JP2000213605A - Inscribed-meshing type planetary gear device - Google Patents

Inscribed-meshing type planetary gear device

Info

Publication number
JP2000213605A
JP2000213605A JP11016073A JP1607399A JP2000213605A JP 2000213605 A JP2000213605 A JP 2000213605A JP 11016073 A JP11016073 A JP 11016073A JP 1607399 A JP1607399 A JP 1607399A JP 2000213605 A JP2000213605 A JP 2000213605A
Authority
JP
Japan
Prior art keywords
tooth
gear
external
internal
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11016073A
Other languages
Japanese (ja)
Other versions
JP3897924B2 (en
Inventor
Kouyuu Ou
宏猷 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Teijin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Seiki Co Ltd filed Critical Teijin Seiki Co Ltd
Priority to JP01607399A priority Critical patent/JP3897924B2/en
Publication of JP2000213605A publication Critical patent/JP2000213605A/en
Application granted granted Critical
Publication of JP3897924B2 publication Critical patent/JP3897924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Retarders (AREA)
  • Gears, Cams (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a planetary gear device capable of realizing a tooth profile which can suppress the tooth surface Hertzian stress, and maintaining the performance and durability equivalent to the conventional even when the surface hardening heat-treatment is not applied to an external gear. SOLUTION: An internal tooth of an internal gear has a circular arc tooth profile, and an external tooth 21 of an external gear has a contact part 21a which comes into contact with the internal tooth of the internal gear to substantially pressurize the internal tooth, and a tip part 21b having the tooth surface inside a tooth profile curve of the contact part 21a. Besides, the tooth profile is a modified trochoid tooth profile by which torque is transmitted only by the external teeth 21 equal to 2 to 8% of the total number of the teeth.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内接噛合型遊星歯
車装置、特に建設機械用の高負荷減速機から産業ロポッ
ト用精密減速機までのすべての減速、増速を必要とする
分野の内接噛合型遊星歯車装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intermeshed type planetary gear device, and more particularly to a planetary gear device requiring a reduction in speed and an increase in speed from a high load reduction device for construction equipment to a precision reduction device for industrial robots. The present invention relates to a meshing type planetary gear device.

【0002】[0002]

【従来の技術】内接噛合型遊星歯車装置としては、例え
ば特公昭31−3801号公報に記載されるようなもの
が知られていたが、特に高負荷減速機や精密減速機にお
いては、内歯車の内方にこれとは歯数の異なるトロコイ
ド歯形の外歯車を設け、これを内歯車に内接噛合させる
よう複数のクランク軸により偏心回転可能に保持したも
のが多用されている。この種の装置では、内歯車に噛み
合いながら転動する外歯車の自転運動を、内歯車に対す
るクランク軸の公転運動として、そのキャリア(出力
軸)から取り出すようになっている。
2. Description of the Related Art As an internally meshing planetary gear device, for example, one described in Japanese Patent Publication No. 31-3801 has been known. A trochoid-shaped external gear having a different number of teeth is provided inside the gear, and the external gear is eccentrically rotated by a plurality of crankshafts so that the external gear is internally meshed with the internal gear. In this type of device, the rotation of the external gear, which rolls while meshing with the internal gear, is taken out of the carrier (output shaft) as the revolution of the crankshaft with respect to the internal gear.

【0003】また、外歯歯車の歯面やクランク軸穴内壁
面の軸受ニードルとの接触面に大きなへルツ応力が発生
するので、歯面に十分な強度を持たせるため、歯切り加工
後に、浸炭焼入れや高周波焼入れ等の熱処理を行って歯
面を硬くしている。さらに、熱処理に起因する変形によ
って歯車の精度が劣化するため、比較的高精度の歯車を
製造する際には、熱処理後に歯面研削等をを行って最終
的な歯面仕上げを行っている。
[0003] In addition, since a large Hertzian stress is generated on the tooth surface of the external gear and the contact surface of the inner surface of the crankshaft hole with the bearing needle, the tooth surface is carburized after the gear cutting to provide sufficient strength. The tooth surface is hardened by heat treatment such as quenching or induction hardening. Further, since the precision of the gears is deteriorated due to the deformation caused by the heat treatment, when manufacturing a relatively high-precision gear, after the heat treatment, the tooth surface is ground and the like, and the final tooth surface finish is performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の内接噛合型遊星歯車装置にあっては、外歯車
を製造するためのリードタイムが長く、装置のコスト高
を招いていた。
However, in such a conventional internally meshing planetary gear device, the lead time for manufacturing the external gear is long, resulting in an increase in the cost of the device.

【0005】すなわち、大きな動力を伝達する歯車で
は、上述のように、その歯に十分な強度を持たせるべく
表面硬化熱処理を行うことが必要であり、これによって
リードタイムが長くなっていた。
That is, in the case of a gear transmitting a large power, as described above, it is necessary to perform a surface hardening heat treatment so that the teeth have sufficient strength, and thus the lead time has been lengthened.

【0006】これに対し、表面硬化の熱処理が省略でき
れば、場合によっては歯面研削も不要となり、生産性向
上に大きく貢献し得る。したがって、動力伝達用の歯車
の熱処理を省略することができれば、内接噛合型遊星歯
車装置の製造コストの大幅な低減を図ることができる。
On the other hand, if the heat treatment for hardening the surface can be omitted, the grinding of the tooth surface may not be necessary in some cases, which can greatly contribute to the improvement of productivity. Therefore, if the heat treatment of the power transmission gear can be omitted, the manufacturing cost of the internally meshing planetary gear device can be significantly reduced.

【0007】そこで、本発明は、通常のトルクを負荷し
ても歯面に従来よりはるかに小さいへルツ応力しか発生
しないような歯形を実現することにより、外歯車に表面
硬化熱処理を施さなくても従来と同等な性能と耐久性を
持ち得る遊星歯車装置を提供するものである。
Accordingly, the present invention realizes a tooth profile in which even if a normal torque is applied, the tooth surface generates only a much smaller Hertzian stress than in the past, so that the external gear does not need to be subjected to a surface hardening heat treatment. Also provides a planetary gear device that can have the same performance and durability as the conventional one.

【0008】[0008]

【課題を解決するための手段】上記課題解決のため、本
発明は、内歯車に対し偏心して該内歯車に内接噛合する
外歯車を、円周方向等ピッチに配置された複数の軸受を
介して複数のクランク軸により偏心回転可能に支持する
とともに、前記外歯車の自転に伴うクランク軸の公転運
動を該クランク軸を保持するキヤリアから取り出すよう
にした内接噛合型遊星歯車装置において、前記内歯車の
内歯が円弧歯形を有し、前記外歯車の外歯が、前記内歯
車の内歯に対し実質的に加圧されるよう接触する接触部
と、該接触部の歯形曲線よりも内方に歯面を持つ歯先部
とを有し、かつ、前記内歯車に対して偏心噛み合い側に
位置する、全歯数のうち2〜8%の外歯のみでトルクを
伝達する修正トロコイド歯形であることを特徴とする。
In order to solve the above-mentioned problems, the present invention comprises a plurality of bearings which are eccentric with respect to an internal gear and internally meshed with the internal gear. An internally meshing planetary gear device, which is eccentrically supported by a plurality of crankshafts via a shaft, and in which the revolving motion of the crankshaft accompanying the rotation of the external gear is taken out from a carrier holding the crankshaft. A contact portion in which the internal gear of the internal gear has an arc tooth profile, and the external gear of the external gear contacts the internal gear of the internal gear so as to be substantially pressed, and a tooth profile curve of the contact portion. A modified trochoid having a tooth tip portion having an inner tooth surface, and transmitting torque by only 2 to 8% of the total number of external teeth located on the eccentric meshing side with respect to the internal gear. It is characterized by a tooth shape.

【0009】この発明では、理論トロコイド歯形と円弧
歯形の噛み合い点における総合曲率が大きくなる歯先側
での実質的なトルク伝達をなくし、総合曲率の小さくな
る歯中部から歯元部にかけての接触部で噛み合いがなさ
れるから、ヘルツ応力を有効に抑えることができ、外歯
車に表面硬化の熱処理をすることなく黒鉛鋳鉄等で製造
できるようになり、研削しなくても高精度の歯車を得る
ことができる。したがって、コストを大幅に削減でき
る。
According to the present invention, substantial torque transmission on the tooth tip side where the total curvature at the point of meshing between the theoretical trochoidal tooth profile and the arcuate tooth profile is increased is eliminated, and the contact portion from the tooth center portion to the tooth root portion where the total curvature is reduced. In this way, the Hertzian stress can be effectively suppressed, and the external gear can be manufactured from graphite cast iron without heat treatment for surface hardening, and a high-precision gear can be obtained without grinding. Can be. Therefore, the cost can be significantly reduced.

【0010】また、好ましくは、前記外歯車の歯面を含
む全表面部が、該表面部により取り囲まれた内部と同一
の硬さを有し、該外歯車と前記複数のクランク軸との間
に、前記外歯車より硬質で外歯車に嵌入された筒状体
と、該筒状体と前記クランク軸との間に転動可能に介在
する複数の転動部材と、を有する軸受、好ましくは外側
シェル付のニードル軸受が介装される。
[0010] Preferably, the entire surface portion including the tooth surface of the external gear has the same hardness as the inside surrounded by the surface portion, and a space between the external gear and the plurality of crankshafts is provided. A bearing having a tubular body harder than the external gear and fitted into the external gear, and a plurality of rolling members rotatably interposed between the tubular body and the crankshaft, preferably A needle bearing with an outer shell is interposed.

【0011】この場合、外歯車の表面部と内部とが同一
の硬さを有しているので、従来のような表面硬化のため
の熱処理やその後の歯面研磨による仕上げ加工を行う必
要がなく、しかも、外歯車より硬質の筒状体を外歯車に
嵌入し、これと複数の転動部材とを介してクランク軸に
外歯車を回転自在に支持させているので、外歯車を安定
して偏心回転させることができ、内歯車と外歯車の所要
の噛み合い状態を保つことができる。
In this case, since the surface portion and the inside of the external gear have the same hardness, it is not necessary to perform the conventional heat treatment for surface hardening and the subsequent finishing by tooth surface polishing. In addition, a cylindrical body harder than the external gear is fitted into the external gear, and the external gear is rotatably supported on the crankshaft via this and a plurality of rolling members. It can be eccentrically rotated, and the required meshing state between the internal gear and the external gear can be maintained.

【0012】さらに、前記外歯の歯形上における各内歯
との噛み合い位置で、各内歯と該外歯の総合曲率に基づ
いて前記接触部と前記内歯車との噛み合い歯数を設定す
ることにより、ヘルツ応力をより有効に抑えることがで
きる。
Further, at the meshing position of the external teeth with the internal teeth on the tooth profile, the number of meshing teeth of the contact portion and the internal gear is set based on the total curvature of each internal tooth and the external teeth. Thereby, the Hertz stress can be suppressed more effectively.

【0013】なお、ロポット関節用減速機では高剛性が
重要な性能指標であり、シェル型ニードルのシェルでニ
ードルころの軸方向移動を規制し、グリースでニードル
ころを保持して組み立て性の良い総ころニードル軸受に
することができ、しかも、剛性アップを図ることができ
る。
It is to be noted that high rigidity is an important performance index in the Ropot joint reducer, and that the axial movement of the needle roller is regulated by the shell of the shell-type needle, and the needle roller is held by the grease so that the assemblability is good. A roller needle bearing can be provided, and the rigidity can be increased.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて具体的に説明する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

【0015】図1〜図10は、本発明に係る内接噛合型
遊星歯車装置の一実施形態を示す図である。
FIG. 1 to FIG. 10 are views showing an embodiment of an internally meshing type planetary gear device according to the present invention.

【0016】まず、その構成を説明すると、図1および
図2において、10は環状の内歯車で、環状体11の内
周に円弧歯形の複数の内歯12を有している。この内歯
12は、例えば環状体11の円弧溝にステンレス鋼等か
らなる丸ピンを回転可能に収納して形成されている。2
0は、内歯車10に対して互いに逆方向に偏心して配置
され、それぞれ内歯車10の内歯12と噛み合う一対の
外歯車である。これら外歯車20は、内歯車10とは歯
数の異なる、例えば内歯12よりわずかに(例えば1つ
又は2つ)歯数の少ない外歯21を有している。また、
外歯車20は、所定半径位置に周方向等ピッチに設けら
れた複数のクランク穴部22において、それぞれ軸受3
0を介してクランク軸25に支持されている。
First, the structure will be described. In FIGS. 1 and 2, reference numeral 10 denotes an annular internal gear, which has a plurality of arc-shaped internal teeth 12 on the inner periphery of an annular body 11. The internal teeth 12 are formed by, for example, rotatably storing a round pin made of stainless steel or the like in an arc groove of the annular body 11. 2
Numeral 0 denotes a pair of external gears which are arranged eccentrically in opposite directions to the internal gear 10 and mesh with the internal teeth 12 of the internal gear 10, respectively. These external gears 20 have external teeth 21 having a different number of teeth from the internal gear 10, for example, having a slightly smaller number (for example, one or two) than the internal teeth 12. Also,
The external gear 20 has a plurality of bearings 3 at a plurality of crank hole portions 22 provided at a predetermined radial position at a constant pitch in the circumferential direction.
0 is supported by the crankshaft 25.

【0017】クランク軸25は、図1に示すように、内
歯車10内で、外歯車20をこの内歯車10の中心O10
と外歯車の中心O20との距離である所定偏心量eを保っ
て偏心回転させるようになっている。また、入力軸15
から前段減速部を構成する歯車16,17を介してクラ
ンク軸25に回転が入力されるとき、外歯車20は、内
歯車10に噛み合いつつ所定偏心量eを保って偏心回転
(偏心円運動、公転)しながら、両歯車10,20の歯
数差(例えば外歯車20の外歯21の歯数が内歯車10
の内歯12の歯数より1つ又は2つ少ない)に応じて内
歯車10に対して相対的に中心O20回りに回転(自転)
する。そして、この外歯車20の自転運動に伴うクラン
ク軸25の中心O10回りの公転運動が出力軸であるキャ
リア27から取り出され、固定された内歯車10に対し
て可動側のキャリア27が低速回転するか、若しくは、
固定されたキャリア27(固定側)に対して可動側の内
歯車10が低速回転するようになっている。なお、1
8,19はクランク軸をキャリア27に回転自在に支持
する一対の軸受で、クランク軸25の軸方向位置決め機
能を併せ持つ。
As shown in FIG. 1, the crankshaft 25 is configured such that the external gear 20 is connected to the center O10 of the internal gear 10 within the internal gear 10.
The eccentric rotation is performed while maintaining a predetermined eccentricity e which is the distance between the eccentric gear and the center O20 of the external gear. Also, the input shaft 15
When the rotation is input to the crankshaft 25 via the gears 16 and 17 constituting the preceding speed reduction unit from the, the external gear 20 keeps a predetermined eccentric amount e while meshing with the internal gear 10 (the eccentric rotation (eccentric circular motion, While revolving, the difference in the number of teeth between the two gears 10 and 20 (for example, the number of teeth of the outer teeth 21 of the
(One or two less than the number of internal teeth 12 of the internal gear 12) relative to the internal gear 10 around the center O20 (rotation).
I do. Then, the revolving motion around the center O10 of the crankshaft 25 accompanying the rotation of the external gear 20 is taken out from the carrier 27 as the output shaft, and the movable carrier 27 rotates at a low speed with respect to the fixed internal gear 10. Or
The movable internal gear 10 rotates at a low speed with respect to the fixed carrier 27 (fixed side). In addition, 1
Reference numerals 8 and 19 denote a pair of bearings which rotatably support the crankshaft on the carrier 27, and also have an axial positioning function of the crankshaft 25.

【0018】図3(a)および図3(b)に示すよう
に、軸受30は、外歯車20のクランク穴部22と複数
のクランク軸25との間に介装されており、それぞれ、
外歯車20より硬質で外歯車20のクランク穴部22に
嵌入された外側シェルとしての筒状体31と、この筒状
体31とクランク軸25の各クランクピン部25a,2
5bとの間に転動可能に介在する複数の転動部材32
と、を有している。
As shown in FIGS. 3A and 3B, the bearing 30 is interposed between the crank hole 22 of the external gear 20 and the plurality of crank shafts 25.
A cylindrical body 31 as an outer shell, which is harder than the external gear 20 and is fitted into the crank hole 22 of the external gear 20, and each of the cylindrical body 31 and the crankpin portions 25 a and 2 of the crankshaft 25.
5b and a plurality of rolling members 32 rotatably interposed therebetween.
And

【0019】外歯車20の外歯21は、詳細は後述する
が、内歯車10の内歯12に対し実質的に加圧されるよ
う接触する接触部21aと、その接触部21aの歯形曲
線よりも内方(歯車中心O20側)に歯面を持つ歯先部2
1bとを有しており、その外歯21の歯形は、内歯車1
0に対して偏心噛み合い側に位置する外歯21(これは
全歯数のうち2〜8%の歯数の外歯)のみでトルクを伝
達する修正トロコイド歯形となっている。
The external teeth 21 of the external gear 20 will be described later in detail, but are described from a contact portion 21a which comes into contact with the internal teeth 12 of the internal gear 10 so as to be substantially pressurized, and a tooth profile curve of the contact portion 21a. Tip 2 with tooth flank inward (gear center O20 side)
1b, and the tooth profile of the external teeth 21 is the internal gear 1
It has a modified trochoid tooth profile in which torque is transmitted only by the external teeth 21 located on the eccentric meshing side with respect to 0 (this is the external teeth of 2 to 8% of the total number of teeth).

【0020】また、外歯車20は、その歯面を含む全表
面部が、これにより取り囲まれた内部と同一の硬さ(硬
度)を有している。すなわち、外歯車20は、安価な材
料、例えば鋼材FCD450やSCM420焼きならし
材、黒鉛鋳物、粉末冶金等によって形成され、表面硬化
のための熱処理がされていない素材からなる。したがっ
て、前記硬度はほぼ材料の持つ硬度であり、熱処理変形
に対する後処理の仕上げ研磨加工等もなされていない。
The external gear 20 has the same hardness (hardness) as the inside surrounded by the entire surface including the tooth surface. That is, the external gear 20 is made of an inexpensive material, for example, a steel material FCD450 or SCM420 normalizing material, graphite casting, powder metallurgy, or the like, and is made of a material that has not been heat-treated for surface hardening. Therefore, the hardness is almost the hardness of the material, and no post-finishing processing or the like is performed in post-processing for heat treatment deformation.

【0021】次に、外歯車20の歯形とその製造につい
て説明する。
Next, the tooth profile of the external gear 20 and its manufacture will be described.

【0022】従来、浸炭焼き入れの合金鋼で製造した外
歯車は、歯面の許容ヘルツ応力がおよそ1400MPa
程度であるが、焼き鈍しのみではおよそ400〜600
MPaとなり、1/3.5に低下する。このへルツ応力
は、歯面に作用する荷重の平方根に比例するので、従来
の外歯車の形状のままで表面硬化熱処理を施さないなら
ば、その歯車装置の伝達能力は1/10以下と大幅に低
下してしまう。
Conventionally, an external gear manufactured from a carburized and quenched alloy steel has an allowable Hertzian stress on a tooth surface of about 1400 MPa.
About 400-600 by annealing only
MPa, which is reduced to 1 / 3.5. Since this Hertzian stress is proportional to the square root of the load acting on the tooth surface, if the surface hardening heat treatment is not performed with the shape of the conventional external gear, the transmission capacity of the gear device will be 1/10 or less. Will decrease.

【0023】そこで、本発明では、従来よりはるかに小
さいへルツ応力しか発生しないような歯形を実現して、
表面硬化の熱処理を省略するようにしている。
Therefore, the present invention realizes a tooth profile in which only a Hertzian stress is generated, which is much smaller than the conventional one,
The heat treatment for surface hardening is omitted.

【0024】具体的には、従来の技術では、同時噛み合
い歯数が多い方が歯面強度上で有利になるとの考えか
ら、外歯車20の偏心側の歯(図4中の内歯ピンNo.1
〜21に近接する約半数の外歯)は、その歯底から歯先
までの範囲において内歯12と噛み合い時に近い近接状
態を保っている。そのため、外歯21のトロコイド歯形
は、歯面の曲率(1/曲率半径)が歯面上に連続的に変化
したものとなっている。図2に示すピンNo.1〜21の
内歯12が外歯車20の外歯21と噛み合う歯面位置
を、外歯21の歯形曲線上に表わすと、図4のようにな
る。
Specifically, in the prior art, it is considered that the larger the number of simultaneously meshing teeth is more advantageous in terms of tooth surface strength, and therefore, the teeth on the eccentric side of the external gear 20 (internal pin No. .1
Approximately half of the outer teeth (approx. 21) are kept close to the inner teeth 12 in the range from the root to the tip of the tooth. For this reason, the trochoid tooth profile of the external teeth 21 has a curvature (1 / radius of curvature) of the tooth surface continuously changing on the tooth surface. FIG. 4 shows a tooth surface position where the internal teeth 12 of the pin Nos. 1 to 21 shown in FIG. 2 mesh with the external teeth 21 of the external gear 20 on the tooth profile curve of the external teeth 21.

【0025】この歯面の曲率の変化を図5に示す。同図
に示すように、歯底付近は凹となり(符号はプラスであ
る)、曲率が比較的大きくなる。一方、歯の中央部では曲
率が小さくなる。この曲率が0となる変曲点では、歯形
が直線状で、曲率半径が無限大である。この変曲点を超
えると、歯面が凸面となり、曲率がマイナスとなる。噛
み合い相手である内歯12の円弧歯形(半径r)の曲率を
−1/rとし、外歯の曲率を1/ρとすると、接触面の
総合曲率1/Rは、次式で表わされる。
FIG. 5 shows the change in the curvature of the tooth surface. As shown in the drawing, the vicinity of the tooth bottom becomes concave (the sign is plus), and the curvature becomes relatively large. On the other hand, the curvature becomes small at the center of the tooth. At the inflection point where the curvature becomes zero, the tooth profile is linear and the radius of curvature is infinite. Beyond this inflection point, the tooth surface becomes convex and the curvature becomes negative. Assuming that the curvature of the arcuate tooth profile (radius r) of the internal teeth 12 as the meshing partner is -1 / r and the curvature of the external teeth is 1 / ρ, the total curvature 1 / R of the contact surface is represented by the following equation.

【0026】 1/R=−1/r+ 1/ρ =(−ρ+r)/(r・ρ) ……(1)1 / R = −1 / r + 1 / ρ = (− ρ + r) / (r · ρ) (1)

【0027】歯面における噛み合い点の総合曲率を図6
に示す。この図6から分かるように、ピンNo.1〜2に
対応する歯底側の位置での総合曲率は 0(ゼロ)に近
く、両歯車10,20の歯面曲率の差が大きくなる中部
および歯先側になると、総合曲率の絶対値が大きくな
る。
FIG. 6 shows the total curvature of the meshing points on the tooth surface.
Shown in As can be seen from FIG. 6, the total curvature at the tooth bottom side corresponding to the pins Nos. 1 and 2 is close to 0 (zero), and the difference between the tooth surface curvatures of the two gears 10 and 20 is large. On the tooth tip side, the absolute value of the total curvature increases.

【0028】図7には、トルクがかかったときに歯面に
かかる荷重を示し、図8には歯面へルツ応力を示す。歯
面へルツ応力σは|1/R|の平方根に比例するので、
図7から明らかなように、ピンNo.6の対応位置で最大の
歯面荷重が発生するが、図8に示すように、総合曲率の
影響で最大ヘルツ応力は総合曲率絶対値の大きいピンN
o.位置(No.9,10)にて発生する。ここで、も
し− r +ρ ≒ 0となる歯形を設計することができれ
ば、理論上へルツ応力は極小になる。
FIG. 7 shows the load applied to the tooth surface when torque is applied, and FIG. 8 shows the Hertzian stress on the tooth surface. Since the tooth surface Hertz stress σ is proportional to the square root of | 1 / R |
As is clear from FIG. 7, the maximum tooth surface load occurs at the position corresponding to the pin No. 6, but as shown in FIG. 8, the maximum Hertz stress is reduced by the pin N having a large absolute value of the total curvature due to the influence of the total curvature.
o. It occurs at the position (No. 9, 10). Here, if a tooth profile that satisfies −r + ρ ≒ 0 can be designed, the Hertzian stress is theoretically minimized.

【0029】そこで、適切な歯形のパラメータを選択す
ると、トロコイド歯形の歯底に近い僅かな範囲にその曲
率(凹面)が噛み合い相手である内歯12の円弧歯形の曲
率に近い歯形を得ることができる。
Therefore, if an appropriate tooth profile parameter is selected, it is possible to obtain a tooth profile whose curvature (concave surface) is close to the curvature of the arc tooth shape of the internal tooth 12 to be meshed with in a small range near the root of the trochoid tooth profile. it can.

【0030】図7に示すように、噛み合い相手の円弧の
曲率との差が大きい部分を逃がすように歯形修正を施し
て、この部分での実質的な負荷伝達をなくし、総合曲率
の絶対値が所定値以下となる部分のみで負荷トルクを伝
達するようにすれば、同時噛み合い歯数は少ないにもか
かわらず、歯面のヘルツ応力を小さい値に抑えることが
できる。
As shown in FIG. 7, the tooth shape is corrected so as to escape a portion having a large difference from the curvature of the arc of the meshing partner, so that substantial load transmission at this portion is eliminated, and the absolute value of the total curvature is reduced. If the load torque is transmitted only at a portion that is equal to or less than the predetermined value, the hertz stress on the tooth surface can be suppressed to a small value despite the small number of simultaneously meshing teeth.

【0031】その解析結果を図8に示す。FIG. 8 shows the result of the analysis.

【0032】同図に示すように、外歯21の接触部21
aに相当するピンNo.1から3の間において、600
MPa弱の歯面ヘルツ応力が生じる一方、実質的なトル
ク伝達がなされないピンNo.4から20の歯先側で
は、ヘルツ応力が0(ゼロ)になっている。したがっ
て、同時噛み合い歯数が少ないにもかかわらず、歯面に
生じるへルツ応力を小さくすることができる。
As shown in FIG.
a corresponding to the pin No. Between 1 and 3, 600
Although the tooth surface Hertz stress of a little less than MPa is generated, the pin No. On the tip side from 4 to 20, the Hertz stress is 0 (zero). Therefore, the Hertzian stress generated on the tooth surface can be reduced despite the small number of simultaneously meshing teeth.

【0033】また、外歯車20とクランク軸25の間の
軸受を、外側シェル付のニ―ドル軸受としたので、転動
部材であるニードルころが直接外歯車20のクランク孔
内壁部に接触することがなく、穴内壁部の強度問題がな
くなるから、表面の硬化熱処が不要となり、穴の加工も
簡単になる。
Also, since the bearing between the external gear 20 and the crankshaft 25 is a needle bearing with an outer shell, the needle roller as the rolling member directly contacts the inner wall of the crank hole of the external gear 20. This eliminates the problem of the strength of the inner wall portion of the hole, so that there is no need for a heat treatment for curing the surface, and the processing of the hole is simplified.

【0034】このように、本実施形態においては、理論
トロコイド歯形と円弧歯形の噛み合い点における総合曲
率が大きくなる歯先側での実質的なトルク伝達をなく
し、総合曲率1/Rが所定値以下となる接触部21aで
のみ噛み合いがなされるから、ヘルツ応力を有効に抑え
ることができ、外歯車に表面硬化の熱処理をすることな
く黒鉛鋳鉄等で製造できるようになり、歯面仕上げの研
削加工等をしなくても高精度の歯車を得ることができ
る。したがって、外歯車20を複数備えたこの種の遊星
歯車装置の製造コストを大幅に削減することができる。
As described above, in the present embodiment, substantial torque transmission on the tooth tip side where the total curvature at the point of engagement between the theoretical trochoidal tooth profile and the circular tooth profile becomes large is eliminated, and the total curvature 1 / R is equal to or less than a predetermined value. Since the meshing is performed only at the contact portion 21a, the Hertz stress can be effectively suppressed, and the external gear can be manufactured from graphite cast iron or the like without performing a surface hardening heat treatment, and the tooth surface finish grinding process is performed. It is possible to obtain a high-precision gear without performing such operations. Therefore, the manufacturing cost of this type of planetary gear device having a plurality of external gears 20 can be significantly reduced.

【0035】また、外歯車20にこれより硬質の筒状体
31を嵌入し、その筒状体31とクランク軸25との間
に転動可能に介在する複数の転動部材32を設けている
ので、外歯車20が表面硬化処理をしていないものであ
るにもかかわらず、転動部材の転動面に所要の強度を確
保してクランク軸による支持部分の耐久性を確保するこ
とができ、外歯車を安定して偏心回転させることができ
る。特に、ロポット関節用減速機では、高剛性であるこ
とが必要であるが、外側シェル付ノニードル軸受30の
筒状体31で転動体(ニードルころ)32の軸方向移動
を規制し、図示しないグリースでこれらニードルころを
保持して、組立て性の良い総ころニードル軸受にするこ
とができる。したがって、剛性アップを図ることができ
る。
A harder tubular body 31 is fitted into the external gear 20, and a plurality of rolling members 32 are provided between the tubular body 31 and the crankshaft 25 so as to be able to roll. Therefore, even though the external gear 20 has not been subjected to the surface hardening treatment, it is possible to secure the required strength on the rolling surface of the rolling member and to secure the durability of the support portion by the crankshaft. In addition, the external gear can be stably eccentrically rotated. In particular, the reduction gear for a Ropot joint needs to have high rigidity. Thus, these needle rollers can be held to form a full roller needle bearing with good assemblability. Therefore, the rigidity can be increased.

【0036】さらに、外歯21の歯形上における各内歯
12との噛み合い位置(図8中の歯面位置)で、各内歯
12と該外歯21の総合曲率1/Rに基づいて、外歯車
20(外歯21の接触部21a)と内歯車10との噛み
合い歯数を設定しているので、ヘルツ応力をより有効に
抑えることができる。
Further, at the meshing position of the external teeth 21 with the internal teeth 12 on the tooth profile (tooth surface position in FIG. 8), based on the total curvature 1 / R of the internal teeth 12 and the external teeth 21, Since the number of meshing teeth between the external gear 20 (the contact portion 21a of the external teeth 21) and the internal gear 10 is set, the Hertz stress can be suppressed more effectively.

【0037】[0037]

【発明の効果】本発明によれば、内歯車の内歯が円弧歯
形を有し、外歯車の外歯が、前記内歯車の内歯に対し実
質的に加圧されるよう接触する接触部と、該接触部の歯
形曲線よりも内方に歯面を持つ歯先部とを有し、かつ、
前記内歯車に対して偏心噛み合い側に位置する、全歯数
のうち2〜8%の外歯のみでトルクを伝達する修正トロ
コイド歯形であるので、理論トロコイド歯形と円弧歯形
の噛み合い点における総合曲率が大きくなる歯先側での
実質的なトルク伝達をなくし、総合曲率の小さくなる歯
中部から歯元部にかけての接触部で噛み合いをなし、ヘ
ルツ応力を有効に抑えることができる。その結果、外歯
車に表面硬化の熱処理をすることなく黒鉛鋳鉄等で製造
することができ、歯面研削を施すことなく高精度の歯車
を製作することができる。したがって、内接噛合型遊星
歯車装置の製造コストを大幅に削減することができる。
According to the present invention, the internal gear of the internal gear has an arcuate tooth profile, and the external gear of the external gear contacts the internal gear of the internal gear so as to be substantially pressed. And a tooth tip having a tooth surface inside the tooth profile curve of the contact part, and
Since the modified trochoid tooth is located on the eccentric meshing side with respect to the internal gear and transmits the torque only by 2 to 8% of the total number of teeth, the total curvature at the meshing point of the theoretical trochoid tooth and the arc tooth is used. The substantial torque transmission on the tooth tip side where the radii are large is eliminated, the meshing is performed at the contact portion from the central part to the root part where the total curvature is small, and the Hertz stress can be effectively suppressed. As a result, the external gear can be manufactured from graphite cast iron or the like without performing a heat treatment for surface hardening, and a high-precision gear can be manufactured without performing tooth surface grinding. Therefore, the manufacturing cost of the internally meshing planetary gear device can be significantly reduced.

【0038】また、前記外歯車の歯面を含む全表面部と
これにより取り囲まれた内部とを同一硬さとしながら
も、外歯車とクランク軸との間に外側シェルである筒状
体を有する軸受を介装するようにすれば、従来のような
表面硬化のための熱処理やその後の歯面研磨による仕上
げ加工を行っていないにもかかわらず、外歯車を安定し
て偏心回転させることができ、内歯車と外歯車の所要の
噛み合い状態を保つことができる。
A bearing having a cylindrical body that is an outer shell between the external gear and the crankshaft, while maintaining the entire surface area including the tooth surface of the external gear and the inside surrounded by the same hardness. If it is interposed, it is possible to stably rotate the external gear eccentrically, even though the conventional heat treatment for surface hardening and subsequent finish processing by tooth surface polishing are not performed, The required meshing state between the internal gear and the external gear can be maintained.

【0039】さらに、前記外歯の歯形上における各内歯
との噛み合い位置で、各内歯と該外歯の総合曲率に基づ
いて前記接触部と前記内歯車との噛み合い歯数を設定し
ているので、ヘルツ応力をより有効に抑えることができ
る。
Further, the number of meshing teeth between the contact portion and the internal gear is set based on the total curvature of each internal tooth and the external tooth at the position where the external tooth meshes with each internal tooth on the tooth profile. Therefore, the Hertz stress can be suppressed more effectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る内接噛合型遊星歯車装置の一実施
形態を示すその縦断面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of an internally meshing planetary gear device according to the present invention.

【図2】図1の実施形態の内歯車と外歯車の位置関係を
示す横断面図である。
FIG. 2 is a cross-sectional view showing a positional relationship between an internal gear and an external gear in the embodiment of FIG.

【図3】一実施形態の外歯車とクランク軸の間に設けた
軸受の構成を示す縦断面図および横断面図である。
FIG. 3 is a longitudinal sectional view and a transverse sectional view showing a configuration of a bearing provided between an external gear and a crankshaft according to an embodiment.

【図4】内歯車とトロコイド歯形を有する外歯との多数
の噛み合い位置を示す通常の基本の歯形曲線である。
FIG. 4 is a typical basic tooth profile showing a number of meshing positions of an internal gear and external teeth having a trochoidal tooth profile.

【図5】図4の外歯の各噛み合い位置における歯面曲率
の変化を示すグラフである。
FIG. 5 is a graph showing a change in tooth surface curvature at each meshing position of the external teeth of FIG. 4;

【図6】図5に示した外歯の歯面曲率と内歯の歯面曲率
とから求めた総合曲率の変化を外歯の各噛み合い位置に
ついて示したグラフである。
6 is a graph showing a change in a total curvature obtained from the tooth surface curvature of the external teeth and the tooth surface curvature of the internal teeth shown in FIG. 5 for each meshing position of the external teeth.

【図7】図4の外歯の各噛み合い位置における歯面荷重
の相違を示すグラフである。
FIG. 7 is a graph showing a difference in tooth flank load at each meshing position of the external teeth of FIG. 4;

【図8】図7に示す歯面荷重に対し各噛み合い位置に実
際に生じるヘルツ応力の推移を示すグラフである。
8 is a graph showing a transition of a Hertzian stress actually generated at each meshing position with respect to the tooth surface load shown in FIG.

【図9】一実施形態の外歯の修正トロコイド歯形の形状
を示す歯形曲線図である。
FIG. 9 is a tooth curve diagram showing the shape of a modified trochoid tooth profile of an external tooth according to an embodiment.

【図10】図9に示した歯形を採用した一実施形態の各
噛み合い位置における歯面ヘルツ応力を示すグラフであ
る。
FIG. 10 is a graph showing tooth surface hertz stress at each meshing position of the embodiment employing the tooth profile shown in FIG. 9;

【符号の説明】[Explanation of symbols]

10 内歯車 12 内歯 20 外歯車 21 外歯 21a 接触部 21b 歯先部 21c 歯面 25 クランク軸 30 軸受 31 筒状体(外側シェル) 32 転動体(ニードルころ) DESCRIPTION OF SYMBOLS 10 Internal gear 12 Internal tooth 20 External gear 21 External tooth 21a Contact part 21b Tooth tip 21c Tooth surface 25 Crankshaft 30 Bearing 31 Cylindrical body (outer shell) 32 Rolling element (needle roller)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内歯車に対し偏心して該内歯車に内接噛合
する外歯車を、円周方向等ピッチに配置された複数の軸
受を介して複数のクランク軸により偏心回転可能に支持
するとともに、前記外歯車の自転に伴うクランク軸の公
転運動を該クランク軸を保持するキヤリアから取り出す
ようにした内接噛合型遊星歯車装置において、前記内歯
車の内歯が、円弧歯形を有し、 前記外歯車の外歯が、前記内歯車の内歯に対し実質的に
加圧されるよう接触する接触部と、該接触部の歯形曲線
よりも内方に歯面を持つ歯先部とを有し、かつ、前記内
歯車に対して偏心噛み合い側に位置する、全歯数のうち
2〜8%の外歯のみでトルクを伝達する修正トロコイド
歯形であることを特徴とする内接噛合型遊星歯車装置。
An external gear which is eccentric to the internal gear and meshes internally with the internal gear is supported by a plurality of crankshafts via a plurality of bearings arranged at a constant pitch in a circumferential direction so as to be eccentrically rotatable. In an internally meshing planetary gear device in which the revolving motion of a crankshaft accompanying the rotation of the external gear is taken out from a carrier holding the crankshaft, the internal teeth of the internal gear have an arc tooth shape, The external gear has a contact portion that contacts the internal gear of the internal gear so that the external tooth is substantially pressurized, and a tip portion having a tooth surface inward of a tooth profile curve of the contact portion. An internally meshing type planetary gear having a modified trochoidal tooth profile which is located on the eccentric meshing side with respect to the internal gear and transmits torque only by 2 to 8% of the external teeth of the total number of teeth. Gear device.
【請求項2】前記外歯車の歯面を含む全表面部が、該表
面部により取り囲まれた内部と同一の硬さを有し、 前記外歯車と前記複数のクランク軸との間に、前記外歯
車より硬質で外歯車に嵌入された筒状体と、該筒状体と
前記クランク軸との間に転動可能に介在する複数の転動
部材と、を有する軸受を介装したことを特徴とする請求
項1に記載の内接噛合型遊星歯車装置。
2. The whole surface portion including the tooth surface of the external gear has the same hardness as the inside surrounded by the surface portion, and the outer gear and the plurality of crankshafts have the same hardness. A bearing having a cylindrical body which is harder than the external gear and is fitted into the external gear, and a plurality of rolling members rotatably interposed between the cylindrical body and the crankshaft is provided. The internally meshing planetary gear device according to claim 1, wherein:
【請求項3】前記軸受が外側シェル付のニードル軸受で
ある請求項1に記載の内接噛合型遊星歯車装置。
3. The internally meshing planetary gear set according to claim 1, wherein said bearing is a needle bearing with an outer shell.
【請求項4】前記外歯の歯形上における各内歯との噛み
合い位置で、各内歯と該外歯の総合曲率に基づいて前記
接触部と前記内歯車との噛み合い歯数を設定したことを
特徴とする請求項1に記載の内接噛合型遊星歯車装置。
4. The number of meshing teeth between said contact portion and said internal gear at the meshing position of said external teeth with each internal tooth on the tooth profile based on the total curvature of each internal tooth and said external tooth. The internally meshing planetary gear device according to claim 1, wherein:
JP01607399A 1999-01-25 1999-01-25 Inner meshing planetary gear unit Expired - Fee Related JP3897924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01607399A JP3897924B2 (en) 1999-01-25 1999-01-25 Inner meshing planetary gear unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01607399A JP3897924B2 (en) 1999-01-25 1999-01-25 Inner meshing planetary gear unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006305092A Division JP4554586B2 (en) 2006-11-10 2006-11-10 Inner meshing planetary gear unit

Publications (2)

Publication Number Publication Date
JP2000213605A true JP2000213605A (en) 2000-08-02
JP3897924B2 JP3897924B2 (en) 2007-03-28

Family

ID=11906404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01607399A Expired - Fee Related JP3897924B2 (en) 1999-01-25 1999-01-25 Inner meshing planetary gear unit

Country Status (1)

Country Link
JP (1) JP3897924B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071397A (en) * 2006-11-10 2007-03-22 Nabtesco Corp Inscribed meshing type planetary gear device
WO2013011639A1 (en) 2011-07-15 2013-01-24 ナブテスコ株式会社 Gear device
WO2014006833A1 (en) * 2012-07-03 2014-01-09 ナブテスコ株式会社 Eccentric oscillating gear device
JP2015113917A (en) * 2013-12-11 2015-06-22 住友重機械工業株式会社 Eccentric oscillation type speed reducer and method of manufacturing eccentric body shaft gear
JP2016193464A (en) * 2015-03-31 2016-11-17 株式会社 神崎高級工機製作所 Trochoid gear
CN106321776A (en) * 2016-09-26 2017-01-11 重庆大学 Bevel gear with double-point contact tooth profile curve
JP2017227333A (en) * 2017-07-25 2017-12-28 ナブテスコ株式会社 Eccentric oscillation type gear device
WO2019188673A1 (en) * 2018-03-30 2019-10-03 日本電産シンポ株式会社 Transmission

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554586B2 (en) * 2006-11-10 2010-09-29 ナブテスコ株式会社 Inner meshing planetary gear unit
JP2007071397A (en) * 2006-11-10 2007-03-22 Nabtesco Corp Inscribed meshing type planetary gear device
WO2013011639A1 (en) 2011-07-15 2013-01-24 ナブテスコ株式会社 Gear device
US8900084B2 (en) 2011-07-15 2014-12-02 Nabtesco Corporation Gear device
KR101692647B1 (en) * 2012-07-03 2017-01-03 나부테스코 가부시키가이샤 Eccentric oscillating gear device
WO2014006833A1 (en) * 2012-07-03 2014-01-09 ナブテスコ株式会社 Eccentric oscillating gear device
JP2014009808A (en) * 2012-07-03 2014-01-20 Nabtesco Corp Eccentric oscillation type gear device
KR20150027818A (en) * 2012-07-03 2015-03-12 나부테스코 가부시키가이샤 Eccentric oscillating gear device
JP2015113917A (en) * 2013-12-11 2015-06-22 住友重機械工業株式会社 Eccentric oscillation type speed reducer and method of manufacturing eccentric body shaft gear
JP2016193464A (en) * 2015-03-31 2016-11-17 株式会社 神崎高級工機製作所 Trochoid gear
CN106321776A (en) * 2016-09-26 2017-01-11 重庆大学 Bevel gear with double-point contact tooth profile curve
CN106321776B (en) * 2016-09-26 2019-09-17 重庆大学 Helical gear with two point contact tooth curve
JP2017227333A (en) * 2017-07-25 2017-12-28 ナブテスコ株式会社 Eccentric oscillation type gear device
WO2019188673A1 (en) * 2018-03-30 2019-10-03 日本電産シンポ株式会社 Transmission
JPWO2019188673A1 (en) * 2018-03-30 2021-04-08 日本電産シンポ株式会社 transmission
JP7283683B2 (en) 2018-03-30 2023-05-30 ニデックドライブテクノロジー株式会社 transmission

Also Published As

Publication number Publication date
JP3897924B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US11002353B2 (en) Cycloidal pin wheel harmonic transmission device
WO2008041496A1 (en) Eccentric oscillating reduction gear and stabilizer shaft rotating device using eccentric oscillating reduction gear
JP5121696B2 (en) Reduction gear
US7476174B2 (en) Eccentric oscillating-type planetary gear device
US6269711B1 (en) Transmission device using flexible gear
KR101100920B1 (en) Eccentrically Swinging Gear Device
KR20100045910A (en) Reduction apparatus
US20070243967A1 (en) Oscillating internally meshing planetary gear system
US10281008B2 (en) Speed reduction or speed increasing apparatus
CN103807420B (en) Epicyclic reduction gear unit and manufacture method thereof
JP3009848B2 (en) Inner roller and outer roller of internal meshing planetary gear structure and method of manufacturing the same
JP2013199938A (en) Speed reduction mechanism with electric motor
JP3897924B2 (en) Inner meshing planetary gear unit
KR20010033713A (en) Method of fabricating pin retaining ring for internal gear, internal meshing planetary gear structure, and hydraulic motor pump
JP4554586B2 (en) Inner meshing planetary gear unit
JP2003172419A (en) Ball type transmission
WO2006077825A1 (en) Swinging inscribed engagement type planetary gear device
EP2730804B1 (en) Epicyclic reduction gear
TWI404872B (en) Planetary reducer
JP6890563B2 (en) Eccentric swing type speed reducer
JP2771395B2 (en) Inner mesh planetary gear structure
JP3406211B2 (en) Inner roller and outer roller of internal meshing planetary gear structure and method of manufacturing the same
JP4498816B2 (en) Eccentric oscillation type planetary gear unit
JP6867837B2 (en) Eccentric swing type gear device and its manufacturing method
JP2000249199A (en) Inner roller and outer roller of internal engagement planetary gear structure and its manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Ref document number: 3897924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees