JP2000210671A - Continuously regenerating type desalting system - Google Patents

Continuously regenerating type desalting system

Info

Publication number
JP2000210671A
JP2000210671A JP11015320A JP1532099A JP2000210671A JP 2000210671 A JP2000210671 A JP 2000210671A JP 11015320 A JP11015320 A JP 11015320A JP 1532099 A JP1532099 A JP 1532099A JP 2000210671 A JP2000210671 A JP 2000210671A
Authority
JP
Japan
Prior art keywords
hollow fiber
porous body
exchange group
water
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11015320A
Other languages
Japanese (ja)
Inventor
Takahiro Hori
隆博 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11015320A priority Critical patent/JP2000210671A/en
Publication of JP2000210671A publication Critical patent/JP2000210671A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PROBLEM TO BE SOLVED: To supply high purity deionized water equal to theoretically pure water without the regenerating operation of an ion exchange body in a pure water production process. SOLUTION: In the electrodialyzer provided with a cathode and an anode and in which plural sheets of ion exchange membranes are charged between the electrodes, the hollow fiber-shaped porous body having an anion exchange group and/or the hollow fiber-shaped porous body having a cation exchange group are filled in a desalting chamber formed by the ion exchange membrane, and a concentrating chamber is also formed by the ion exchange membrane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続再生式の脱塩
システム、特に、純水製造プロセスにおいて、連続的に
脱塩を行うシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous regeneration type desalination system, and more particularly to a system for continuously desalination in a pure water production process.

【0002】[0002]

【従来の技術】純水に近い比較的低イオン濃度の被処理
水からイオン除去する際に、一般的に使用される脱塩シ
ステムにおいては、イオン交換樹脂の再生操作が不可欠
であったが、近年、新システムとして、この樹脂再生操
作を省いた連続再生式脱塩システムの概念が見直され、
いくつかの実用化に向けた改良の提案がなされている。
これらの発明は、いずれもそれまでの方式、すなわち、
電気透析装置の脱塩室にイオン交換樹脂を充填する方法
(米国特許2815320)におけるビーズ状のイオン
交換樹脂形状に改良を加え、より樹脂再生速度を上げ、
単位処理水量に必要なイオン交換膜面積、所用電気料、
必要スペースを削減し、かつ、さらに低濃度までの脱塩
を可能ならしめることを意図したものである。
2. Description of the Related Art In a commonly used desalting system, when removing ions from water to be treated having a relatively low ion concentration close to pure water, a regeneration operation of an ion exchange resin is indispensable. In recent years, as a new system, the concept of a continuous regeneration type desalination system that eliminates this resin regeneration operation has been reviewed,
There have been some proposals for improvements for practical use.
Each of these inventions is based on the previous system,
In the method of filling the desalting chamber of the electrodialysis apparatus with the ion exchange resin (U.S. Pat. No. 2,815,320), the shape of the ion exchange resin in the form of beads was improved to increase the resin regeneration speed.
Ion exchange membrane area required for unit treated water volume, required electricity,
It is intended to reduce the required space and to enable desalination to even lower concentrations.

【0003】例えば、不織布状のイオン交換体を使用す
るものとして、特開平7−100391、特開平9−9
9221、繊維状のイオン交換体を使用するものとし
て、特開平9−24374などがある。それまでの方式
が、イオン交換体としてビーズ状のイオン交換樹脂を使
用しており、樹脂再生時における、樹脂内に捕捉された
イオンの通過経路となる樹脂と樹脂の接触部分が点接触
であるため、補足イオン移動速度が制限され、樹脂再生
速度低下をきたしていたのに対し、これらの発明では、
従来のビーズ状樹脂を、繊維状あるいは不織布状のイオ
ン交換体に替えることで、樹脂間線接触部によるイオン
通過経路を形成しようとするものである。
[0003] For example, Japanese Patent Application Laid-Open Nos. 7-100139 and 9-9 describe the use of non-woven ion exchangers.
Japanese Patent Application Laid-Open No. 9-24374 and the like use a 9221 fibrous ion exchanger. Until then, a bead-shaped ion exchange resin was used as the ion exchanger, and the point of contact between the resin and the resin, which is the passage path of the ions trapped in the resin during resin regeneration, is point contact. Therefore, the supplementary ion movement speed was limited, and the resin regeneration speed was reduced, whereas in these inventions,
By replacing a conventional bead-shaped resin with a fibrous or non-woven ion exchanger, an ion passage path is formed by a resin-to-resin wire contact portion.

