JP2000210795A - Synchronization controller for servo press - Google Patents

Synchronization controller for servo press

Info

Publication number
JP2000210795A
JP2000210795A JP11014180A JP1418099A JP2000210795A JP 2000210795 A JP2000210795 A JP 2000210795A JP 11014180 A JP11014180 A JP 11014180A JP 1418099 A JP1418099 A JP 1418099A JP 2000210795 A JP2000210795 A JP 2000210795A
Authority
JP
Japan
Prior art keywords
servo
dead center
slide
bottom dead
position deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11014180A
Other languages
Japanese (ja)
Other versions
JP3644666B2 (en
Inventor
Kazuhisa Inoue
井上和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aida Engineering Ltd
Original Assignee
Aida Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aida Engineering Ltd filed Critical Aida Engineering Ltd
Priority to JP01418099A priority Critical patent/JP3644666B2/en
Publication of JP2000210795A publication Critical patent/JP2000210795A/en
Application granted granted Critical
Publication of JP3644666B2 publication Critical patent/JP3644666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Control Of Presses (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synchronization controller for a servo press capable of rapidly compensating a delay of a position controller owing to an eccentric load of a slide vertically driven with plural servomotors. SOLUTION: When top dead center positioning for an A shaft, a B shaft by means of respective servomotors is finished, a slide is started to lower, bottom dead center positioning is started, and press work is started from a work starting point. After confirming that a slide position does not reach a preset bottom dead center position and that the slide position does not overshoot to a position command value, a screw shaft having a large followup delay is judged as a compensating shaft when a positional deviation between the screw shafts exceeds an allowable value. For example, it is advanced to (a) when it is the A shaft, a position loop gain Kp and a speed loop gain Kv being a servo parameter are stepwise and moreover continuously updated to the large side in accordance with the quantity of deviation to raise the followup ability, and the positional deviation and the deviation between the shafts with the positive command value are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数のサーボモー
タを駆動源として、それぞれのサーボモータに連結する
ねじ軸を回転駆動してスライドを昇降運動させるサーボ
プレスの同期制御装置に関し、偏心荷重によるスライド
の傾斜を速やかに修正して下死点精度の低下を防止し、
かつ効率的な運転をしたい場合に有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous control device for a servo press, in which a plurality of servo motors are used as driving sources, and a screw shaft connected to each servo motor is rotated to move a slide up and down. Immediately correct the inclination of the slide to prevent lowering of the bottom dead center accuracy,
It is effective when you want to operate efficiently.

【0002】[0002]

【従来の技術】複数のサーボモータを駆動源とするサー
ボプレスは、例えば、図2に示す2ポイントタイプのサ
ーボプレス1であった。サーボプレス1は、機体2に設
けた2個のサーボモータ3X,3Yのそれぞれをボール
ねじ部4,4を介してスライド5と連結し、サーボモー
タ3X,3Yの回転量に応じてスライド5を昇降運動さ
せる。スライド5の重量は、エアバランサ6,6で平衡
させ、スライド5の位置情報は機体2に設けたリニアセ
ンサ検出部7,7とスライド5に設けた検出ヘッド8,
8から得ていた。
2. Description of the Related Art A servo press using a plurality of servo motors as driving sources is, for example, a two-point type servo press 1 shown in FIG. The servo press 1 connects each of two servo motors 3X and 3Y provided on the body 2 to a slide 5 via ball screw portions 4 and 4, and moves the slide 5 according to the rotation amount of the servo motors 3X and 3Y. Move up and down. The weight of the slide 5 is balanced by the air balancers 6, 6, and the position information of the slide 5 is obtained by the linear sensor detectors 7, 7 provided on the body 2 and the detection head 8 provided on the slide 5.
I got from 8.

