JP2000210595A - Classification capacity variable cyclone - Google Patents

Classification capacity variable cyclone

Info

Publication number
JP2000210595A
JP2000210595A JP11015354A JP1535499A JP2000210595A JP 2000210595 A JP2000210595 A JP 2000210595A JP 11015354 A JP11015354 A JP 11015354A JP 1535499 A JP1535499 A JP 1535499A JP 2000210595 A JP2000210595 A JP 2000210595A
Authority
JP
Japan
Prior art keywords
cyclone
gas
angle
particle size
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11015354A
Other languages
Japanese (ja)
Inventor
Hirohiko Tokunaga
宏彦 徳永
Motohiko Hara
元彦 原
Jiro Fujio
二郎 藤尾
Seiichi Nakai
誠一 中井
Michio Ishida
美智男 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP11015354A priority Critical patent/JP2000210595A/en
Publication of JP2000210595A publication Critical patent/JP2000210595A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cyclone which can change its classification capacity corresponding to the size of particles and the size of particles to be separated without lowering its separation efficiency. SOLUTION: A horizontal gas introduction duct 52 is connected in the tangential direction of a cyclone main body 51 to an inlet on one side of the top part of the cyclone main body 51. upper, middle, and lower guide vanes 53 are installed close to the main body 51 in the duct 52. Each guide vane 53 is fitted to a horizontal shaft 54 arranged in the duct width direction to be able to change its angle to the gas flow direction. The angle of the guide vanes can be changed by -10-30 degrees to the gas flow direction (horizontal direction). By the change of the angler of the guide vanes, the inflow angle in the downward direction to the cyclone of exhaust gas can be adjusted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみや産業廃
棄物を焼却する循環流動層炉および各種循環流動層反応
装置などに設置され、排ガス中の粒子、粉体を分離、分
級させるサイクロンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cyclone which is installed in a circulating fluidized-bed furnace and various circulating fluidized-bed reactors for incinerating municipal solid waste and industrial waste and separates and classifies particles and powder in exhaust gas. .

【0002】[0002]

【従来の技術】工場や装置の操業、運転において、運転
条件を変化させたとき、排ガス流速の変化から排ガス中
の粒子径分布が変化することがある。このような場合、
サイクロンの形状が固定されているので、粒子捕捉効率
が変化する。また循環流動床炉のように循環ベッド材を
繰り返し用いる間に平均粒子径が徐々に摩耗によつて小
さくなり、サイクロンの分級効率は徐々に低下する。
2. Description of the Related Art When operating conditions are changed in the operation or operation of a factory or an apparatus, the particle size distribution in exhaust gas sometimes changes due to a change in exhaust gas flow rate. In such a case,
Since the shape of the cyclone is fixed, the particle capture efficiency changes. Further, during repeated use of the circulating bed material as in a circulating fluidized bed furnace, the average particle diameter gradually decreases due to wear, and the cyclone classification efficiency gradually decreases.

【0003】特開平3−79906号公報には、図5に
示すように、サイクロン本体(31)頂部の出口管(32)内に
内筒(33)を配し、出口管(32)内への内筒(33)の内挿寸法
を変化させることによつて分級性能を変化させることが
記載されている。
In Japanese Patent Application Laid-Open No. Hei 3-79906, as shown in FIG. 5, an inner cylinder (33) is arranged in an outlet pipe (32) at the top of a cyclone body (31), and the inner pipe (33) is inserted into the outlet pipe (32). It is described that the classification performance is changed by changing the interpolation dimension of the inner cylinder (33).

【0004】しかしながら、この方法では、分級性能を
低下させることはできても、分級対象粒子径を変えるこ
とによって分級性能を変化させることはできない。
[0004] However, in this method, the classification performance can be reduced, but the classification performance cannot be changed by changing the particle size of the classification target.