【0004】しかし、これら発明に於いても尚、通電に
よる樹脂再生速度が不十分なため、処理水量に限界があ
るうえ、半導体用の超純水として使用されるほどの低濃
度までの脱塩効率が得られないという問題があり、連続
再生式脱塩システムの実用化は未だ限定されたレベルに
とどまっている。すなわち、低濃度まで脱塩する目的
で、水中イオンとイオン交換基との接触効率を上げるた
めにビーズ状イオン交換樹脂などを密に充填すると、通
電による樹脂再生速度が低下し、逆に樹脂再生速度を上
げることを意図して繊維状のイオン交換体を導入する
と、水中イオンとイオン交換基との接触効率が低下し、
脱塩能力が低下するという問題があった。
However, even in these inventions, since the resin regeneration rate by energization is insufficient, the amount of treated water is limited, and desalination to a concentration low enough to be used as ultrapure water for semiconductors. There is a problem that efficiency cannot be obtained, and the practical application of the continuous regeneration type desalination system is still at a limited level. That is, if a bead-like ion exchange resin or the like is densely packed in order to increase the contact efficiency between ions in water and ion exchange groups for the purpose of desalting to a low concentration, the resin regeneration speed by energization decreases, and conversely, the resin regeneration When a fibrous ion exchanger is introduced with the intention of increasing the speed, the contact efficiency between ions in water and ion exchange groups decreases,
There was a problem that the desalination ability was reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明者は、充分な樹
脂再生速度を有し、コンパクトで、大処理量、かつ、極
低濃度までの脱塩能力を有する連続再生式の脱塩装置を
提供することを目的とする。
SUMMARY OF THE INVENTION The present inventor has developed a continuous regeneration type desalination apparatus which has a sufficient resin regeneration rate, is compact, has a large throughput, and has a desalination ability up to an extremely low concentration. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明者らは、鋭意研究の結果、イオン交換体とし
て、中空糸多孔体を用いることで、上記課題の解決に著
しい効果を上げられることを見出し、本願発明に至った
ものである。さらに、本発明について詳しく説明する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies and as a result, the use of a hollow fiber porous body as an ion exchanger has a remarkable effect in solving the above-mentioned problems. That is, the present invention has been accomplished. Further, the present invention will be described in detail.

【0007】本発明における連続再生式脱塩システム
は、陰極および陽極を備え、両極間に複数枚のイオン交
換膜を装填した電気透析システムで、複数枚のイオン交
換膜が導入されることによって、脱塩室と濃縮室が交互
に形成されているが、このうち、脱塩室に中空糸状のイ
オン交換体を充填したものである。充填した状態を図1
および図2に示す。
[0007] The continuous regeneration type desalination system of the present invention is an electrodialysis system comprising a cathode and an anode, and a plurality of ion exchange membranes loaded between the two electrodes, wherein a plurality of ion exchange membranes are introduced. The desalting chamber and the concentrating chamber are formed alternately. Of these, the desalting chamber is filled with a hollow fiber ion exchanger. Figure 1 shows the filled state
And FIG.

【0008】図1は、連続再生正式脱塩システムを横か
ら見た概念図、図2は、該脱塩システムのうち、脱塩室
を上から見た概念図である。1はアニオン交換膜、2は
カチオン交換膜、3はアニオン交換基を有する中空糸多
孔体、4はカチオン交換基を有する中空糸多孔体、5、
6はそれぞれ、正、負の電極、また、2枚のイオン交換
膜で仕切られた空間よりなる7は脱塩室、8は濃縮室と
なる。
FIG. 1 is a conceptual diagram of a continuous regeneration formal desalination system as viewed from the side, and FIG. 2 is a conceptual diagram of the desalination chamber of the desalination system as viewed from above. 1 is an anion exchange membrane, 2 is a cation exchange membrane, 3 is a hollow fiber porous body having an anion exchange group, 4 is a hollow fiber porous body having a cation exchange group, 5,
Reference numeral 6 denotes a positive electrode, a negative electrode, and a space defined by two ion exchange membranes. Reference numeral 7 denotes a desalination chamber, and reference numeral 8 denotes a concentration chamber.

【0009】図2に示すように、アニオン交換基を有す
る中空糸多孔体はアニオン交換膜と、カチオン交換基を
有する中空糸多孔体はカチオン交換膜と、面で接触して
いる。ここで、イオン交換基としては、一般的にイオン
交換樹脂に用いられる広範な官能基を用いることができ
るが、代表的なものとして、アニオン交換基としては、
3級アミンあるいは4級アミンを有するもの、クロロメ
チルスチレンを4級化したもの、及びピリジン系やイミ
ダゾール系などの複素環の窒素原子を4級化したものが
あり、カチオン交換基としては、スルホン酸基、リン酸
基、カルボキシル基などがある。
As shown in FIG. 2, the hollow fiber porous body having an anion exchange group is in surface contact with an anion exchange membrane, and the hollow fiber porous body having a cation exchange group is in surface contact with a cation exchange membrane. Here, as the ion exchange group, a wide range of functional groups generally used in ion exchange resins can be used, and as a typical example, as the anion exchange group,
Examples include those having a tertiary amine or a quaternary amine, those obtained by quaternizing chloromethylstyrene, and those obtained by quaternizing a nitrogen atom of a heterocyclic ring such as pyridine or imidazole. There are an acid group, a phosphoric acid group, a carboxyl group and the like.

【0010】中空糸多孔体において、多孔体内部に保持
されているアニオン交換基あるいはカチオン交換基の含
有量には特に制限は無いが、十分な再生速度を得るため
に、多孔体1gあたり0.1ミリ等量以上、また、水分
による多孔体の過度の膨潤を防ぐ為に、多孔体1gあた
り10ミリ等量以下が特に好ましい。ここに於いて、イ
オン交換基含有量は、実施例の項で後述する通常の化学
的手法により比較的容易に定量することができる。
In the hollow fiber porous body, the content of the anion exchange group or the cation exchange group held in the porous body is not particularly limited. However, in order to obtain a sufficient regeneration rate, the content of 0.1 g / g of the porous body is required. In order to prevent excessive swelling of the porous body due to moisture, the amount is particularly preferably 1 milliequivalent or more and 10 milliequivalents or less per 1 g of the porous body. Here, the ion exchange group content can be relatively easily quantified by a usual chemical method described later in the section of Examples.

【0011】中空糸状多孔体の寸法については、その内
径、外径、肉厚を選ぶことにより、透水性能、イオン除
去性能、再生速度を最適化することができる。例えば、
内径は、中空糸軸方向に沿って均一な透水量を確保する
ために、0.2mm以上、再生速度の低下を抑えるた
め、3mm以下が好ましく、肉厚は、イオンのリークを
抑える為に、50μm以上、透水量低下を防ぐ為に、
1.5mm以下が好ましい。
With regard to the dimensions of the hollow fiber-shaped porous body, its water permeability, ion removal performance, and regeneration speed can be optimized by selecting its inner diameter, outer diameter, and wall thickness. For example,
The inner diameter is preferably 0.2 mm or more in order to secure a uniform water permeability along the hollow fiber axis direction, and 3 mm or less in order to suppress a decrease in the regeneration speed. 50μm or more, in order to prevent a decrease in water permeability,
1.5 mm or less is preferable.

【0012】中空糸多孔体は、イオン交換膜の間に挟ま
れることによって、スペーサーとしての役割も果たして
おり、充填する中空糸多孔体の寸法によって、イオン交
換膜の間隔は、0.3〜8mmの値をとりうるが、投入
電気量に対する再生効率、また省スペースの点から、
0.3〜5mmが好ましい。上記、イオン交換基を有す
る中空糸多孔体の具体例として、以前、本発明者らによ
って特願昭61−99387、特願平8−88281に
開示されている中空糸状のアニオン吸着膜、あるいはカ
チオン吸着膜を挙げることができる。
The hollow fiber porous body also serves as a spacer by being sandwiched between the ion exchange membranes. Depending on the size of the hollow fiber porous body to be filled, the interval between the ion exchange membranes is 0.3 to 8 mm. However, from the viewpoint of the regeneration efficiency with respect to the amount of input electricity and the space saving,
0.3-5 mm is preferred. Specific examples of the above-mentioned porous hollow fiber body having an ion exchange group include a hollow fiber-like anion adsorption membrane disclosed in Japanese Patent Application Nos. 61-99387 and 8-88281 by the present inventors, or a cation. An adsorption film can be mentioned.

【0013】次に、本発明の脱塩システムの運転方法を
示す。図1において、被処理水の流れを9,10,11
と示す。原水はまず、被処理水として、カチオン交換基
を有する中空糸多孔体(4)の中空内部に導入される。
被処理水が中空糸壁を通過する間に、水中のカチオン成
分は、多孔体内部のカチオン交換基によって捕捉される
(9)。中空糸壁を通過して脱塩室内に流出した被処理
水(10)は、引き続いて、アニオン交換基を有する中
空糸多孔体の外部から中空糸壁を通って中空糸内部へ導
かれる。アニオン交換基を有する中空糸多孔体の中空糸
壁を通過する間に、被処理水中のアニオン成分が除去さ
れる(11)。以上の工程を経て、被処理水は脱塩を完
了した処理水として生産される。
Next, an operation method of the desalination system of the present invention will be described. In FIG. 1, the flow of the water to be treated is 9, 10, 11
Is shown. Raw water is first introduced into the hollow interior of the hollow fiber porous body (4) having a cation exchange group as water to be treated.
While the water to be treated passes through the hollow fiber wall, the cation component in the water is captured by the cation exchange groups inside the porous body (9). The water to be treated (10) flowing out of the hollow fiber wall into the desalting chamber is subsequently guided from the outside of the hollow fiber porous body having an anion exchange group to the inside of the hollow fiber through the hollow fiber wall. While passing through the hollow fiber wall of the hollow fiber porous body having an anion exchange group, the anion component in the water to be treated is removed (11). Through the above steps, the water to be treated is produced as treated water after desalination is completed.

【0014】ここで示した方法では、被処理水は最初
に、カチオン交換基を有する多孔体の内部に導かれた
が、最初にアニオン交換基を有する多孔体の内部に導
き、処理水中のアニオンを除去してから、カチオン除去
処理を行ってもかまわない。また、被処理水の水質によ
っては、脱塩室に設置する中空糸多孔体として、アニオ
ン交換基を有するもの、カチオン交換基を有するものの
うちいずれか一方のみであってもかまわない。たとえ
ば、硬水軟化を目的として水中のカルシウムイオンを積
極的に除去したいような場合、カチオン交換基を有する
中空糸多孔体のみを設置した連続再生式脱塩システムの
採用が考えられる。また、ボイラー用水の処理などのよ
うに、コロイダルシリカやアニオン性の金属錯体を選択
的に除去する場合は、アニオン交換基を有する中空糸多
孔体のみを設置した連続再生式脱塩システムが好適に使
用される。
In the method described here, the water to be treated was first introduced into the porous body having a cation exchange group, but was first introduced into the porous body having an anion exchange group, and the anion contained in the treated water. May be removed and then cation removal treatment may be performed. Further, depending on the quality of the water to be treated, the hollow fiber porous body installed in the desalting chamber may be either one having an anion exchange group or one having a cation exchange group. For example, when it is desired to positively remove calcium ions in water for the purpose of softening water, a continuous regeneration type desalination system in which only a hollow fiber porous body having a cation exchange group is provided can be considered. In the case of selectively removing colloidal silica or an anionic metal complex as in the treatment of boiler water, a continuous regeneration type desalination system in which only hollow fiber porous bodies having anion exchange groups are preferably used. used.

【0015】本発明による連続再生式脱塩システムにお
いては、中空糸多孔体の持つ濾過機能によって微粒子除
去性能を得ることも可能である。また、濾過機能を特に
重視した場合、最初に透過させる中空糸多孔体におい
て、全濾過方式のみでなく、クロスフロー方式による通
水も可能である。
In the continuous regeneration type desalination system according to the present invention, it is possible to obtain fine particle removal performance by the filtration function of the hollow fiber porous material. When the filtration function is particularly emphasized, not only the all-filtration method but also the cross-flow method can be used for the porous hollow fiber to be permeated first.

【0016】[0016]

【発明の実施の形態】以下に実施例を示すが、実施例は
本発明の実施態様を限定するものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples are shown below, but the examples do not limit the embodiments of the present invention.

【0017】[0017]

【実施例1】アニオン交換基を有する中空糸状の多孔体
の合成は、以下の手法に依った。アニオン交換基を導入
する前の中空糸状の基材は、公知の方法で合成した。す
なわち、微粉ケイ酸(商標名 Aerosil R−9
72)25.0重量部、ジブチルフタレート(DBP)
51.0重量部、ポリエチレン樹脂粉末(旭化成工業
(株)製 SH−800グレード)24.0重量部の組
成物を予備混合した後、2軸押し出し機内で中空糸状に
押し出した。該中空糸を、温度60℃の20%苛性ソー
ダ水溶液中に約20分間浸漬して、微粉ケイ酸を抽出し
た後、水洗、乾燥させることにより合成した。このよう
にして得られた中空糸多孔体は、内径0.7mm、外径
1.2mmであった。
Example 1 The hollow fiber-like porous body having an anion exchange group was synthesized by the following method. The hollow fiber-shaped substrate before the introduction of the anion exchange group was synthesized by a known method. That is, finely divided silica (trade name Aerosil R-9)
72) 25.0 parts by weight, dibutyl phthalate (DBP)
After preliminarily mixing 21.0 parts by weight of a composition of 51.0 parts by weight and 24.0 parts by weight of polyethylene resin powder (SH-800 grade manufactured by Asahi Kasei Kogyo Co., Ltd.), the mixture was extruded into a hollow fiber in a twin-screw extruder. The hollow fiber was synthesized by immersing it in a 20% aqueous solution of caustic soda at a temperature of 60 ° C. for about 20 minutes to extract fine silica powder, followed by washing with water and drying. The hollow fiber porous body thus obtained had an inner diameter of 0.7 mm and an outer diameter of 1.2 mm.

【0018】続いて、該中空糸多孔体にアニオン交換基
を導入した。すなわち、得られた中空糸多孔体に対しC
o60よりのγ線を100kGy照射し、引き続いて、
0.75mol/Lのクロロメチルスチレンおよび0.
05mol/Lのジビニルベンゼンを溶存させたエタノ
ール溶液中に投入した。反応温度は40℃、反応時間は
15時間とした。反応後、中空糸多孔体を取り出し、ト
リメチルアミン10%を溶存させた水、アセトンの1:
1溶液に浸漬し、30℃で50時間反応させ、導入した
クロロメチルスチレンを4級化した。得られた中空糸多
孔体について、アニオン交換基導入量を求めた。すなわ
ち、該多孔体を1N水酸化ナトリウム溶液中に十分時間
浸漬し、アニオン交換基をOH型にした後、乾燥重量を
測定し、再び、水に濡らした後、1NのNaCl水溶液
中に十分時間浸漬して、Clイオンを吸着させた後、1
N硝酸カリウム溶液によって吸着したClイオンを溶離
し、溶離液中のClイオン濃度を沈殿滴定により測定
し、該Cl吸着量を多孔体乾燥重量で割った値としてア
ニオン交換基導入量を求めた。アニオン交換基導入量
は、乾燥した中空糸多孔体1gあたり2.3ミリ等量で
あった。
Subsequently, an anion exchange group was introduced into the hollow fiber porous body. That is, the obtained hollow fiber porous body has C
Irradiation of 100 kGy of γ-rays from o60, followed by
0.75 mol / L of chloromethylstyrene and 0.
It was put into an ethanol solution in which 05 mol / L of divinylbenzene was dissolved. The reaction temperature was 40 ° C., and the reaction time was 15 hours. After the reaction, the hollow fiber porous body was taken out, and water and acetone containing 10% of trimethylamine were dissolved in acetone.
The solution was immersed in one solution and reacted at 30 ° C. for 50 hours to quaternize the introduced chloromethylstyrene. With respect to the obtained hollow fiber porous body, the amount of anion exchange group introduced was determined. That is, the porous body was immersed in a 1N sodium hydroxide solution for a sufficient time to convert the anion exchange group into an OH-form, weighed dry weight, wetted again with water, and then immersed in a 1N aqueous NaCl solution for a sufficient time. After immersion to adsorb Cl ions, 1
The Cl ion adsorbed by the N potassium nitrate solution was eluted, the Cl ion concentration in the eluate was measured by precipitation titration, and the Cl adsorption amount was divided by the dry weight of the porous material to determine the amount of anion exchange group introduced. The introduced amount of the anion exchange group was 2.3 milliequivalents per gram of the dried porous hollow fiber.

【0019】同様な方法で、押し出し機によって得た中
空糸多孔体に対し、カチオン交換基を導入する。該中空
糸多孔体に、Co60よりのγ線を100kGy照射
し、0.6mol/Lのスチレンおよび0.04mol
/Lのジビニルベンゼンを溶存させたエタノール溶液に
浸漬して、50℃で12時間反応を行った。得られた中
空糸多孔体を、クロルスルホン酸液中に浸漬し、30℃
で1時間反応させ、導入したスチレンにスルホン酸基を
導入した。得られた中空糸多孔体について、アニオン交
換基を有する中空糸多孔体と同様な方法で、乾燥重量を
測定し、1mol/Lの硫酸銅水溶液中に十分時間浸漬
して、Cuイオンを吸着させた後、1N硝酸によって吸
着したCuイオンを溶離し、溶離液中のCuイオン濃度
を原子吸光により測定することによって求めた。カチオ
ン交換基導入量は、乾燥した中空糸多孔体1gあたり
1.7mmolであった。
In the same manner, a cation exchange group is introduced into the hollow fiber porous body obtained by the extruder. The hollow fiber porous body was irradiated with 100 kGy of γ-ray from Co60, and 0.6 mol / L of styrene and 0.04 mol
/ L of divinylbenzene was dissolved in an ethanol solution and reacted at 50 ° C. for 12 hours. The obtained hollow fiber porous body is immersed in chlorosulfonic acid solution,
For 1 hour to introduce a sulfonic acid group into the introduced styrene. The obtained hollow fiber porous body was measured for dry weight in the same manner as the hollow fiber porous body having an anion exchange group, and was immersed in a 1 mol / L copper sulfate aqueous solution for a sufficient time to adsorb Cu ions. After that, the Cu ions adsorbed by 1N nitric acid were eluted, and the Cu ion concentration in the eluate was determined by atomic absorption measurement. The introduction amount of the cation exchange group was 1.7 mmol per 1 g of the dried hollow fiber porous material.

【0020】以上のようにして得られたアニオン交換基
を有する中空糸多孔体およびカチオン交換基を有する中
空糸多孔体を、実験用の電気透析装置に導入した。イオ
ン交換膜面積等の条件を表1に示す。セル内の脱塩室の
構造は図2の通りである。中空糸多孔体は、いずれも末
端を封止し、全濾過方式とした。本文中記載の通り、被
処理水は、まず、カチオン交換基を有する中空糸多孔体
を内面から外部へ透過し、脱塩室内に流出する。さら
に、アニオン交換基を有する中空糸多孔体の外部から内
部へ透過し、セル外へ導かれる。
The hollow fiber porous material having an anion exchange group and the hollow fiber porous material having a cation exchange group obtained as described above were introduced into an experimental electrodialysis apparatus. Table 1 shows conditions such as the area of the ion exchange membrane. The structure of the desalting chamber in the cell is as shown in FIG. The ends of the hollow fiber porous bodies were all sealed, and all filtration was performed. As described in the text, the water to be treated first permeates the hollow fiber porous body having a cation exchange group from the inside to the outside, and flows out into the desalting chamber. Furthermore, the permeation of the hollow fiber porous body having an anion exchange group from the outside to the inside is guided to the outside of the cell.

【0021】該装置へ供給する原水は、RO処理水を用
いた。また、処理水量は、120L/hrとした。圧力
損失は0.5kg/cm2であった。処理水の純度を示
す処理水の比抵抗値は、DKK社製 AQ−11型比抵
抗計、そのシリカ濃度は、フレームレス原子吸光、微粒
子濃度はP.M.S.社製微粒子カウンターによって測
定した。脱塩システム稼働後、10時間経過後の処理水
をサンプリングし、その水質を計測した。
As raw water to be supplied to the apparatus, RO treated water was used. The treated water volume was 120 L / hr. The pressure loss was 0.5 kg / cm2. The specific resistance value of the treated water indicating the purity of the treated water is AQ-11 type resistivity meter manufactured by DKK, the silica concentration is flameless atomic absorption, and the fine particle concentration is P.P. M. S. It was measured by a fine particle counter manufactured by the company. After operating the desalination system, the treated water was sampled 10 hours later, and the water quality was measured.

【0022】脱塩システム入り口の水質と、処理後の水
質を表2に示す。比抵抗値は、ほぼ理論純水のそれを達
成しており、優れた脱塩能力が認められる。また、シリ
カ濃度、微粒子濃度も低減しており、中空糸多孔体によ
る濾過機能あるいはアニオン交換基を有する中空糸多孔
体による除去機能が発現したことがわかる。
Table 2 shows the water quality at the entrance of the desalination system and the water quality after the treatment. The specific resistance value almost achieves that of theoretical pure water, and excellent desalination ability is recognized. In addition, the silica concentration and the fine particle concentration were also reduced, indicating that the filtering function by the hollow fiber porous body or the removal function by the hollow fiber porous body having an anion exchange group was exhibited.

【0023】[0023]

【比較例1】実施例1で使用した電気透析装置に、平均
径200μmのイオン交換樹脂を充填した。実施例1と
同様にRO処理水を120L/hrで通水したところ、
圧力損失は0.8kg/cm2であった。結果を表2に
示す。イオン交換樹脂を用いた場合、実施例1に比べ、
十分な脱塩能力を示していない。
Comparative Example 1 The electrodialysis apparatus used in Example 1 was filled with an ion exchange resin having an average diameter of 200 μm. When RO treated water was passed at 120 L / hr in the same manner as in Example 1,
The pressure loss was 0.8 kg / cm2. Table 2 shows the results. When using an ion exchange resin,
Does not show sufficient desalination ability.

【0024】[0024]

【比較例2】実施例1と同じ装置を用い、電極間に電圧
をかけない状態で通水した。流量は同じ120L/hr
とした。結果を電極間に電圧をかけた実施例1と比較し
て、図3に示した。電圧をかけない場合、通水当初は、
理論純水を得ているものの、約7日間で、破過点に到達
しており、実施例1においては、通電によるイオン交換
多孔体の再生が極めて効果的に行われていることを示し
ている。
Comparative Example 2 Using the same apparatus as in Example 1, water was passed between the electrodes without applying a voltage. The flow rate is the same 120L / hr
And The results are shown in FIG. 3 in comparison with Example 1 in which a voltage was applied between the electrodes. If no voltage is applied,
Although theoretical pure water was obtained, the breakthrough point was reached in about 7 days, and in Example 1, it was shown that the regeneration of the ion-exchange porous body by energization was performed extremely effectively. I have.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】各産業における純水製造工程において、
超高純度水を樹脂の再生処理なしで、連続的に供給しう
るシステムであり、その効果ははかりしれない。
In the pure water production process in each industry,
It is a system that can supply ultra-high-purity water continuously without regenerating the resin, and its effect is insignificant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続再生式脱塩システムの概念図。FIG. 1 is a conceptual diagram of a continuous regeneration type desalination system.

【図2】連続再生式脱塩システムの脱塩室の概念図。FIG. 2 is a conceptual diagram of a desalination chamber of a continuous regeneration type desalination system.

【図3】比較例2の、長期通水処理結果。FIG. 3 shows the results of a long-term water passage treatment of Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA17 HA03 HA19 HA42 JA02A JA02B JA44A JA44B KA64 KE02P KE06P KE12P KE13P KE19P MA01 MA03 MA13 MA14 MA31 MA33 MC22X MC73 MC74X MC75 MC77 MC78 NA05 NA32 NA54 NA64 PA01 PB23 PC02 4D025 AA04 AB05 BA08 BA13 BA22 BA28 DA05 DA06 4D061 DA03 DB13 EA09 EB04 EB13 EB19 EB22 FA08 FA09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA17 HA03 HA19 HA42 JA02A JA02B JA44A JA44B KA64 KE02P KE06P KE12P KE13P KE19P MA01 MA03 MA13 MA14 MA31 MA33 MC22X MC73 MC74X MC75 MC77 MC78 NA05 NA32 NA54 PC02A04 A08 BA08 BA13 BA22 BA28 DA05 DA06 4D061 DA03 DB13 EA09 EB04 EB13 EB19 EB22 FA08 FA09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陰極および陽極を備え、両極間に複数枚
のイオン交換膜を装填した電気透析装置において、該イ
オン交換膜によって形成される脱塩室内にアニオン交換
基を有する中空糸多孔体、カチオン交換基を有する中空
糸多孔体のうち少なくとも一つが、充填されていること
を特徴とする連続再生式脱塩システム。
1. An electrodialysis apparatus comprising a cathode and an anode, wherein a plurality of ion exchange membranes are loaded between both electrodes, wherein a porous hollow fiber body having an anion exchange group in a desalting chamber formed by the ion exchange membrane; A continuous regeneration type desalination system, wherein at least one of the hollow fiber porous bodies having a cation exchange group is filled.
【請求項2】 中空糸多孔体が、その内部に、アニオン
交換基あるいはカチオン交換基を、1gあたり0.1〜
10ミリ等量保持していることを特徴とする請求項1に
記載の連続再生式脱塩システム。
2. The hollow fiber porous body contains therein an anion exchange group or a cation exchange group in an amount of 0.1 to 0.1 g / g.
The continuous regenerative desalination system according to claim 1, wherein the desalting system holds 10 milliequivalents.
JP11015320A 1999-01-25 1999-01-25 Continuously regenerating type desalting system Pending JP2000210671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11015320A JP2000210671A (en) 1999-01-25 1999-01-25 Continuously regenerating type desalting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11015320A JP2000210671A (en) 1999-01-25 1999-01-25 Continuously regenerating type desalting system

Publications (1)

Publication Number Publication Date
JP2000210671A true JP2000210671A (en) 2000-08-02

Family

ID=11885491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11015320A Pending JP2000210671A (en) 1999-01-25 1999-01-25 Continuously regenerating type desalting system

Country Status (1)

Country Link
JP (1) JP2000210671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539141A (en) * 2002-09-12 2005-12-22 アイオニクス インコーポレイテッド Electric deionized water production apparatus and method for sparse medium
JP2014511437A (en) * 2011-02-28 2014-05-15 ヴィート エヌブイ Novel separator, electrochemical cell having it, and use of separator in electrochemical cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539141A (en) * 2002-09-12 2005-12-22 アイオニクス インコーポレイテッド Electric deionized water production apparatus and method for sparse medium
JP2014511437A (en) * 2011-02-28 2014-05-15 ヴィート エヌブイ Novel separator, electrochemical cell having it, and use of separator in electrochemical cell
US10358729B2 (en) 2011-02-28 2019-07-23 Vito Nv Separator, an electrochemical cell therewith and use thereof therein

Similar Documents

Publication Publication Date Title
US3149061A (en) Removal of dissolved salts and silica from liquids
US5316637A (en) Electrodeionization apparatus
JP5252653B2 (en) Method for manufacturing sintered body
US20080035548A1 (en) Multi-functional filtration and ultra-pure water generator
WO1999048820A1 (en) Electric desalting apparatus
CA2529536C (en) Electrodeionization module and apparatus comprising it
JP2003112060A (en) Ion adsorbing resin and ion adsorbing porous material
JPH0889954A (en) Point-of-use module system
KR100454093B1 (en) Ion exchange textile for electrodeionization process
JP2000210671A (en) Continuously regenerating type desalting system
JP3659716B2 (en) Use point filter system
JP3555967B2 (en) Method for producing elution-resistant anion-adsorbing membrane and membrane thereof
US4769152A (en) Process for removing electrolyte
JP2733287B2 (en) Method for simultaneously removing multiple heavy metal ions
JP2921763B2 (en) Ultrapure water production method
JPH06206069A (en) Removal of ion
JPH08267063A (en) Primary pure water production system
JP2002355564A (en) Ion adsorbing body
JP3175846B2 (en) Method for measuring the concentration of dilute ion solution
JP2003190960A (en) Electric demineralizer
JPH07185544A (en) Extrapure water production system having silica removing function
JPH0985241A (en) Operating method for ultrapure water preparation system
JP2001170646A (en) Water passing method of electric deionized water production device
JPH05309243A (en) Regeneration method
JPH0290991A (en) Ion removing method