【0003】サーボモータ3X,3Yに、図示していな
い制御装置から同一位置指令を与え、サーボモータ3
X,3Yごとに個別に位置制御を行う簡易同期デュアル
フィードバック制御で、リニアセンサ検出部7と検出ヘ
ッド8から得た位置情報と位置指令値との差、あるいは
サーボモータ3X,3Yに設けた図示していないエンコ
ーダによる制御位置の相互の差を制御装置にフィードバ
ックして位置制御を行っていた。スライド5とボルスタ
9に図示していない金型を取り付けてプレス加工を行
う。図5は、上述の位置制御及び下死点判別のアルゴリ
ズムを示したものである。
The same position command is given to the servo motors 3X and 3Y from a control device (not shown),
In the simple synchronous dual feedback control in which position control is individually performed for each of X and 3Y, a difference between position information obtained from the linear sensor detector 7 and the detection head 8 and a position command value, or a diagram provided in the servo motors 3X and 3Y. Position control is performed by feeding back a difference between control positions by an encoder not shown to a control device. A press (not shown) is attached to the slide 5 and the bolster 9 to perform press working. FIG. 5 shows an algorithm for the above-described position control and bottom dead center determination.

【0004】[0004]

【発明が解決しようとする課題】上述の簡易同期デュア
ルフィードバック制御は、図3に示すように、スライド
5の受ける荷重Aが荷重Bより小さい偏心荷重を受ける
と、荷重B側を駆動するサーボモータ2Xはサーボモー
タ2Yに対し位置制御遅れを生じ、スライド5は5Aの
ように傾き平行度が悪化するが、サーボモータ2X,2
Yの位置情報と位置指令値との差を、それぞれのねじ軸
ごとに独立してフィードバックするだけで制御するので
位置決めが遅いと言う欠点がある。
As shown in FIG. 3, the simple synchronous dual feedback control described above uses a servo motor for driving the load B when the load A received by the slide 5 receives an eccentric load smaller than the load B. 2X causes a position control delay with respect to the servo motor 2Y, and the slide 5 tilts and the parallelism deteriorates as in 5A.
Since the difference between the position information of Y and the position command value is controlled only by feedback independently for each screw axis, there is a disadvantage that positioning is slow.

【0005】図4は、スライド5の位置Aと位置Bの時
間に対する変化を示し、時間T0からプレス加工を開始
すると、荷重Bが大きいための制御遅れで時間T1で位
置Aは下死点に位置決め完了に対し、位置Bはなお動作
中で時間T2で下死点に位置決め完了となり、ここで下
死点到達となる。この時間T1からT2間は無駄な待ち
時間であり、この待ち時間が大きいのでサーボプレスの
運転効率が低下すると言う欠点がある。この待ち時間の
完了を待たずに位置決め完了として運転効率を向上させ
ようとすれば、スライド5の平行度が悪く、加工した製
品の精度を低下させると言う欠点がある。
FIG. 4 shows the change of the position A and the position B of the slide 5 with respect to time. When the press working is started from the time T0, the position A becomes the bottom dead center at the time T1 due to a control delay due to a large load B. In response to the completion of the positioning, the position B is still operating and the positioning is completed at the bottom dead center at time T2, and the bottom dead center is reached here. The time T1 to T2 is a wasteful waiting time, and there is a disadvantage that the operation efficiency of the servo press is reduced because the waiting time is long. If the operation efficiency is improved by waiting for the completion of the waiting time and the positioning is completed, there is a drawback that the parallelism of the slide 5 is poor and the precision of the processed product is reduced.

【0006】本発明の目的は、上述の課題を解決し、偏
心荷重による位置制御遅れを速やかに補正出来、下死点
精度を保ちながら運転効率とスライドの平行度の向上と
が図り得るサーボプレスの同期制御装置を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, to quickly correct a position control delay due to an eccentric load, and to improve operation efficiency and parallelism of a slide while maintaining bottom dead center accuracy. To provide a synchronous control device.

【0007】[0007]

【課題を解決するための手段】上述の課題を解決するた
めに、本発明は、複数のサーボモータを駆動源として、
それぞれのサーボモータに連結するねじ軸を回転駆動し
てスライドを昇降運動させるサーボプレスの同期制御装
置において、(イ)プレス加工時にそれぞれのねじ軸ご
との位置偏差を比較して軸間偏差を求め、(ロ)この数
値があらかじめ設定されたサーボモータのしきい値を超
え、かつ下死点位置でなく、実際のスライドの位置が位
置指令値に対してオーバーシュートしていない場合に
は、位置偏差量の過大なねじ軸を選択し、そのねじ軸の
サーボパラメータを、あらかじ設定された位置偏差量、
または軸間位置偏差量ごとに割り振られたサーボパラメ
ータに、位置偏差量に応じて連続的に設定変更し、
(ハ)また、設定変更されたねじ軸のモータ電流値を観
測して、モータ電流値がサーボモータの仕様電流値の上
限に到達した場合には、位置偏差量レベルを低下変更
し、その位置偏差量レベルで割り振られたサーボパラメ
ータに設定変更するとともに、(ニ)上述の(イ)〜
(ハ)項の条件に合致しない場合には、サーボパラメー
タを初期値に設定変更し、それぞれのねじ軸ごとに下死
点位置の位置決め完了範囲を設けて、全てのねじ軸がこ
の下死点位置の位置決め完了範囲内に到達した場合にプ
レス加工を終了する。
In order to solve the above-mentioned problems, the present invention uses a plurality of servomotors as drive sources.
In a synchronous control device of a servo press, which drives a screw shaft connected to each servo motor to rotate to move the slide up and down, (a) calculates the inter-axis deviation by comparing the position deviation of each screw shaft during press working (B) If this value exceeds the preset threshold value of the servo motor, is not the bottom dead center position, and the actual slide position does not overshoot the position command value, Select a screw axis with an excessive deviation amount, and change the servo parameters of the screw axis to the preset position deviation amount,
Alternatively, continuously change the servo parameters assigned to each axis position deviation amount according to the position deviation amount,
(C) Also, by observing the motor current value of the screw shaft whose setting has been changed, if the motor current value reaches the upper limit of the specified current value of the servo motor, the position deviation amount level is reduced and changed. In addition to changing the setting of the servo parameter assigned to the deviation level, (d)
If the conditions in (c) are not met, change the servo parameters to the initial values, set the positioning completion range of the bottom dead center position for each screw axis, and set all the screw axes to this bottom dead center. When the position reaches the positioning completion range, the press working is ended.

【0008】[0008]

【発明の実施の形態】図1に本発明におけるサーボプレ
スの同期制御装置のアルゴリズムの一実施例を示す。な
お、サーボプレスの構成は、従来例と同様で図2に示す
通りであり、説明を略す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of an algorithm of a synchronous control device for a servo press according to the present invention. The configuration of the servo press is the same as that of the conventional example, as shown in FIG. 2, and the description is omitted.

【0009】図1において、スライド5が上昇してくる
と上死点位置決め開始となり、それぞれのサーボモータ
2X,2YによるA軸及びB軸の位置決め完了信号が揃
うと上死点位置決め完了となる。スライド5が下降を始
めると下死点位置決め開始となり、スライド5が加工開
始点到達からプレス加工が始まる。次の下死点では、あ
らかじめ設定される下死点とスライド5の位置とをまず
比較し、スライド5の位置が下死点に到達していないこ
とを確認する。次に、位置指令値に対してスライド5の
位置がオーバーシュート、すなわち行き過ぎていないか
を確認する。オーバーシュートの有無は、位置指令値と
スライド位置との差分の符号により判別する。
In FIG. 1, when the slide 5 rises, the positioning of the top dead center is started, and when the positioning completion signals of the A-axis and the B-axis by the respective servo motors 2X and 2Y are completed, the positioning of the top dead center is completed. When the slide 5 starts descending, the positioning of the bottom dead center is started, and the press work is started when the slide 5 reaches the processing start point. At the next bottom dead center, the preset bottom dead center is compared with the position of the slide 5 to confirm that the position of the slide 5 has not reached the bottom dead center. Next, it is checked whether the position of the slide 5 has overshot the position command value, that is, whether the position has not gone too far. The presence or absence of overshoot is determined by the sign of the difference between the position command value and the slide position.

【0010】オーバーシュートがなければ次に進み、現
在のA軸、B軸間の位置偏差とあらかじめ設定したねじ
軸間の位置偏差許容値(しきい値)とを比較し、許容値
を超える場合はサーボパラメータの補正モードに入る。
位置偏差許容値は、スライド5の平行度の精度の許容値
によって決定する。そこで、補正軸判定ではA軸及びB
軸の位置と位置指令値との位置偏差を比較し、位置偏差
の大きい、すなわち、追従遅れの大きい軸を重負荷のか
かった補正軸と判定する。
If there is no overshoot, the process proceeds to the next step. The present position deviation between the A-axis and the B-axis is compared with a preset allowable value (threshold value) of the position deviation between the screw axes, and when the allowable value is exceeded. Enters the servo parameter correction mode.
The position deviation allowable value is determined by the allowable value of the accuracy of the parallelism of the slide 5. Therefore, the A-axis and B-axis
The position deviation between the position of the axis and the position command value is compared, and an axis with a large position deviation, that is, an axis with a large following delay is determined as a correction axis with a heavy load.