【0005】[0005]

【発明が解決しようとする課題】一般に、従来のサイク
ロンは目的とする粒子径以上の粒子を捕捉できるように
設計されており、粒子径分布が大きくなれば分級効率は
上昇するが、粒子径分布が小さくなれば捕捉できない粒
子が多くなり、分離効率は低下することになる。分級性
能を低下させることができる上記特開平3−79906
号公報の方法においても、粒子分離効率を向上させるこ
とはできない。
Generally, a conventional cyclone is designed to capture particles having a particle size larger than a target particle size. The classification efficiency increases as the particle size distribution increases, but the particle size distribution increases. As the particle size becomes smaller, the number of particles that cannot be captured increases, and the separation efficiency decreases. Japanese Patent Application Laid-Open No. 3-79906 which can reduce the classification performance
However, the method disclosed in Japanese Patent Application Laid-Open Publication No. H11-133125 cannot improve the particle separation efficiency.

【0006】本発明は、上記の点に鑑み、分離効率を低
下させることなく、粒子径の変化に応じて分級性能を変
え、対象分離粒子径を自在に変化させることができるサ
イクロンを提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a cyclone capable of changing a classification performance according to a change in particle diameter and freely changing a target particle diameter without lowering separation efficiency. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明による分級性能可
変サイクロンは、粒子径分布が変動する粒子を含むガス
から粒子を分離するサイクロンにおいて、その本体の上
端一側に設けられたガス導入ダクト内にガス流れ方向に
対して上下に角度を自在に変化させることができるガイ
ドベーンを設置し、ガスの垂直方向速度成分を変化させ
ることができるようにしたことを特徴とするものであ
る。
SUMMARY OF THE INVENTION A cyclone for variable classification performance according to the present invention is a cyclone for separating particles from a gas containing particles having a variable particle size distribution in a gas introduction duct provided at one upper end of a main body of the cyclone. A guide vane capable of freely changing the angle up and down with respect to the gas flow direction is provided so that the vertical velocity component of the gas can be changed.

【0008】ガイドベーンは複数枚たとえば3枚〜5枚
程度設置することが好ましい。
It is preferable to provide a plurality of guide vanes, for example, about 3 to 5 guide vanes.

【0009】ガス導入ダクトは通常は水平に配され、粒
子径分布に対応してガイドベーンの角度をガス流れ方向
に対して好ましくは−10゜〜30゜、より好ましくは
0゜〜20゜の範囲で変動させる。
The gas introduction duct is usually arranged horizontally, and the angle of the guide vane is preferably -10 ° to 30 °, more preferably 0 ° to 20 ° with respect to the gas flow direction in accordance with the particle size distribution. Range.

【0010】このような構成の分級性能可変サイクロン
を、たとえば都市ごみや産業廃棄物を焼却する循環流動
層炉および各種循環流動層反応装置などに設置すること
が好ましい。
It is preferable to install the classifying performance variable cyclone having such a configuration in a circulating fluidized bed furnace for incinerating municipal solid waste or industrial waste, various circulating fluidized bed reactors, and the like.

【0011】[0011]

【発明の実施の形態】図1および図2において、サイク
ロン本体(51)の頂部一側の入口にサイクロン本体(51)の
接線方向に水平のガス導入ダクト(52)が接続されてい
る。ガス導入ダクト(52)の内部にはサイクロン本体(51)
に近接してガイドベーン(53)が上中下3枚配設されてい
る。各ガイドベーン(53)は、ダクト幅方向に配された水
平支軸(54)に、ガス流れ方向に対して角度を自在に変化
させることができるように、それぞれ取付けられてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIGS. 1 and 2, a gas inlet duct (52) tangential to the cyclone body (51) is connected to an inlet on one side of the top of the cyclone body (51). Cyclone body (51) inside gas introduction duct (52)
The guide vanes (53) are arranged in the vicinity of the upper and lower three pieces. Each guide vane (53) is attached to a horizontal support shaft (54) arranged in the duct width direction so that the angle with respect to the gas flow direction can be freely changed.

【0012】ガイドべーンの角度はガス流れ方向に対し
て(この実施例では水平方向に対して)−10゜〜30
゜程度可動することができる。分離効率を低下させない
ためにはガイドべーンの角度をガス流れ方向に対して0
゜〜20゜程度可動させることが望ましい。
The angle of the guide vane is -10 ° to 30 with respect to the gas flow direction (in this embodiment, with respect to the horizontal direction).
Can move about ゜. In order not to lower the separation efficiency, the angle of the guide vane should be 0 with respect to the gas flow direction.
It is desirable to be able to move about {20}.

