JP2000212761A - Electroless plating method and electroless plating bath - Google Patents

Electroless plating method and electroless plating bath

Info

Publication number
JP2000212761A
JP2000212761A JP11011959A JP1195999A JP2000212761A JP 2000212761 A JP2000212761 A JP 2000212761A JP 11011959 A JP11011959 A JP 11011959A JP 1195999 A JP1195999 A JP 1195999A JP 2000212761 A JP2000212761 A JP 2000212761A
Authority
JP
Japan
Prior art keywords
electroless plating
plating bath
amount
plating
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11011959A
Other languages
Japanese (ja)
Inventor
Mikiya Furubayashi
幹弥 古林
Kiyomi Sasaki
清美 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11011959A priority Critical patent/JP2000212761A/en
Publication of JP2000212761A publication Critical patent/JP2000212761A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To use up a component of an electroless plating bath every time electroless plating is carried out by adding only the required amount of the component at the beginning of electroless plating without replenishing the component. SOLUTION: When an electroless plating bath containing metal ions, a complexing agent, a reducing agent and a pH adjusting agent is prepared and electroless plating is carried out using the electroless plating bath, the content of the reducing agent in the electroless plating bath is made equal to the amount of the reducing agent consumed until the end of electroless plating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、無電解めっき浴
に関するもので、特に、めっき浴の成分を補充せずに、
めっき開始時に必要な量だけを添加することによって、
一度のめっき処理ごとにめっき浴の成分を使い切る、無
電解銅めっき浴に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless plating bath, in particular, without replenishing the components of the plating bath.
By adding only the necessary amount at the start of plating,
The present invention relates to an electroless copper plating bath in which the components of a plating bath are used up every time a plating process is performed.

【0002】[0002]

【従来の技術】工業的に用いられている無電解めっき浴
は、一般に、水溶液中に金属イオンと還元剤を含有し、
さらに、金属イオンの沈殿を防止するための錯化剤、お
よび、水溶液をアルカリ性に保つためのpH調整剤が添
加されているものが多く用いられている。具体的には、
金属イオンの供給剤としては、例えば硫酸塩のようなめ
っき液に対する溶解度の高い金属塩が用いられる。ま
た、還元剤としてはホルムアルデヒドが、錯化剤として
はEDTAが多く用いられる。さらに、pH調整剤とし
ては、例えば水酸化ナトリウム等のアルカリ金属水酸化
物が添加される場合も多い。これらの各成分からなるめ
っき浴を用いた無電解めっきにおいては、めっき浴中の
各成分に不足が生じないように、めっき反応の進行に伴
い消費される各成分を補充しながらめっきを行うのが一
般的である。
2. Description of the Related Art Generally, an electroless plating bath used industrially contains a metal ion and a reducing agent in an aqueous solution,
Further, those containing a complexing agent for preventing precipitation of metal ions and a pH adjuster for keeping an aqueous solution alkaline have been used in many cases. In particular,
As a metal ion supply agent, a metal salt having high solubility in a plating solution such as a sulfate is used. Formaldehyde is often used as a reducing agent, and EDTA is often used as a complexing agent. Furthermore, as a pH adjuster, for example, an alkali metal hydroxide such as sodium hydroxide is often added. In electroless plating using a plating bath composed of these components, plating is performed while replenishing each component consumed with the progress of the plating reaction so that each component in the plating bath does not become insufficient. Is common.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
無電解めっき方法には次のような問題がある。すなわ
ち、この無電解めっき方法においては、金属イオンを還
元することによって、被めっき物上にめっき膜を生成す
るが、この金属イオンの還元にあたり大量の還元剤や水
酸化物が消費され、大量の反応生成物が生成する。たと
えば、金属イオン供給剤として硫酸塩、還元剤としてホ
ルムアルデヒド、pH調整剤としてNaOHを使用する
場合、この還元反応生成物として、硫酸ナトリウムやギ
酸等が生成する。上述のように、この無電解めっき方法
では、めっき浴中の消費された成分を補充しながらめっ
き処理を行うため、めっき回数が多くなるにしたがっ
て、このような還元反応生成物がめっき浴中に増加、蓄
積し、めっき膜へ不純物として析出するなど、めっき膜
質に影響を与えることとなる。
However, the above-mentioned electroless plating method has the following problems. That is, in the electroless plating method, a metal ion is reduced to form a plating film on the object to be plated. However, a large amount of a reducing agent or hydroxide is consumed in the reduction of the metal ion, and a large amount of the metal ion is consumed. A reaction product forms. For example, when a sulfate is used as a metal ion supply agent, formaldehyde is used as a reducing agent, and NaOH is used as a pH adjuster, sodium sulfate, formic acid, and the like are generated as the reduction reaction products. As described above, in this electroless plating method, since the plating treatment is performed while replenishing the consumed components in the plating bath, as the number of plating increases, such a reduction reaction product is contained in the plating bath. It increases, accumulates and precipitates as an impurity on the plating film, thereby affecting the quality of the plating film.

【0004】また、還元反応を促進させるために、被め
っき物にあらかじめ活性化処理を施すこともあるが、こ
の場合、めっき処理の途中で、余分な活性化触媒が被め
っき物から剥離し、その剥離した活性化触媒上へめっき
皮膜が析出することがしばしばある。その結果、めっき
浴中に不純物が増加するとともに、めっきの析出効率が
低下する。
In order to promote the reduction reaction, an object to be plated may be subjected to an activation treatment in advance. In this case, during the plating treatment, an extra activation catalyst is peeled off from the object to be plated. A plating film is often deposited on the separated activated catalyst. As a result, impurities increase in the plating bath, and the plating deposition efficiency decreases.

【0005】さらに、無電解めっきの中でも特に無電解
銅めっきは、無電解ニッケルめっき等と比較すると、め
っき浴の安定性が悪い。すなわち、無電解銅めっきは銅
イオンが直接Cuに還元される反応(通常反応)を利用
するが、この通常反応だけでなく副反応として不均化反
応も起こる。この場合の不均化反応とは、めっき浴中の
銅イオンがいったんCu2Oに還元され、その後にCu
に還元される反応のことであるが、この不均化反応によ
って生成したCuは被めっき物上に析出するのではな
く、めっき浴中に銅粉として析出することになる。銅は
触媒性を有するため、該銅粉上にはさらに銅が析出す
る。このようにして、めっき浴中に銅粉が蓄積し、めっ
き浴中に不純物が増加するとともに、めっきの析出効率
が低下する。
Further, among electroless plating, especially electroless copper plating has poor stability of a plating bath as compared with electroless nickel plating or the like. That is, electroless copper plating utilizes a reaction (normal reaction) in which copper ions are directly reduced to Cu, but not only this normal reaction but also a disproportionation reaction occurs as a side reaction. The disproportionation reaction in this case means that the copper ions in the plating bath are once reduced to Cu 2 O,
The Cu produced by the disproportionation reaction does not precipitate on the object to be plated, but precipitates as copper powder in the plating bath. Since copper has catalytic properties, copper is further precipitated on the copper powder. In this manner, copper powder accumulates in the plating bath, impurities increase in the plating bath, and the plating deposition efficiency decreases.

【0006】また、めっき終了後のめっき浴は、利用で
きる成分を回収し再利用している。しかし、めっき浴中
に銅イオンが多く残留している場合、錯化剤の回収効率
は低下するため、銅イオンを高pHで還元、除去してか
ら、錯化剤を回収する必要がある。
[0006] Further, in the plating bath after completion of the plating, usable components are recovered and reused. However, when a large amount of copper ions remains in the plating bath, the recovery efficiency of the complexing agent is reduced. Therefore, it is necessary to reduce and remove the copper ions at a high pH before recovering the complexing agent.

【0007】そこで、本発明の目的は、めっき処理時に
還元反応生成物がめっき浴中に蓄積せず、活性化触媒の
剥離や不均化反応等によって生じた銅粉がめっき浴中に
蓄積しにくく、めっき終了後の成分の回収が容易な無電
解めっき方法および無電解めっき浴を提供することにあ
る。
[0007] Therefore, an object of the present invention is to prevent the reduction reaction product from accumulating in the plating bath during the plating treatment, and to accumulate in the plating bath copper powder generated by the separation of the activation catalyst or the disproportionation reaction. An object of the present invention is to provide an electroless plating method and an electroless plating bath which are difficult to recover components after plating.

【0008】[0008]

【課題を解決するための手段】本発明は、無電解めっき
方法、および、無電解めっき浴に向けられるものであっ
て、上述した技術的課題を解決するため、次のような構
成を備えることを特徴としている。
SUMMARY OF THE INVENTION The present invention is directed to an electroless plating method and an electroless plating bath. To solve the above-mentioned technical problems, the present invention has the following arrangement. It is characterized by.

【0009】本発明は、めっき浴の各成分を補充せず
に、めっき開始時に必要な量のみを添加することによっ
て、一度のめっき処理ごとにめっき浴の各成分を使い切
ること、および、不均化反応の進行をできる限り抑制す
るような濃度に各成分の添加量を調整することによって
めっきの析出効率を上げることを特徴とする。
According to the present invention, each component of a plating bath is used up once per plating process by adding only a necessary amount at the start of plating without replenishing each component of the plating bath. It is characterized in that the deposition efficiency of plating is increased by adjusting the addition amount of each component to a concentration that suppresses the progress of the chemical reaction as much as possible.

【0010】すなわち、本発明は、金属イオン、錯化
剤、還元剤、pH調整剤を含む無電解めっき浴を用意す
る工程と、無電解めっき浴を用いて無電解めっきを行う
工程とを有する無電解めっき方法において、無電解めっ
き浴を用意する工程における無電解めっき浴の還元剤の
含有量を、無電解めっきを行う工程でのめっき終了時に
還元剤が消費し尽くされる量としたことを特徴とする。
ここで、めっき終了時に還元剤が消費し尽くされる量と
は、還元剤の蒸発量と自己分解相当量を含み、かつ、十
分な還元反応が起こり、過剰な不均化反応を防ぐような
量を指すとする。
That is, the present invention comprises a step of preparing an electroless plating bath containing a metal ion, a complexing agent, a reducing agent, and a pH adjuster, and a step of performing electroless plating using the electroless plating bath. In the electroless plating method, the content of the reducing agent in the electroless plating bath in the step of preparing the electroless plating bath is set to an amount such that the reducing agent is consumed at the end of plating in the step of performing the electroless plating. Features.
Here, the amount of the reducing agent consumed at the end of plating includes the amount of evaporation of the reducing agent and the amount equivalent to self-decomposition, and an amount such that a sufficient reduction reaction occurs and an excessive disproportionation reaction is prevented. Let's say

【0011】このように、還元剤をめっき開始時に必要
な量だけ添加し、一度のめっき処理ごとにめっき浴を交
換することによって、還元剤を補充しながら繰り返しめ
っき処理を行う従来技術のように、還元反応の生成物が
めっき浴中に大量に蓄積するのを防ぐことができる。ま
た、還元剤を必要な量だけ添加することによって、過剰
な不均化反応の進行を抑制し、めっき浴中に金属粉が析
出することを防ぐことができる。
[0011] As described above, by adding a necessary amount of a reducing agent at the start of plating and exchanging a plating bath for each plating process, the plating process is repeated while replenishing the reducing agent. In addition, it is possible to prevent a large amount of products of the reduction reaction from accumulating in the plating bath. Further, by adding a necessary amount of the reducing agent, it is possible to suppress the progress of the excessive disproportionation reaction and to prevent the metal powder from being precipitated in the plating bath.

【0012】また、本発明は、金属イオン、錯化剤、還
元剤、pH調整剤を含む無電解めっき浴を用意する工程
と、無電解めっき浴を用いて無電解めっきを行う工程と
を有する無電解めっき方法において、無電解めっき浴を
用意する工程における無電解めっき浴の金属イオンの含
有量を、無電解めっきを行う工程でのめっき終了時に金
属イオンが被めっき物表面に析出し尽くす量としたこと
を特徴とする。ここで、金属イオンが被めっき物表面に
析出し尽くす量とは、十分なめっき膜の析出を得ること
ができるとともに、過剰な不均化反応の進行を抑制する
ことができるような量をいう。
Further, the present invention has a step of preparing an electroless plating bath containing a metal ion, a complexing agent, a reducing agent, and a pH adjuster, and a step of performing electroless plating using the electroless plating bath. In the electroless plating method, the content of metal ions in the electroless plating bath in the step of preparing the electroless plating bath is determined by the amount by which metal ions are completely deposited on the surface of the object to be plated at the end of plating in the step of performing the electroless plating. It is characterized by having. Here, the amount by which metal ions are completely deposited on the surface of the object to be plated refers to an amount capable of obtaining a sufficient plating film deposition and suppressing excessive disproportionation progress. .

【0013】このように、金属イオンをめっき開始時に
必要な量だけ添加し、一度のめっき処理ごとにめっき浴
を交換することによって、金属イオンを補充しながら繰
り返しめっき処理を行う従来技術のように、還元反応の
生成物がめっき浴中に大量に蓄積するのを防ぐことがで
きる。また、金属イオンを必要な量だけ添加することに
よって、十分なめっき膜の析出を得るとともに、過剰な
不均化反応の進行を抑制し、めっき浴中に金属粉が析出
するのを防ぐことができる。
As described above, by adding a required amount of metal ions at the start of plating and replacing the plating bath with each plating process, the plating process is repeated while replenishing the metal ions. In addition, it is possible to prevent a large amount of products of the reduction reaction from accumulating in the plating bath. In addition, by adding a required amount of metal ions, it is possible to obtain sufficient plating film deposition, to suppress the progress of the excessive disproportionation reaction, and to prevent metal powder from being deposited in the plating bath. it can.

【0014】また、本発明では、金属イオン、錯化剤、
還元剤、pH調整剤を含む無電解めっき浴を用意する工
程と、無電解めっき浴を用いて無電解めっきを行う工程
とを有する無電解めっき方法において、無電解めっき浴
を用意する工程における無電解めっき浴の還元剤の含有
量を、無電解めっきを行う工程でのめっき終了時に還元
剤が消費し尽くされる量とし、無電解めっき浴を用意す
る工程における無電解めっき浴の金属イオンの含有量
を、無電解めっきを行う工程でのめっき終了時に金属イ
オンが被めっき物表面に析出し尽くす量としてもよい。
Further, in the present invention, a metal ion, a complexing agent,
In an electroless plating method having a step of preparing an electroless plating bath containing a reducing agent and a pH adjuster, and a step of performing electroless plating using the electroless plating bath, the process of preparing an electroless plating bath is not included. The content of the reducing agent in the electrolytic plating bath is set to an amount by which the reducing agent is consumed at the end of plating in the step of performing electroless plating, and the content of metal ions in the electroless plating bath in the step of preparing the electroless plating bath The amount may be an amount at which metal ions are completely deposited on the surface of the object to be plated at the end of plating in the step of performing electroless plating.

【0015】金属イオンとしては例えば銅イオンを、前
記還元剤としては例えばホルムアルデヒドを使用するこ
とができる。また、前記錯化剤としては例えばEDTA
を、前記pH調整剤としては例えばNaOHを使用する
ことができる。
As the metal ion, for example, copper ion can be used, and as the reducing agent, for example, formaldehyde can be used. Further, as the complexing agent, for example, EDTA
For example, NaOH can be used as the pH adjuster.

【0016】金属イオンとして銅イオンを添加する場
合、銅イオンの添加量は、0.06〜0.12mol/
lとすることが好ましい。銅イオンの添加量がこの範囲
より少なければ、十分なめっき膜の析出が得られず、多
い場合は、被めっき物上への金属の析出が促進され、形
成されるめっき膜の表面が粗くなるためである。
When copper ions are added as metal ions, the amount of copper ions added is from 0.06 to 0.12 mol /
It is preferably 1. If the addition amount of the copper ion is less than this range, sufficient deposition of the plating film cannot be obtained, and if it is large, the deposition of the metal on the object to be plated is promoted, and the surface of the plating film to be formed becomes rough. That's why.

【0017】また、還元剤の添加量は、含有する金属イ
オンを還元するのに必要な理論量の1.2〜2.0倍と
することが好ましい。還元剤の添加量がこの範囲よりも
少ない場合は、還元反応が十分に起こらず、十分なめっ
き膜の析出が得にくい。一方、還元剤の添加量がこの範
囲よりも多い場合は、不均化反応の進行を促進し、めっ
き浴中に金属粉が多く析出することとなるからである。
The amount of the reducing agent to be added is preferably 1.2 to 2.0 times the theoretical amount necessary for reducing the contained metal ions. If the amount of the reducing agent is less than this range, the reduction reaction does not occur sufficiently, and it is difficult to obtain a sufficient plating film. On the other hand, when the amount of the reducing agent added is larger than this range, the progress of the disproportionation reaction is promoted, and a large amount of metal powder is precipitated in the plating bath.

【0018】また、錯化剤の添加量については、含有す
る金属イオンを錯化するのに必要な理論量の0.6〜
0.9倍とすることが好ましい。錯化剤の添加量が、こ
の範囲よりも少ない場合は、金属がイオンとして十分に
めっき浴中に保持されず析出し、多い場合は、金属の析
出が抑えられ十分な膜厚のめっき膜が得られないためで
ある。
The amount of the complexing agent to be added is from 0.6 to the theoretical amount required to complex the contained metal ions.
It is preferably 0.9 times. If the amount of the complexing agent is less than this range, the metal is not sufficiently retained as ions in the plating bath and precipitates.If the amount is large, the deposition of the metal is suppressed and a plating film having a sufficient thickness is obtained. This is because they cannot be obtained.

【0019】また、めっき浴の温度は40℃〜60℃程
度が適当であり、特に45〜55℃が好ましい。めっき
浴の温度がこの範囲よりも低い場合は、還元反応の速度
が遅く、十分なめっき膜の析出が得られない。一方、こ
の範囲よりも高い場合は、還元反応だけでなく不均化反
応も促進されるため、めっき浴中に金属粉が析出しやす
くなる。
The temperature of the plating bath is suitably about 40 ° C. to 60 ° C., and particularly preferably 45 ° C. to 55 ° C. If the temperature of the plating bath is lower than this range, the speed of the reduction reaction is low, and a sufficient deposition of a plating film cannot be obtained. On the other hand, when it is higher than this range, not only the reduction reaction but also the disproportionation reaction are promoted, so that the metal powder tends to precipitate in the plating bath.

【0020】さらに、無電解めっき浴に、37.5〜1
31l/hのエアーを通気しながら無電解めっきを行う
のが望ましい。不均化反応において、めっき浴中の銅イ
オンはいったんCu2Oに還元されるが、めっき浴にエ
アーを通気することによって供給された酸素を用いて、
Cu2Oを再び銅イオンに酸化し、不均化反応の進行を
抑制することができる。しかし、エアーの通気量がこの
範囲よりも少ない場合は、Cu2Oを銅イオンに酸化す
るのに十分な酸素が供給されず、不均化反応を抑制でき
ない。一方、エアーの通気量がこの範囲よりも多い場合
は、析出したCuが酸化され、めっき外観が黒くなると
ともに、析出したCuが再溶解し、めっき膜厚が低下す
る。
Further, 37.5 to 1
It is desirable to perform electroless plating while ventilating 31 l / h of air. In the disproportionation reaction, the copper ions in the plating bath are once reduced to Cu 2 O, but using oxygen supplied by blowing air through the plating bath,
Cu 2 O is oxidized again to copper ions, and the progress of the disproportionation reaction can be suppressed. However, if the air flow rate is smaller than this range, oxygen sufficient to oxidize Cu 2 O to copper ions is not supplied, and the disproportionation reaction cannot be suppressed. On the other hand, when the air flow rate is larger than this range, the deposited Cu is oxidized, the plating appearance becomes black, and the deposited Cu is redissolved, and the plating film thickness is reduced.

【0021】[0021]

【発明の実施の形態】本発明の一実施形態を説明する。
まず、同軸形状の誘電体共振器用セラミック素体を用意
する。セラミック素体は、例えば、Ti−Ba−Pb−
Nd系の誘電体からなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described.
First, a coaxial ceramic body for a dielectric resonator is prepared. The ceramic body is, for example, Ti-Ba-Pb-
It is made of an Nd-based dielectric.

【0022】次いで、複数のセラミック素体をバレル内
に装填し、バレルを回転させながら以下に述べる一連の
無電解めっきの前処理を行う。すなわち、まず、セラミ
ック素体の表面を脱脂処理する。この脱脂処理にあたっ
ては、例えば、40〜50℃のケイ酸塩水溶液中に、セ
ラミック素体を10分間程度浸漬する。続いて、セラミ
ック素体の表面を化学的にエッチング処理するため、例
えば、30〜40℃のホウフッ化水素酸水溶液中に、セ
ラミック素体を10分間程度浸漬する。次に、セラミッ
ク素体の表面を感受性化処理するため、例えば、20〜
30℃の塩化第1錫水溶液中に、セラミック素体を10
分間程度浸漬する。続いて、セラミック素体の表面を活
性化処理するため、例えば、20〜30℃の塩化パラジ
ウム水溶液中に、セラミック素体を10分間程度浸漬す
る。以上で、無電解めっきの前処理が終了する。
Next, a plurality of ceramic bodies are loaded in a barrel, and a series of pretreatments for electroless plating described below are performed while rotating the barrel. That is, first, the surface of the ceramic body is degreased. In this degreasing treatment, for example, the ceramic body is immersed in a silicate aqueous solution at 40 to 50 ° C. for about 10 minutes. Subsequently, in order to chemically etch the surface of the ceramic body, for example, the ceramic body is immersed in an aqueous solution of borofluoric acid at 30 to 40 ° C. for about 10 minutes. Next, in order to sensitize the surface of the ceramic body, for example, 20 to
In a stannous chloride aqueous solution at 30 ° C., 10
Soak for about a minute. Subsequently, in order to activate the surface of the ceramic body, the ceramic body is immersed in, for example, an aqueous solution of palladium chloride at 20 to 30 ° C. for about 10 minutes. Thus, the pretreatment of the electroless plating is completed.

【0023】次いで、セラミック素体をバレル内に装填
したままの状態で、セラミック素体の表面に無電解銅め
っきを施す。この無電解銅めっき処理にあたっては、硫
酸銅−EDTA−ホルマリン(ホルムアルデヒドの水溶
液)−NaOH組成のめっき浴中に、エアーを供給しな
がらセラミック素体を浸漬する。次いで、セラミック素
体を水洗処理し、セラミック素体の表面に付着した余剰
のめっき成分を除去するとともに、無電解めっき反応を
停止する。具体的には、例えば、20〜30℃のイオン
交換水中にセラミック素体を15分間程度浸漬する。以
上で、無電解めっき処理が終了し、セラミック素体表面
に銅電極が形成される。これらの無電解めっき処理の
間、バレルは4rpmの速度で回転させた。
Next, the surface of the ceramic body is subjected to electroless copper plating with the ceramic body still loaded in the barrel. In this electroless copper plating treatment, the ceramic body is immersed in a plating bath having a composition of copper sulfate-EDTA-formalin (aqueous solution of formaldehyde) -NaOH while supplying air. Next, the ceramic body is washed with water to remove excess plating components adhering to the surface of the ceramic body and stop the electroless plating reaction. Specifically, for example, the ceramic body is immersed in ion-exchanged water at 20 to 30 ° C. for about 15 minutes. Thus, the electroless plating process is completed, and a copper electrode is formed on the surface of the ceramic body. During these electroless plating processes, the barrel was rotated at a speed of 4 rpm.

【0024】次いで、上述の水洗水を除去するため、乾
燥工程に付す。この乾燥工程では、例えば、70〜80
℃の温風を20分間程度付与する。以上の工程を経て、
セラミック素体の表面に銅電極を有する誘電体共振器が
得られる。
Next, a drying step is performed to remove the above-mentioned washing water. In this drying step, for example, 70 to 80
C. Warm air is applied for about 20 minutes. Through the above steps,
A dielectric resonator having a copper electrode on the surface of the ceramic body is obtained.

【0025】[0025]

【実験例1】上述の実施形態に従いながら、以下の表1
に示すような試料を作製した。これらの試料は、無電解
めっき処理におけるめっき浴に添加したホルマリンの量
がそれぞれ異なるものである。また、この際、めっき浴
の温度は50℃、めっき時間は60分間、供給エアー量
は7.5l/min、めっき浴の液量は3.2lとし、
めっき浴に添加した硫酸銅の量は0.10mol/l、
EDTAの量は0.08mol/lとした。
EXPERIMENTAL EXAMPLE 1 The following Table 1 was used in accordance with the above-described embodiment.
Samples as shown in Table 1 were prepared. These samples differ in the amount of formalin added to the plating bath in the electroless plating process. At this time, the temperature of the plating bath was 50 ° C., the plating time was 60 minutes, the amount of supplied air was 7.5 l / min, and the liquid volume of the plating bath was 3.2 l.
The amount of copper sulfate added to the plating bath was 0.10 mol / l,
The amount of EDTA was 0.08 mol / l.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に示すように、還元剤であるホルマリ
ン(ホルムアルデヒド)の添加量が、銅イオンを還元す
るのに必要な理論量の1.2倍よりも少ない場合は、銅
イオンを十分に還元することができず、十分な膜厚の銅
めっきの析出が得られない。一方、2.1倍よりも多い
場合は、不均化反応が進み、めっき浴中に銅粉が析出す
る。したがって、ホルムアルデヒドの添加量は、銅イオ
ンを還元するのに必要な理論量の1.2〜2.1倍が適
当である。理論量よりも多く必要なのは、ホルムアルデ
ヒドは揮発性が高く、分解し易いため、理論量に加えて
蒸発量と自己分解相当量が必要なためであると考えられ
る。
As shown in Table 1, when the addition amount of formalin (formaldehyde) as a reducing agent is less than 1.2 times the theoretical amount required to reduce copper ions, copper ions can be sufficiently reduced. It cannot be reduced, and copper plating of sufficient thickness cannot be deposited. On the other hand, if it is more than 2.1 times, the disproportionation reaction proceeds, and copper powder is precipitated in the plating bath. Therefore, the amount of formaldehyde to be added is suitably 1.2 to 2.1 times the theoretical amount required to reduce copper ions. It is considered that the reason why the amount is required to be larger than the stoichiometric amount is that formaldehyde has a high volatility and is easily decomposed, and thus, in addition to the stoichiometric amount, an evaporation amount and a considerable amount of self-decomposition are required.

【0028】[0028]

【実験例2】上述の実施形態に従いながら、以下の表2
に示すような試料を作製した。これらの試料は、無電解
めっき処理におけるめっき浴に添加した硫酸銅の量がそ
れぞれ異なるものである。また、この際、めっき浴の温
度は50℃、めっき時間は60分間、供給エアー量は
7.5l/min、めっき浴の液量は3.2lとし、め
っき浴に添加したホルマリン(ホルムアルデヒド)の量
は添加された銅イオンを還元するのに必要な理論量の
1.2倍、 EDTAの量は添加された銅イオンを錯化
するのに必要な理論量の0.8倍とした。
[Experimental Example 2] The following Table 2 was used in accordance with the above-described embodiment.
Samples as shown in Table 1 were prepared. These samples differ in the amount of copper sulfate added to the plating bath in the electroless plating process. At this time, the temperature of the plating bath was 50 ° C., the plating time was 60 minutes, the supply air amount was 7.5 l / min, the liquid volume of the plating bath was 3.2 liters, and the amount of formalin (formaldehyde) added to the plating bath was The amount was 1.2 times the theoretical amount required to reduce the added copper ions, and the amount of EDTA was 0.8 times the theoretical amount required to complex the added copper ions.

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示すように、銅イオンの添加量が、
0.06mol/lよりも少ない場合は、十分な膜厚の
銅めっきの析出が得られない。一方、0.12mol/
lよりも多い場合は、被めっき物上への金属の析出が促
進され、形成されるめっき膜の表面が粗くなる。また、
不均化反応が進むため、めっき浴中に銅粉が析出する。
したがって、めっき浴へ添加する銅イオンは、0.06
〜0.12mol/lが適当である。
As shown in Table 2, the amount of copper ion added was
If the amount is less than 0.06 mol / l, deposition of copper plating having a sufficient film thickness cannot be obtained. On the other hand, 0.12 mol /
If it is more than 1, the deposition of metal on the object to be plated is promoted, and the surface of the formed plating film becomes rough. Also,
Since the disproportionation reaction proceeds, copper powder precipitates in the plating bath.
Therefore, the copper ion added to the plating bath is 0.06
0.10.12 mol / l is appropriate.

【0031】[0031]

【実験例3】上述の実施形態に従いながら、以下の表3
に示すような試料を作製した。これらの試料は、無電解
めっき処理におけるめっき浴に添加したEDTAの量が
それぞれ異なるものである。また、この際、めっき浴の
温度は50℃、めっき時間は60分間、供給エアー量は
7.5l/min、めっき浴の液量は3.2lとし、め
っき浴に添加した硫酸銅の量は0.10mol/l、ホ
ルマリン(ホルムアルデヒド)の量は0.24mol/
lとした。
[Experimental Example 3] The following Table 3 was used in accordance with the above-described embodiment.
Samples as shown in Table 1 were prepared. These samples differ in the amount of EDTA added to the plating bath in the electroless plating process. At this time, the temperature of the plating bath was 50 ° C., the plating time was 60 minutes, the supply air amount was 7.5 l / min, the liquid volume of the plating bath was 3.2 liters, and the amount of copper sulfate added to the plating bath was 0.10 mol / l, the amount of formalin (formaldehyde) is 0.24 mol / l
l.

【0032】[0032]

【表3】 [Table 3]

【0033】表3に示すように、EDTAの添加量が、
添加された銅イオンを錯化するのに必要な理論量の0.
6倍よりも少ない場合は、銅をめっき浴中にイオンとし
て十分に捕らえておくことができず、銅粉が析出する。
一方、0.9倍よりも多い場合は、銅イオンの還元が抑
えられ、十分な膜厚の銅めっきの析出が得られない。し
たがって、めっき浴へ添加するEDTAは、添加された
銅イオンを錯化するのに必要な理論量の0.6〜0.9
倍が適当である。
As shown in Table 3, the amount of EDTA added was
The theoretical stoichiometric amount of 0,1 required to complex the added copper ions.
If the amount is less than 6 times, copper cannot be sufficiently captured as ions in the plating bath, and copper powder will precipitate.
On the other hand, when the ratio is more than 0.9 times, reduction of copper ions is suppressed, and deposition of copper plating having a sufficient film thickness cannot be obtained. Therefore, EDTA added to the plating bath is 0.6 to 0.9 of the theoretical amount required to complex the added copper ions.
Double is appropriate.

【0034】[0034]

【実験例4】上述の実施形態に従いながら、以下の表4
に示すような試料を作製した。これらの試料は、無電解
めっき処理におけるめっき浴の温度がそれぞれ異なるも
のである。また、この際、めっき時間は60分間、供給
エアー量は7.5l/min、めっき浴の液量は3.2
lとし、めっき浴に添加した硫酸銅の量は0.10mo
l/l、ホルマリン(ホルムアルデヒド)の量は0.2
4mol/l、EDTAの量は0.08mol/lとし
た。
[Experimental Example 4] According to the above embodiment, the following Table 4 was used.
Samples as shown in Table 1 were prepared. These samples have different plating bath temperatures in the electroless plating process. At this time, the plating time was 60 minutes, the supply air amount was 7.5 l / min, and the plating bath liquid amount was 3.2.
1 and the amount of copper sulfate added to the plating bath is 0.10 mo
l / l, the amount of formalin (formaldehyde) is 0.2
4 mol / l and the amount of EDTA was 0.08 mol / l.

【0035】[0035]

【表4】 [Table 4]

【0036】表4において、析出効率とは、{(Cu添
加量−めっき終了時の浴中のCu残量/Cu添加量)×
100}とする。表4に示すように、これらの温度領域
においては、比較的高い析出効率が得られている。しか
し、めっき浴の温度が45℃よりも低い場合は、還元反
応の速度が遅いため、十分な膜厚の銅めっきの析出が得
られない。一方、55℃よりも多い場合は、還元反応だ
けでなく不均化反応も促進されるため、めっき浴中に銅
粉が析出する。したがって、めっき浴の温度は、45〜
55℃が適当であるといえる。
In Table 4, the deposition efficiency is represented by {(Cu addition amount−Cu remaining amount in bath at the end of plating / Cu addition amount) ×
It shall be 100 °. As shown in Table 4, in these temperature ranges, a relatively high deposition efficiency is obtained. However, when the temperature of the plating bath is lower than 45 ° C., the rate of the reduction reaction is low, and thus a copper plating of a sufficient thickness cannot be deposited. On the other hand, when the temperature is higher than 55 ° C., not only the reduction reaction but also the disproportionation reaction are promoted, so that copper powder is precipitated in the plating bath. Therefore, the temperature of the plating bath is 45 to
55 ° C. may be appropriate.

【0037】[0037]

【実験例5】上述の実施形態に従いながら、以下の表5
に示すような試料を作製した。これらの試料は、無電解
めっき処理におけるエアーの供給量がそれぞれ異なるも
のである。また、この際、めっき浴の温度は50℃、め
っき時間は60分間、めっき浴の液量は3.2lとし、
めっき浴に添加した硫酸銅の量は0.10mol/l、
ホルマリン(ホルムアルデヒド)の量は0.24mol
/l、EDTAの量は0.08mol/lとした。
[Experimental Example 5] According to the above embodiment, the following Table 5 was used.
Samples as shown in Table 1 were prepared. These samples have different air supply amounts in the electroless plating process. Further, at this time, the temperature of the plating bath was 50 ° C., the plating time was 60 minutes, and the liquid volume of the plating bath was 3.2 l.
The amount of copper sulfate added to the plating bath was 0.10 mol / l,
0.24 mol of formalin (formaldehyde)
/ L and the amount of EDTA were 0.08 mol / l.

【0038】[0038]

【表5】 [Table 5]

【0039】表5に示すように、めっき浴1lあたりの
エアーの供給量が37.5l/hrよりも少ない場合
は、不均化反応によって生じたCu2Oを再びCuに酸
化するのに十分な酸素が供給されず、不均化反応が進
み、めっき浴中に銅粉が析出する。一方、131l/h
rよりも多い場合は、析出したCuが酸化されめっき外
観が黒くなるとともに、析出したCuが再溶解し、めっ
き膜厚が低下する。したがって、めっき浴へのエアー供
給量は、めっき浴1lあたり37.5〜131l/hr
が適当である。
As shown in Table 5, when the supply amount of air per liter of the plating bath is less than 37.5 l / hr, it is enough to oxidize Cu 2 O generated by the disproportionation reaction to Cu again. Oxygen is not supplied, the disproportionation reaction proceeds, and copper powder precipitates in the plating bath. On the other hand, 131 l / h
If it is larger than r, the deposited Cu is oxidized and the plating appearance becomes black, and the deposited Cu is redissolved and the plating film thickness is reduced. Therefore, the amount of air supplied to the plating bath is 37.5 to 131 l / hr per liter of the plating bath.
Is appropriate.

【0040】[0040]

【発明の効果】以上のように、この発明によれば、めっ
き浴の成分を補充することなく、めっき開始時に必要な
量のみを添加することによって、1回のめっき処理ごと
にめっき成分を使い切る方法を用いるため、還元反応生
成物がめっき浴中に蓄積しにくい。
As described above, according to the present invention, only the necessary amount is added at the start of plating without replenishing the components of the plating bath, so that the plating components can be used up in each plating process. Since the method is used, it is difficult for reduction reaction products to accumulate in the plating bath.

【0041】また、不均化反応を抑制するような温度領
域、エアー供給量、金属イオン添加量、還元剤添加量、
錯化剤添加量において、無電解めっき処理を行うため、
不均化反応等によって生じた銅粉がめっき浴中に蓄積し
にくい。したがって、めっき浴中に不純物が増加するこ
ともなく、添加した銅イオンの析出効率も上昇し、経済
的である。
In addition, a temperature range in which the disproportionation reaction is suppressed, an air supply amount, a metal ion addition amount, a reducing agent addition amount,
In order to perform electroless plating at the amount of complexing agent added,
Copper powder generated by the disproportionation reaction or the like hardly accumulates in the plating bath. Therefore, there is no increase in impurities in the plating bath, and the precipitation efficiency of the added copper ions increases, which is economical.

【0042】さらに、銅の析出効率が高いため、めっき
浴中に銅イオンがあまり残留せず、錯化剤であるEDT
Aの回収効率が上昇する。
Further, because of high copper deposition efficiency, little copper ions remain in the plating bath and the complexing agent EDT
The recovery efficiency of A increases.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】金属イオン、錯化剤、還元剤、pH調整剤
を含む無電解めっき浴を用意する工程と、前記無電解め
っき浴を用いて無電解めっきを行う工程とを有する無電
解めっき方法において、 前記無電解めっき浴を用意する工程における無電解めっ
き浴の還元剤の含有量を、前記無電解めっきを行う工程
でのめっき終了時に還元剤が消費し尽くされる量とした
ことを特徴とする無電解めっき方法。
1. An electroless plating method comprising: providing an electroless plating bath containing a metal ion, a complexing agent, a reducing agent, and a pH adjuster; and performing an electroless plating using the electroless plating bath. In the method, the content of the reducing agent in the electroless plating bath in the step of preparing the electroless plating bath is an amount by which the reducing agent is consumed at the end of plating in the step of performing the electroless plating. Electroless plating method.
【請求項2】金属イオン、錯化剤、還元剤、pH調整剤
を含む無電解めっき浴を用意する工程と、前記無電解め
っき浴を用いて無電解めっきを行う工程とを有する無電
解めっき方法において、 前記無電解めっき浴を用意する工程における無電解めっ
き浴の金属イオンの含有量を、前記無電解めっきを行う
工程でのめっき終了時に金属イオンが被めっき物表面に
析出し尽くす量としたことを特徴とする無電解めっき方
法。
2. An electroless plating method comprising: preparing an electroless plating bath containing a metal ion, a complexing agent, a reducing agent, and a pH adjuster; and performing electroless plating using the electroless plating bath. In the method, the content of metal ions in the electroless plating bath in the step of preparing the electroless plating bath, and the amount by which metal ions are completely deposited on the surface of the object to be plated at the end of plating in the step of performing the electroless plating. An electroless plating method characterized in that:
【請求項3】金属イオン、錯化剤、還元剤、pH調整剤
を含む無電解めっき浴を用意する工程と、前記無電解め
っき浴を用いて無電解めっきを行う工程とを有する無電
解めっき方法において、 前記無電解めっき浴を用意する工程における無電解めっ
き浴の還元剤の含有量を、前記無電解めっきを行う工程
でのめっき終了時に還元剤が消費し尽くされる量とし、
前記無電解めっき浴を用意する工程における無電解めっ
き浴の金属イオンの含有量を、前記無電解めっきを行う
工程でのめっき終了時に金属イオンが被めっき物表面に
析出し尽くす量としたことを特徴とする無電解めっき方
法。
3. An electroless plating method comprising the steps of: preparing an electroless plating bath containing a metal ion, a complexing agent, a reducing agent, and a pH adjuster; and performing electroless plating using the electroless plating bath. In the method, the content of the reducing agent in the electroless plating bath in the step of preparing the electroless plating bath is an amount by which the reducing agent is consumed at the end of plating in the step of performing the electroless plating,
The content of metal ions in the electroless plating bath in the step of preparing the electroless plating bath is defined as an amount at which metal ions are completely deposited on the surface of the workpiece at the end of plating in the step of performing the electroless plating. Characteristic electroless plating method.
【請求項4】金属イオン、錯化剤、還元剤、pH調整剤
を含む無電解めっき浴において、還元剤の含有量をめっ
き終了時に還元剤が消費し尽くされる量としたことを特
徴とする無電解めっき浴。
4. An electroless plating bath containing a metal ion, a complexing agent, a reducing agent, and a pH adjuster, wherein the content of the reducing agent is set to an amount such that the reducing agent is consumed at the end of plating. Electroless plating bath.
【請求項5】金属イオン、錯化剤、還元剤、pH調整剤
を含む無電解めっき浴において、金属イオンの含有量を
めっき終了時に金属イオンが被めっき物表面に析出し尽
くす量としたことを特徴とする無電解めっき浴。
5. An electroless plating bath containing a metal ion, a complexing agent, a reducing agent, and a pH adjuster, wherein the content of the metal ion is an amount at which the metal ion is completely deposited on the surface of the object to be plated at the end of plating. Electroless plating bath characterized by the following.
【請求項6】金属イオン、錯化剤、還元剤、pH調整剤
を含む無電解めっき浴において、還元剤の含有量をめっ
き終了時に還元剤が消費し尽くされる量とし、金属イオ
ンの含有量をめっき終了時に金属イオンが被めっき物表
面に析出し尽くす量としたことを特徴とする無電解めっ
き浴。
6. An electroless plating bath containing a metal ion, a complexing agent, a reducing agent and a pH adjuster, wherein the content of the reducing agent is an amount at which the reducing agent is consumed at the end of plating, and the content of the metal ion is An electroless plating bath characterized in that the amount is such that metal ions are completely deposited on the surface of the object to be plated at the end of plating.
【請求項7】金属イオンの含有量を、0.06〜0.1
2mol/lとすることを特徴とする、請求項5または
6に記載の無電解めっき浴。
7. A metal ion content of from 0.06 to 0.1
The electroless plating bath according to claim 5 or 6, wherein the concentration is 2 mol / l.
【請求項8】還元剤の含有量を、含有する金属イオンを
還元するのに必要な理論量の1.2〜2.0倍とするこ
とを特徴とする、請求項7に記載の無電解めっき浴。
8. The electroless device according to claim 7, wherein the content of the reducing agent is 1.2 to 2.0 times the theoretical amount required for reducing the contained metal ions. Plating bath.
【請求項9】錯化剤の含有量を、含有する金属イオンを
錯化するのに必要な理論量の0.6〜0.9倍とするこ
とを特徴とする、請求項7または8に記載の無電解めっ
き浴。
9. The method according to claim 7, wherein the content of the complexing agent is 0.6 to 0.9 times the theoretical amount required for complexing the contained metal ions. Electroless plating bath as described.
【請求項10】前記めっき浴の温度が45〜55℃であ
ることを特徴とする、請求項4ないし9記載の無電解め
っき浴。
10. The electroless plating bath according to claim 4, wherein the temperature of the plating bath is 45 to 55 ° C.
【請求項11】請求項4ないし10の無電解めっき浴
に、めっき浴1lあたり37.5〜131l/hrのエ
アーを通気しながら無電解めっきを行う無電解めっき方
法。
11. An electroless plating method in which electroless plating is performed while air is passed through the electroless plating bath of 37.5 to 131 l / hr per liter of the plating bath.
JP11011959A 1999-01-20 1999-01-20 Electroless plating method and electroless plating bath Pending JP2000212761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011959A JP2000212761A (en) 1999-01-20 1999-01-20 Electroless plating method and electroless plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011959A JP2000212761A (en) 1999-01-20 1999-01-20 Electroless plating method and electroless plating bath

Publications (1)

Publication Number Publication Date
JP2000212761A true JP2000212761A (en) 2000-08-02

Family

ID=11792167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011959A Pending JP2000212761A (en) 1999-01-20 1999-01-20 Electroless plating method and electroless plating bath

Country Status (1)

Country Link
JP (1) JP2000212761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201029B1 (en) * 2016-12-26 2017-09-20 日本エレクトロプレイテイング・エンジニヤース株式会社 Electroless platinum plating solution and electroless platinum plating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201029B1 (en) * 2016-12-26 2017-09-20 日本エレクトロプレイテイング・エンジニヤース株式会社 Electroless platinum plating solution and electroless platinum plating method
JP2018104755A (en) * 2016-12-26 2018-07-05 日本エレクトロプレイテイング・エンジニヤース株式会社 Electroless platinum plating solution and electroless platinum plating method

Similar Documents

Publication Publication Date Title
JP6622712B2 (en) Compositions and methods for metallizing non-conductive plastic surfaces
US20050199587A1 (en) Non-chrome plating on plastic
TWI419995B (en) Method for surface treatment of aluminum or aluminum alloy
JP6195857B2 (en) Method for metallizing non-conductive plastic surface
US20120171363A1 (en) Catalyst application solution, electroless plating method using same, and direct plating method
JP2005336614A (en) Method for metallizing plastic surface
JP2000355774A (en) Plating method and plating solution precursory used therefor
JP2004513229A (en) Method for electroless metal plating
JP6142407B2 (en) Resin plating method
EP1988192B1 (en) Process for applying a metal coating to a non-conductive substrate
EP2305856A1 (en) Process for applying a metal coating to a non-conductive substrate
US4035227A (en) Method for treating plastic substrates prior to plating
US3969554A (en) Precious metal sensitizing solutions
US3698939A (en) Method and composition of platinum plating
US4400415A (en) Process for nickel plating aluminum and aluminum alloys
JP3673445B2 (en) Zinc replacement solution
US3960573A (en) Novel precious metal sensitizing solutions
JP2000212761A (en) Electroless plating method and electroless plating bath
JP2962496B2 (en) Magne-based alloy plating method
JPH0239594B2 (en)
JP3111614B2 (en) Regeneration method of electroless nickel plating bath
CN117248215A (en) Etching treatment liquid, aluminum or aluminum alloy surface treatment method
JP7282136B2 (en) Palladium plating solution and palladium plating replenisher
JPH0753909B2 (en) Electroless copper plating solution
JPH0610147A (en) Palladium activating solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212