【0011】例えば、A軸が重負荷と判定されれば、補
正軸判定からaに進む。ここには位置偏差量が小さい方
から大きい方に順に偏差量1,2,・・・ごとにフィー
ドバックループの位置ループゲインKp、速度ループゲ
インKvをあらかじめ設定している。それで、制御装置
内の演算に現在使用しているサーボパラメータをA軸の
位置偏差量に相当するサーボパラメータKp,Kvまで
順に継続して大きいサーボパラメータへと更新する。以
上の動作は、サーボモータ2X,2Yに直結した図示し
ていないエンコーダによる軸間位置偏差を用いても同様
に有効である。
For example, if the A-axis is determined to have a heavy load, the process proceeds from the correction axis determination to a. Here, the position loop gain Kp and the speed loop gain Kv of the feedback loop are set in advance for each of the deviation amounts 1, 2,. Therefore, the servo parameters currently used for the calculation in the control device are updated successively to the larger servo parameters up to the servo parameters Kp and Kv corresponding to the position deviation amount of the A-axis. The above operation is similarly effective even when the inter-axis position deviation by an encoder (not shown) directly connected to the servomotors 2X and 2Y is used.

【0012】以上のように、位置指令値に対し追従遅れ
の大きい軸のサーボパラメータを位置偏差量に応じて、
制御系が不安定とならない範囲で段階的に、かつ連続的
に大きい数値に更新して追従性を高め、位置指令値との
位置偏差を低減させるとともに、軸間偏差も低減させ
る。B軸の位置偏差量がA軸より大きい場合は、bに進
み、同様に処理する。
As described above, the servo parameters of the axis having a large delay in following the position command value are changed according to the position deviation amount.
The control system is updated stepwise and continuously to a large numerical value within a range in which the control system does not become unstable, so that the followability is improved, the positional deviation from the position command value is reduced, and the axial deviation is also reduced. If the position deviation amount of the B axis is larger than the A axis, the process proceeds to b and the same processing is performed.

【0013】このように、サーボパラメータを変更した
時、次に補正軸最大電流では、サーボモータが最大電流
値に達し、または超えた場合は、補正レベル変更に進
み、位置偏差量のレベルを下げるか、あるいはサーボパ
ラメータを通常設定値に戻す。サーボパラメータを大き
く設定し過ぎて制御系が不安定となり、発振したりオー
バーシュートが発生した場合も同様に瞬時にサーボパラ
メータを通常設定値に戻す。
As described above, when the servo parameter is changed and the servo motor reaches or exceeds the maximum current value for the next correction axis maximum current, the process proceeds to the correction level change to lower the level of the position deviation amount. Or, return the servo parameters to the normal set values. Similarly, when the servo system is set too large and the control system becomes unstable and oscillates or overshoot occurs, the servo parameters are immediately returned to the normal set values.

【0014】このように制御の後、下死点の位置決め
は、INP−A=1,INP−B=1の条件で行うが、
ある一定の下死点精度の許容範囲に入り軸間位置偏差許
容値内となれば、両ねじ軸が下死点に合致した下死点到
達とし下死点位置決め終了とする。この時、サーボパラ
メータを通常の設定に変更し、スライドの上昇を開始す
る。以上のように、サーボパラメータを連続的に変更
し、最適値に設定してサーボモータの応答性を高めて制
御するので、A軸、B軸間の位置偏差量が低減して下死
点に到達し、スライドの平行度が向上し、かつ下死点位
置決めのための待ち時間を小さくすることが出来る。
After such control, positioning of the bottom dead center is performed under the conditions of INP-A = 1 and INP-B = 1.
If the value falls within a certain allowable range of the bottom dead center accuracy and is within the allowable value of the inter-axis position deviation, the two screw shafts reach the bottom dead center that matches the bottom dead center, and the bottom dead center positioning ends. At this time, the servo parameters are changed to the normal settings, and the ascending of the slide is started. As described above, since the servo parameters are continuously changed and set to the optimum values to increase the response of the servomotor and perform control, the amount of positional deviation between the A-axis and the B-axis is reduced and the bottom dead center is reduced. As a result, the parallelism of the slide is improved, and the waiting time for positioning the bottom dead center can be reduced.

【0015】[0015]

【発明の効果】以上の説明から明らかなように、本発明
によれば、駆動源として設けた複数のサーボモータに連
結したそれぞれのねじ軸間の位置偏差量が大きい場合
は、サーボパラメータを段階的に、かつ連続的に大きい
方へ順に変更して制御遅れを低減させるので、ねじ軸間
の位置偏差量を減少させ、スライドの平行度が向上し、
かつ下死点の位置決めが早い。従って、下死点における
位置決めの待ち時間が極めて小さくなり、サーボプレス
の運転効率が向上する等の効果がある。
As is apparent from the above description, according to the present invention, when the amount of positional deviation between the respective screw shafts connected to a plurality of servomotors provided as drive sources is large, the servo parameters are stepped. Since the control delay is reduced by successively and sequentially changing to the larger one, the amount of positional deviation between the screw axes is reduced, and the parallelism of the slide is improved.
And the positioning of the bottom dead center is fast. Accordingly, there is an effect that the waiting time for positioning at the bottom dead center is extremely short, and the operation efficiency of the servo press is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】同期制御装置のアルゴニズムのフローチャート
FIG. 1 is a flowchart of an algorithm of a synchronous control device.

【図2】サーボプレスの要部正面図FIG. 2 is a front view of a main part of a servo press.

【図3】従来例の偏心荷重を受けたスライドの状態説明
FIG. 3 is an explanatory view of a state of a slide subjected to an eccentric load according to a conventional example.

【図4】図3のスライド位置の時系列的説明図FIG. 4 is a time-series explanatory diagram of a slide position in FIG. 3;

【図5】従来例のアルゴニズムのフローチャート図FIG. 5 is a flowchart of a conventional algorithm.

【符号の説明】[Explanation of symbols]

1はサーボプレス、2は機体、3X,3Yはサーボモー
タ、4はボールねじ部、5はスライド、6はエアバラン
サ、7はリニアセンサ検出部、8は検出ヘッド、9はボ
ルスタ、である。
1 is a servo press, 2 is a fuselage, 3X and 3Y are servomotors, 4 is a ball screw part, 5 is a slide, 6 is an air balancer, 7 is a linear sensor detector, 8 is a detection head, and 9 is a bolster.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数のサーボモータを駆動源として、それ
ぞれのサーボモータに連結するねじ軸を回転駆動してス
ライドを昇降運動させるサーボプレスの同期制御装置に
おいて、(イ)プレス加工時にそれぞれの前記ねじ軸ご
との位置偏差を比較して軸間偏差を求め、(ロ)この数
値があらかじめ設定された前記サーボモータのしきい値
を超え、かつ下死点位置でなく、実際の前記スライドの
位置が位置指令値に対してオーバーシュートしていない
場合には、位置偏差量の過大な前記ねじ軸を選択し、そ
の前記ねじ軸のサーボパラメータを、あらかじ設定され
た位置偏差量、または軸間位置偏差量ごとに割り振られ
たサーボパラメータに、位置偏差量に応じて連続的に設
定変更し、(ハ)また、設定変更されたねじ軸のモータ
電流値を観測して、前記モータ電流値が前記サーボモー
タの仕様電流値の上限に到達した場合には、位置偏差量
レベルを低下変更し、その前記位置偏差量レベルで割り
振られたサーボパラメータに設定変更するとともに、
(ニ)上述の(イ)〜(ハ)項の条件に合致しない場合
には、サーボパラメータを初期値に設定変更し、それぞ
れの前記ねじ軸ごとに下死点位置の位置決め完了範囲を
設けて、全ての前記ねじ軸がこの下死点位置の位置決め
完了範囲内に到達した場合にプレス加工を終了すること
を特徴とするサーボプレスの同期制御装置。
1. A synchronous control device for a servo press, in which a plurality of servo motors are used as drive sources and a screw shaft connected to each servo motor is driven to rotate to move a slide up and down. The difference between the axes is determined by comparing the position deviation of each screw shaft. (B) This value exceeds a preset threshold value of the servomotor and is not the bottom dead center position but the actual slide position. If does not overshoot with respect to the position command value, select the screw axis with an excessive position deviation amount, and change the servo parameter of the screw axis to the preset position deviation amount or the distance between axes. Continuously change the servo parameters assigned to each position deviation amount according to the position deviation amount, and (c) observe the motor current value of the screw shaft whose setting has been changed. Together when said motor current value reaches the upper limit of the specification current value of the servo motor is changed lowered position deviation level, changes the setting to the servo parameter allocated at that the position deviation level,
(D) If the above conditions (a) to (c) are not satisfied, the servo parameters are changed to the initial values, and a positioning completion range of the bottom dead center position is provided for each of the screw shafts. And a servo press synchronous control device, wherein the press working is terminated when all the screw shafts reach the positioning completion range of the bottom dead center position.
JP01418099A 1999-01-22 1999-01-22 Servo press synchronous control device Expired - Fee Related JP3644666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01418099A JP3644666B2 (en) 1999-01-22 1999-01-22 Servo press synchronous control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01418099A JP3644666B2 (en) 1999-01-22 1999-01-22 Servo press synchronous control device

Publications (2)

Publication Number Publication Date
JP2000210795A true JP2000210795A (en) 2000-08-02
JP3644666B2 JP3644666B2 (en) 2005-05-11

Family

ID=11853953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01418099A Expired - Fee Related JP3644666B2 (en) 1999-01-22 1999-01-22 Servo press synchronous control device

Country Status (1)

Country Link
JP (1) JP3644666B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160099A (en) * 2000-11-29 2002-06-04 Kawasaki Hydromechanics Corp Press method and equipment using ac servomotor drive
US6520077B1 (en) * 1999-03-31 2003-02-18 Aida Engineering Co., Ltd. Screw press
JP2009226451A (en) * 2008-03-24 2009-10-08 Amino:Kk Slide inclination reduction device
DE102011102178B4 (en) 2010-05-24 2022-11-10 H & T Produktions Technologie Gmbh servo screw press

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6520077B1 (en) * 1999-03-31 2003-02-18 Aida Engineering Co., Ltd. Screw press
JP2002160099A (en) * 2000-11-29 2002-06-04 Kawasaki Hydromechanics Corp Press method and equipment using ac servomotor drive
JP2009226451A (en) * 2008-03-24 2009-10-08 Amino:Kk Slide inclination reduction device
DE102011102178B4 (en) 2010-05-24 2022-11-10 H & T Produktions Technologie Gmbh servo screw press

Also Published As

Publication number Publication date
JP3644666B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JPS63120055A (en) Numerically controlled feeding device
US5777294A (en) Laser beam machining system and method using preliminary work commands
JP3083870B2 (en) Numerical control unit
JPH0732979B2 (en) Acceleration / deceleration control device
JP2000210795A (en) Synchronization controller for servo press
JPH11129144A (en) Control device for nc machine tool
EP1122624A2 (en) Machine tool driving control apparatus
JPH11245118A (en) Screw processing controller
KR0135308B1 (en) Method of controlling servomotors
JPH11202926A (en) Method and device for feed speed control in numerical control
JP7376329B2 (en) Electric motor control device and electric motor control method
JP2003230996A (en) Control method for multi-shaft servo drive press
JP2001312309A (en) Numerical control working machine and acceleration/ deceleration control method therefor
JPH0363475B2 (en)
JP2000005900A (en) Method and device for controlling electric motor bender
JPH0331906A (en) Numerical controller
JPS6399135A (en) Control method of electric discharge machining
JPH0384603A (en) Automatic control system for backlash acceleration value
JPH09155688A (en) Work movement control device
JPS61103207A (en) Numerical control system
JP2002062937A (en) Abnormality detecting method and abnormality detecting device for position detector
JPH05111823A (en) Position control method and device thereof for electric discharge machine
JP2716597B2 (en) Chopping correction method
JPH117313A (en) Numerical controller
JPH0761557B2 (en) Laser processing equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees