, and the composition film for the negative electrode is prepared, and the method of immersing the laminate in the electrolytic solution is as described above. Compared to the method of laminating and packaging after each production, the process requiring a glove box and a dry room is limited from the swelling process with the electrolyte solution to the packaging process, so workability is improved, and It has the advantage that the interface resistance caused by the contact state of the interface between the electrolyte and the electrode can be reduced.

【0013】[0013]

【実施例】以下、具体的な実施例を示して本発明の効果
を明らかにする。 (実施例l)ポリプロピレン製不織布(厚さ80μm、
密度0.1g/cm3)に、膨潤性高分子としてポリフ
ッ化ビニリデンとヘキサフルオロプロピレンの共重合体
(PVdF‐HFPと略記する)を10wt%含むN−メ
チルピロリドン(NMPと略記する)溶液を含浸させ、
次いでエタノール中でNMPのみを抽出することにより
不織布表面および内部にPVdF−HFP膜を形成し
た。これを真空・80℃で乾燥することにより溶媒成分
を十分に除去し、電解質前駆体とした。作製した電解質
前駆体を水分量を1ppm以下に制御したアルゴン雰囲
気下に持ち込み、エチレンカーボネート(ECと略記す
る)とジメチルカーボネート(DMCと略記する)の混
合溶媒に1モルのLiPF6を溶解させてなる電解液中
に浸漬・膨潤させ、固体状電解質とした。
EXAMPLES Hereinafter, the effects of the present invention will be clarified by showing specific examples. (Example 1) Non-woven fabric made of polypropylene (thickness: 80 μm,
An N-methylpyrrolidone (abbreviated as NMP) solution containing 10 wt% of a copolymer of polyvinylidene fluoride and hexafluoropropylene (abbreviated as PVdF-HFP) as a swellable polymer at a density of 0.1 g / cm 3 ) Impregnated,
Next, a PVdF-HFP film was formed on the surface and inside of the nonwoven fabric by extracting only NMP in ethanol. This was dried at 80 ° C. under vacuum to sufficiently remove the solvent component, thereby obtaining an electrolyte precursor. The prepared electrolyte precursor was brought into an argon atmosphere in which the water content was controlled to 1 ppm or less, and 1 mol of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (abbreviated as EC) and dimethyl carbonate (abbreviated as DMC). The solid electrolyte was immersed and swelled in the resulting electrolyte.

【0014】(実施例2)正極活物質としてLiCoO
2 1重量部に対して、導電助剤としてアセチレンブラ
ック0.2重量部、イオン導電性高分子としてPVdF
−HFP0.4重量部およびDMC 1.2重量部を、
テトラヒドロフラン(THFと略記する)に溶解あるい
は分散させ、正極用スラリーとした。また、負極活物質
として黒鉛1重量部に対して、導電助剤としてアセチレ
ンブラック0.1重量部、イオン導電性高分子としてP
VdF‐HFP0.5重量部およびDMC 1.2重量
部を、THFに溶解あるいは分散させ、負極用スラリー
とした。これらのスラリーを、実施例1と同様の手法に
より作製した電解質前駆体の片面づつにそれぞれ塗布
し、乾燥させた。十分に乾燥した後、得られたサンプル
をφ15mmに打抜き、アルゴン雰囲気下において実施
例1と同組成の電解液中に浸漬・膨潤させた。このサン
プルを正極集電体用の銅箔、および負極集電体用のアル
ミ箔と共に積層し、測定用セルホルダにセットすること
により試作電池を作製した。
Example 2 LiCoO as a positive electrode active material
2 0.2 parts by weight of acetylene black as a conductive aid and PVdF as an ionic conductive polymer per 1 part by weight
0.4 parts by weight of HFP and 1.2 parts by weight of DMC
It was dissolved or dispersed in tetrahydrofuran (abbreviated as THF) to obtain a positive electrode slurry. Also, for 1 part by weight of graphite as the negative electrode active material, 0.1 part by weight of acetylene black as a conductive aid, and P as an ionic conductive polymer.
0.5 part by weight of VdF-HFP and 1.2 parts by weight of DMC were dissolved or dispersed in THF to prepare a slurry for a negative electrode. These slurries were applied to one surface of each of the electrolyte precursors produced in the same manner as in Example 1, and dried. After drying sufficiently, the obtained sample was punched out to a diameter of 15 mm, immersed and swelled in an electrolyte having the same composition as in Example 1 in an argon atmosphere. This sample was laminated with a copper foil for the positive electrode current collector and an aluminum foil for the negative electrode current collector, and set in a cell holder for measurement to produce a prototype battery.

【0015】(比較例1)膨潤性高分子であるPVdF
‐HFPをTHF中に溶解し、これをガラスシャーレ上
にキャストして乾燥することにより厚さ50μmの膜を
得た。この膜を実施例1と同組成の電解液中で浸潰・膨
潤させて比較用電解質膜とした。 (比較例2)正極活物質としてLiCoO2 1重量部
に対して、導電助剤としてアセチレンブラック0.2重
量部、導電性高分子であるPVdF‐HFP0.4重量
部、および電解液(1モルLiPF6/EC+DMC)
1.2重量部をTHFに溶解あるいは分散させ、正極用
スラリーとした。これをガラスシャーレ上にキャストし
て乾燥させることにより正極膜を得た。また、負極活物
質として黒鉛1重量部に対して、導電助剤としてアセチ
レンブラック0.1重量部、導電性高分子であるPVd
F‐HFP0.5重量部、および電解液(1モルLiP
F/EC+DMC)1.2重量部をTHFに溶解あるい
は分散させ、負極用スラリーとした。これをガラスシャ
ーレ上にキャストして乾燥させることにより負極膜を得
た。得られた正・負極膜と比較例1と同様の手法により
作製した電解質膜、さらに正極集電体用の銅箔、および
負極集電体用のアルミ箔と共に積層し、測定用セルホル
ダにセットすることにより比較用電池を作製した。
Comparative Example 1 PVdF which is a swellable polymer
-HFP was dissolved in THF, cast on a glass Petri dish, and dried to obtain a 50 μm thick film. This membrane was immersed and swelled in an electrolyte having the same composition as in Example 1 to obtain a comparative electrolyte membrane. (Comparative Example 2) With respect to 1 part by weight of LiCoO 2 as a positive electrode active material, 0.2 part by weight of acetylene black as a conductive assistant, 0.4 part by weight of PVdF-HFP as a conductive polymer, and an electrolyte solution (1 mol LiPF 6 / EC + DMC)
1.2 parts by weight were dissolved or dispersed in THF to prepare a positive electrode slurry. This was cast on a glass Petri dish and dried to obtain a positive electrode film. Further, 0.1 part by weight of acetylene black as a conductive auxiliary agent and 1 part by weight of graphite as a negative electrode active material, and PVd as a conductive polymer
0.5 parts by weight of F-HFP and electrolyte (1 mol LiP
(F / EC + DMC) 1.2 parts by weight were dissolved or dispersed in THF to obtain a slurry for a negative electrode. This was cast on a glass petri dish and dried to obtain a negative electrode film. The obtained positive / negative electrode film, an electrolyte film produced by the same method as in Comparative Example 1, a copper foil for a positive electrode current collector, and an aluminum foil for a negative electrode current collector are laminated and set in a cell holder for measurement. Thereby, a comparative battery was produced.

【0016】(試験例)走査電子顕微鏡(SEM)を用
いて実施例1で作製した電解質前駆体の断面観察を行っ
た。観察した断面はいずれも不織布表面から内部にかけ
てPVdF‐HFP膜が形成されている様子が確認でき
た。また、不織布内部でのみ膜に空孔がみられた。実施
例1の固体状電解質および比較例1の比較用電解質膜を
それぞれステンレス鋼(SUS)製の電極ではさみ、交
流インピーダンス法測定を行うことによりイオン伝導度
を算出したところ、下記の結果が得られた。 実施例1:1.30mS/cm2(23℃) 比較例1:0.62mS/cm2(23℃) また、比較例1の比較用電解質膜はピンセットで引っ張
ると容易に破けてしまうのに対し、実施例1の固体状電
解質は同様の扱いをしても破けたり穴があいたりするこ
とはなかった。
(Test Example) A cross section of the electrolyte precursor prepared in Example 1 was observed using a scanning electron microscope (SEM). In each of the observed cross sections, it was confirmed that a PVdF-HFP film was formed from the surface of the nonwoven fabric to the inside. In addition, pores were observed in the film only inside the nonwoven fabric. The solid electrolyte of Example 1 and the comparative electrolyte membrane of Comparative Example 1 were sandwiched between electrodes made of stainless steel (SUS), respectively, and ionic conductivity was calculated by performing an AC impedance method measurement, and the following results were obtained. Was done. Example 1: 1.30 mS / cm 2 (23 ° C.) Comparative Example 1: 0.62 mS / cm 2 (23 ° C.) Also, the comparative electrolyte membrane of Comparative Example 1 was easily broken when pulled with tweezers. On the other hand, the solid electrolyte of Example 1 did not break or have a hole even when treated in the same manner.

【0017】実施例2および比較例2の電池を用いて充
放電試験を行った。実施例2の電池を用い放電レイト
0.2Cで放電した時の放電容量を1とした時の各試験
における放電容量は下記の通りであった。 放電レイト:0.2Cのとき、実施例2:1、 比較例2:0.87 放電レイト:1Cのとき、 実施例2:0.94、比較例2:0.52 以上の試験結果から、比較例1の比較用電解質膜は実施
例1の固体状電解質に比べてイオン伝導度が低く、また
比較例2の電池は電極/電解質膜界面の抵抗が大きいの
で特に高い放電レイトにおいては著しく特性が低下する
のに対し、実施例2の電池は高い放電レイトにおいても
容量低下の少ない優れた放電特性を有することが分かっ
た。さらに実施例1の固体状電解質は強度の点でも優れ
ていることが認められた。
A charge / discharge test was performed using the batteries of Example 2 and Comparative Example 2. The discharge capacity in each test when the discharge capacity when the battery of Example 2 was discharged at a discharge rate of 0.2 C was 1 was as follows. Discharge rate: 0.2C, Example 2: 1, Comparative example 2: 0.87 Discharge rate: 1C, Example 2: 0.94, Comparative example 2: 0.52 From the above test results, The comparative electrolyte membrane of Comparative Example 1 has a lower ionic conductivity than the solid electrolyte of Example 1, and the battery of Comparative Example 2 has a large resistance at the electrode / electrolyte membrane interface. On the other hand, it was found that the battery of Example 2 had excellent discharge characteristics with little decrease in capacity even at a high discharge rate. Furthermore, it was recognized that the solid electrolyte of Example 1 was also excellent in strength.

【0018】[0018]

【発明の効果】以上説明したように本発明によれば、電
解質のイオン伝導度が十分に高く、また機械的強度に優
れた固体状電解質が得られる。この固体状電解質は電極
間のセパレータとして使用可能であり、電極/電解質界
面の密着状態に優れているので、高レイトでの充放電を
行っても高い容量を得ることができ、優れた特性を安定
して得ることができる。また固体状の電解質であるので
密閉容器を使用しなくても漏液が防止され、これを用い
ることにより電気化学デバイスの小型化、軽量化を達成
することができる。また本発明の固体状電解質は機械強
度が優れているので、破断、貫通などの破壊が起こりに
くく、これを用いた電気化学デバイスの安全性を向上さ
せることができる。さらに、電気化学デバイス製造時
に、電解質前駆体に正極用樹脂組成物および負極用樹脂
組成物の少なくともいずれか一方を積層した後、該電解
質前駆体を電解液で膨潤させる方法を用いることがで
き、これによればドライ雰囲気に制御する必要のある工
程を短くできるので、作業性・操作性を向上させること
ができる。
As described above, according to the present invention, a solid electrolyte having sufficiently high ionic conductivity and excellent mechanical strength can be obtained. Since this solid electrolyte can be used as a separator between electrodes and has excellent adhesion at the electrode / electrolyte interface, a high capacity can be obtained even when charging and discharging at a high rate, and excellent characteristics are obtained. It can be obtained stably. In addition, since the electrolyte is a solid electrolyte, liquid leakage is prevented without using a closed container, and the use of the electrolyte can reduce the size and weight of the electrochemical device. In addition, since the solid electrolyte of the present invention has excellent mechanical strength, breakage such as breakage and penetration does not easily occur, and the safety of an electrochemical device using the same can be improved. Further, during the production of an electrochemical device, after laminating at least one of the resin composition for the positive electrode and the resin composition for the negative electrode on the electrolyte precursor, a method of swelling the electrolyte precursor with an electrolytic solution can be used, According to this, the process that needs to be controlled to a dry atmosphere can be shortened, so that workability and operability can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江戸 崇司 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 Fターム(参考) 2K001 BB30 BB54 CA37 DA19 DA30 5G301 CD01 CE10 5H029 AJ11 AK02 AK03 AK05 AK15 AL06 AL07 AL12 AM00 AM03 AM05 AM07 AM16 BJ03 CJ13 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takashi Edo 1-5-1, Kiba, Koto-ku, Tokyo F-Terminal in Fujikura Co., Ltd. 2K001 BB30 BB54 CA37 DA19 DA30 5G301 CD01 CE10 5H029 AJ11 AK02 AK03 AK05 AK15 AK15 AL06 AL07 AL12 AM00 AM03 AM05 AM07 AM16 BJ03 CJ13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不織布あるいは貫通孔を有する多孔膜の
表層および内部に膨潤可能な高分子膜を形成してなる電
解質前駆体を電解液で膨潤させてなることを特徴とする
固体状電解質。
1. A solid electrolyte obtained by swelling an electrolyte precursor obtained by forming a swellable polymer film on a surface layer of a nonwoven fabric or a porous film having a through-hole and an electrolyte solution.
【請求項2】 前記電解質前駆体が、内部におけるかさ
密度が表層におけるかさ密度の0.1〜1倍となる傾斜
構造を有することを特徴とする請求項1記載の固体状電
解質。
2. The solid electrolyte according to claim 1, wherein the electrolyte precursor has a gradient structure in which the bulk density inside is 0.1 to 1 times the bulk density in the surface layer.
【請求項3】 前記請求項1または2のいずれかに記載
の固体状電解質と、該固体状電解質を挟んで積層された
電極組成物を備えてなることを特徴とする電気化学デバ
イス。
3. An electrochemical device comprising: the solid electrolyte according to claim 1; and an electrode composition laminated with the solid electrolyte interposed therebetween.
【請求項4】 前記請求項1または2のいずれかに記載
の電解質前駆体に正極用組成物および負極用組成物の少
なくともいずれか一方を積層した後、該積層体を電解液
で膨潤させることを特徴とする電気化学デバイスの製造
方法。
4. After laminating at least one of a composition for a positive electrode and a composition for a negative electrode on the electrolyte precursor according to claim 1 or 2, swelling the laminate with an electrolytic solution. A method for producing an electrochemical device, comprising:
JP11016298A 1999-01-25 1999-01-25 Solid electrolyte Pending JP2000215915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11016298A JP2000215915A (en) 1999-01-25 1999-01-25 Solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11016298A JP2000215915A (en) 1999-01-25 1999-01-25 Solid electrolyte

Publications (1)

Publication Number Publication Date
JP2000215915A true JP2000215915A (en) 2000-08-04

Family

ID=11912652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11016298A Pending JP2000215915A (en) 1999-01-25 1999-01-25 Solid electrolyte

Country Status (1)

Country Link
JP (1) JP2000215915A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003110A1 (en) * 2001-06-27 2003-01-09 Nippon Oil Corporation Electrochromic element
JP2003051213A (en) * 2001-08-07 2003-02-21 Nitto Denko Corp Adhesive porous material membrane, polymer gel electrolyte obtained form the same and their application
JP2007157571A (en) * 2005-12-07 2007-06-21 Nitto Denko Corp Porous film for electrolyte, electrolyte provided therefrom, and manufacturing method of electrode/electrolyte element using it
JP2020509565A (en) * 2017-05-15 2020-03-26 エルジー・ケム・リミテッド Method for producing solid electrolyte membrane for all-solid-state battery and solid electrolyte membrane produced by the method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003110A1 (en) * 2001-06-27 2003-01-09 Nippon Oil Corporation Electrochromic element
JP2003051213A (en) * 2001-08-07 2003-02-21 Nitto Denko Corp Adhesive porous material membrane, polymer gel electrolyte obtained form the same and their application
JP2007157571A (en) * 2005-12-07 2007-06-21 Nitto Denko Corp Porous film for electrolyte, electrolyte provided therefrom, and manufacturing method of electrode/electrolyte element using it
JP2020509565A (en) * 2017-05-15 2020-03-26 エルジー・ケム・リミテッド Method for producing solid electrolyte membrane for all-solid-state battery and solid electrolyte membrane produced by the method
US11342578B2 (en) 2017-05-15 2022-05-24 Lg Energy Solution, Ltd. Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method
JP7092796B2 (en) 2017-05-15 2022-06-28 エルジー エナジー ソリューション リミテッド A method for producing a solid electrolyte membrane for an all-solid-state battery and a solid electrolyte membrane produced by the method.
US11908993B2 (en) 2017-05-15 2024-02-20 Lg Energy Solution, Ltd. Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method

Similar Documents

Publication Publication Date Title
JP4127989B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
US6280878B1 (en) Electrode and lithium secondary battery using this electrode
KR102250172B1 (en) A Separator for a lithiumion secondary battery and a lithium ion secondary battery comprising the same
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2010199083A (en) Lithium secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2001110449A (en) Ion conductive sheet
JP2003173821A (en) Nonaqueous electrolyte cell
EP1089368A1 (en) Solid electrolyte, electrochemical device, lithium ion secondary battery and electric double-layer capacitor
JP2000215915A (en) Solid electrolyte
JP4563555B2 (en) Lithium secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5017769B2 (en) Nonaqueous electrolyte secondary battery
JP3516133B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP5571281B2 (en) All solid-state polymer battery and method for producing the same
JP2000195522A (en) Nonaqueous electrolyte seconday battery
JP7239551B2 (en) Electrodes for lithium-ion secondary batteries
JP2002093463A (en) Nonaqueous electrolyte battery
JP2003242967A (en) Non-aqueous electrolyte secondary battery
JP4041998B2 (en) Method for producing non-aqueous electrolyte battery
JPH10247520A (en) Nonaqueous electrolyte battery
JPH1126019A (en) Manufacture of polyelectrolyte for nonaqueous electrolyte battery and manufacture of the nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020