【0013】このガイドべーンの角度変更により、排ガ
スのサイクロンへの下向き方向流入角度を調節すること
ができる。
By changing the angle of the guide vane, it is possible to adjust the downward flow angle of the exhaust gas into the cyclone.

【0014】図3は、ガイドベーン角度を0゜とした場
合と、同角度を7.5゜、15゜とした場合の分級効率
の違いを示す(数値シュミレーション結果)。これらの
分級性能の違いを利用して、運転条件が変化して排ガス
中の粒子径分布が変化したときや、循環粒子が摩耗によ
って微細化したときなどにも、分級効率を低下させるこ
となく、粒子の捕捉を確実に行うことができる。たとえ
ば、図3から、粒子径分布50μm以上の場合は、サイ
クロンへの下向き角度15゜が望ましいが、粒子径分布
が50μm以下の場合、サイクロンへの下向き角度は0
゜が望ましいことがわかる。
FIG. 3 shows the difference in classification efficiency when the guide vane angle is set to 0 ° and when the guide vane angle is set to 7.5 ° and 15 ° (results of numerical simulation). Utilizing these differences in classification performance, when the operating conditions change and the particle size distribution in the exhaust gas changes, and when the circulating particles become finer due to wear, without lowering the classification efficiency, Particles can be reliably captured. For example, from FIG. 3, when the particle size distribution is 50 μm or more, the downward angle to the cyclone is preferably 15 °, but when the particle size distribution is 50 μm or less, the downward angle to the cyclone is 0 °.
It turns out that ゜ is desirable.

【0015】循環流動層炉の流動媒体の粒子径分布は、
運転当初は、100μm〜150μmが80%、100
μm以下(50μm以上が大部分)が20%であるが、
運転時間が経つにつれて粒子径が小さくなり、100μ
m〜150μmが50%、100μm以下(50μmが
大部分)が50%となる。このため、図3に示すとお
り、運転当初のガイドベーン角度はサイクロンへ下向き
に15゜と設定しておき、時間の経過と共に下向き角度
を徐々に小さくし、最終的には0゜に設定することによ
って、分級効率を高く維持することができる。こうし
て、運転中に排ガス中の粒子径分布が変動しても、この
変化に対応してガイドベーン角度を変え分級効率を高く
維持することができる。
The particle size distribution of the fluidized medium in the circulating fluidized bed furnace is as follows:
At the beginning of operation, 100% to 150μm is 80%, 100%
μm or less (mostly 50 μm or more) is 20%,
As the operation time elapses, the particle size decreases,
50% is m to 150 μm, and 50% is 100 μm or less (50 μm is most). For this reason, as shown in FIG. 3, the guide vane angle at the beginning of operation is set to 15 ° downward to the cyclone, and the downward angle is gradually reduced over time, and finally set to 0 °. Thereby, the classification efficiency can be kept high. Thus, even if the particle size distribution in the exhaust gas fluctuates during operation, the classification efficiency can be maintained high by changing the guide vane angle in response to this change.

【0016】図4は、循環流動層炉に本発明のサイクロ
ンを設置した例を示すものである。この循環流動層炉に
おいては、RDFが投入装置(7) により流動層炉(1) に
送り込まれる。流動層炉(1) では、一次空気および二次
空気により流動媒体を用いて流動層が形成されており、
この流動層でRDFが燃焼させられる。未燃分は、燃焼
ガスおよび流動媒体が流動層炉(1) の上端からサイクロ
ン(2) 内に入るまでにほぼ完全に燃焼する。このサイク
ロン(2) は、上記の如く、その本体(51)の上端一側に設
けられたガス導入ダクト(52)内にガス流れ方向に対して
上下に角度を自在に変化させることができるガイドベー
ン(53)を設置し、ガスの垂直方向速度成分を変化させる
ことができるものである。サイクロン(2) において、流
動層炉(1) から排出された流動媒体および燃焼残渣は燃
焼ガスと分離されて捕集され、流動媒体および燃焼残渣
還流路(3) の2つの分岐部(3a)(3b)を通って流動層炉
(1)に戻される。流動媒体および燃焼残渣の有する熱
は、熱回収部(12)を有する分岐部(3a)を通過する間に過
熱器(13)内を流れる水蒸気に伝えられ、水蒸気が過熱さ
れる。流動媒体移送空気の吹き込み量および流量制御弁
(11)の開度を調節することにより、熱回収部(12)を有す
る分岐部(3a)を通過する流動媒体および燃焼残渣の量を
多くすると、流動層炉(1) の温度を低下させることがで
き、これとは逆に熱回収部(12)を有する分岐部(3a)を通
過する流動媒体および燃焼残渣の量を少なくすると、流
動層炉(1) の温度を上昇させることができる。
FIG. 4 shows an example in which the cyclone of the present invention is installed in a circulating fluidized bed furnace. In this circulating fluidized bed furnace, RDF is fed into a fluidized bed furnace (1) by a charging device (7). In the fluidized bed furnace (1), a fluidized bed is formed using a fluidized medium by primary air and secondary air,
The RDF is burned in this fluidized bed. The unburned portion burns almost completely before the combustion gas and the fluidized medium enter the cyclone (2) from the upper end of the fluidized bed furnace (1). As described above, the cyclone (2) is provided in a gas introduction duct (52) provided on one side of the upper end of the main body (51) with a guide capable of freely changing the angle vertically with respect to the gas flow direction. A vane (53) is provided to change the vertical velocity component of the gas. In the cyclone (2), the fluid medium and the combustion residue discharged from the fluidized bed furnace (1) are separated from the combustion gas and collected, and are separated into two branches (3a) of the fluid medium and the combustion residue return path (3). (3b) through the fluidized bed furnace
Returned to (1). The heat of the fluid medium and the combustion residue is transmitted to the steam flowing in the superheater (13) while passing through the branch (3a) having the heat recovery unit (12), and the steam is superheated. Flow rate and flow control valve for flowing air
By adjusting the opening of (11) to increase the amount of the fluidized medium and the combustion residue passing through the branch (3a) having the heat recovery part (12), the temperature of the fluidized bed furnace (1) is lowered. Conversely, if the amount of the fluid medium and the combustion residue passing through the branch section (3a) having the heat recovery section (12) is reduced, the temperature of the fluidized bed furnace (1) can be increased. .

【0017】サイクロン(2) から出た燃焼ガスは二次燃
焼炉(31)に入り、二次燃焼炉(31)には三次空気が供給さ
れ、流動層炉(1) からサイクロン(2) を経て送られてき
た燃焼ガス中の未燃分を完全燃焼させる。二次燃焼炉(3
1)から出た燃焼ガスは熱回収塔(14)内に入り、まず第1
煙道(15)を下方に流れることによって、燃焼ガスの有す
る熱が煙道壁を構成する水管内のボイラ水に伝えられ、
水管内のボイラ水が加熱蒸発されるとともに、燃焼ガス
の温度は低下する。ついで、燃焼ガスが第2煙道(16)を
上方に流れることによって、燃焼ガスの有する熱が煙道
壁を構成する水管内のボイラ水、両過熱器(19)(18)内の
水蒸気およびエコノマイザ(17)内の水に伝えられ、水管
内のボイラ水が加熱蒸発されるとともに水蒸気が過熱さ
れ、さらにエコノマイザ(17)内の水が予熱され、しかも
燃焼ガスの温度は低下する。
The combustion gas discharged from the cyclone (2) enters the secondary combustion furnace (31), and tertiary air is supplied to the secondary combustion furnace (31), and the cyclone (2) is discharged from the fluidized bed furnace (1). The unburned components in the combustion gas sent through are completely burned. Secondary combustion furnace (3
The combustion gas from 1) enters the heat recovery tower (14),
By flowing down the flue (15), the heat of the combustion gas is transmitted to the boiler water in the water pipe constituting the flue wall,
As the boiler water in the water pipe is heated and evaporated, the temperature of the combustion gas decreases. Then, the combustion gas flows upward through the second flue (16), so that the heat of the combustion gas is converted into boiler water in the water pipe constituting the flue wall, steam in the two superheaters (19), (18) and The water is transferred to the water in the economizer (17), and the boiler water in the water pipe is heated and evaporated, the steam is superheated, the water in the economizer (17) is preheated, and the temperature of the combustion gas is reduced.

【0018】ついで、燃焼ガスは減温塔(21)内に流入
し、ここでさらに温度が下げられる。その後、燃焼ガス
は、消石灰等の中和剤および反応助剤が添加された後バ
グフィルタ(22)に流入し、ここで塩化水素、硫黄酸化物
および煤塵が除去される。そして、煙突から大気中に排
出される。
Next, the combustion gas flows into the cooling tower (21), where the temperature is further reduced. Thereafter, the combustion gas, after adding a neutralizing agent such as slaked lime and a reaction aid, flows into the bag filter (22), where hydrogen chloride, sulfur oxides and dust are removed. Then, it is discharged into the atmosphere from the chimney.

【0019】一方、脱気器から送られ、エコノマイザ(1
7)を通過する間に予熱された水は、蒸気ドラム(6) に導
かれた後、ボイラ水循環回路を構成する流動層炉(1) お
よび熱回収塔(14)の水管内でさらに加熱されて気水混合
物となり、蒸気ドラム(6) に再び送られる。蒸気ドラム
(6) 内で分離された水蒸気は、3つの過熱器(18)(19)(1
3)を順々に流れ、過熱器(18)(19)内を通過する間に燃焼
ガスの有する熱により過熱されるとともに、過熱器(13)
内を通過する間に流動媒体の有する熱により過熱され、
過熱された水蒸気が蒸気タービンに送られる。
On the other hand, the air is sent from the deaerator to the economizer (1).
The water preheated while passing through (7) is guided to the steam drum (6), and is further heated in the water tube of the fluidized bed furnace (1) and the heat recovery tower (14) that constitute the boiler water circulation circuit. Into a steam-water mixture and sent back to the steam drum (6). Steam drum
The steam separated in (6) is divided into three superheaters (18) (19) (1
3) in order, while being passed through the superheaters (18) and (19), it is superheated by the heat of the combustion gas, and the superheater (13)
Is heated by the heat of the flowing medium while passing through the inside,
The superheated steam is sent to a steam turbine.

【0020】図4のサイクロン(2) においても、サイク
ロン本体(51)の頂部一側の入口に接続されたガス導入ダ
クト(52)の内部に、サイクロン本体(51)に近接してガイ
ドベーン(53)が上中下3枚配設されている。各ガイドベ
ーン(53)は、ガス流れ方向に対して角度を自在に変化さ
せることができるように、水平支軸(54)にそれぞれ取付
けられている。
In the cyclone (2) shown in FIG. 4, a guide vane (52) is provided in the gas introduction duct (52) connected to the inlet on one side of the top of the cyclone body (51) in close proximity to the cyclone body (51). 53) are arranged above, below, middle and lower. Each guide vane (53) is attached to a horizontal support shaft (54) so that the angle with respect to the gas flow direction can be freely changed.

【0021】[0021]

【発明の効果】本発明によれば、運転条件が変化して排
ガス中の粒子径分布が変化したときや、循環粒子が摩耗
によって微細化したときなどにも、分離効率を低下させ
ることなく、粒子径の変化に応じて分級性能を変え、対
象分離粒子径を自在に変化させることができる。
According to the present invention, even when the operating conditions change and the particle size distribution in the exhaust gas changes, or when the circulating particles become finer due to abrasion, the separation efficiency is not reduced. The classification performance can be changed according to the change in the particle diameter, and the target separation particle diameter can be freely changed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a) は本発明による分級性能可変サイクロ
ンを示す垂直断面図、図1(b)はガイドベーンの拡大図
である。
FIG. 1 (a) is a vertical cross-sectional view showing a classifying performance variable cyclone according to the present invention, and FIG. 1 (b) is an enlarged view of a guide vane.

【図2】図2は本発明による分級性能可変サイクロンを
示す水平断面図である。
FIG. 2 is a horizontal sectional view showing a classifying performance variable cyclone according to the present invention.

【図3】図3は本発明による分級性能可変サイクロンを
用いた場合の粒子径と分級効率の関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the particle size and the classification efficiency when a cyclone with variable classification performance according to the present invention is used.

【図4】図4は循環流動層炉に設置した例を示すフロー
シートである。
FIG. 4 is a flow sheet showing an example of installation in a circulating fluidized bed furnace.

【図5】従来のサイクロンを示す垂直断面図である。FIG. 5 is a vertical sectional view showing a conventional cyclone.

【符号の説明】[Explanation of symbols]

51:サイクロン本体 52:ガス導入ダクト 53:ガイドベーン 54:水平支軸 51: Cyclone body 52: Gas introduction duct 53: Guide vane 54: Horizontal support shaft

フロントページの続き (72)発明者 藤尾 二郎 大阪市住之江区南港北1丁目7番89号 日 立造船株式会社内 (72)発明者 中井 誠一 大阪市住之江区南港北1丁目7番89号 日 立造船株式会社内 (72)発明者 石田 美智男 大阪市住之江区南港北1丁目7番89号 日 立造船株式会社内 Fターム(参考) 4D053 AA03 AB01 BA01 BB02 BC01 BD04 CA08 CA20 CG09 DA06 DA10 4G070 AA01 AB10 BB31 CA06 CA07 CA11 CA17 CC20 DA30 Continuation of the front page (72) Inventor Jiro Fujio 1-7-89 Minami Kohoku, Suminoe-ku, Osaka-shi Inside Tachibashi Shipbuilding Co., Ltd. (72) Inventor Seiichi Nakai 1-7-89 Minami Kohoku, Suminoe-ku, Osaka-city Nichidate Inside Shipbuilding Co., Ltd. (72) Inventor Michio Ishida 1-7-89 Minami Kohoku, Suminoe-ku, Osaka 4F053 AA03 AB01 BA01 BB02 BC01 BD04 CA08 CA20 CG09 DA06 DA10 4G070 AA01 AB10 BB31 CA06 CA07 CA11 CA17 CC20 DA30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒子径分布が変動する粒子を含むガスか
ら粒子を分離するサイクロンにおいて、その本体の上端
一側に設けられたガス導入ダクト内にガス流れ方向に対
して上下に角度を自在に変化させることができるガイド
ベーンを設置し、ガスの垂直方向速度成分を変化させる
ことができるようにしたことを特徴とする分級性能可変
サイクロン。
1. A cyclone for separating particles from a gas containing particles whose particle size distribution fluctuates, in a gas introduction duct provided on one side of an upper end of a main body of the cyclone, the angle being vertically adjustable with respect to a gas flow direction. A variable classifying performance cyclone having a guide vane that can be changed to change a vertical velocity component of gas.
【請求項2】 ガス導入ダクトが水平に配され、ガイド
ベーンの角度が粒子径分布に対応してガス流れ方向に対
して−10゜〜30゜の範囲で変動させられることを特
徴とする請求項1記載の分級性能可変サイクロン。
2. The gas introduction duct is arranged horizontally, and the angle of the guide vanes is varied in the range of -10 ° to 30 ° with respect to the gas flow direction according to the particle size distribution. Item 4. A classifying performance variable cyclone according to Item 1.
【請求項3】 請求項1または請求項2記載の分級性能
可変サイクロンを設置したことを特徴とする循環流動層
炉。
3. A circulating fluidized-bed furnace provided with the variable-classification-performance cyclone according to claim 1 or 2.
JP11015354A 1999-01-25 1999-01-25 Classification capacity variable cyclone Pending JP2000210595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11015354A JP2000210595A (en) 1999-01-25 1999-01-25 Classification capacity variable cyclone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11015354A JP2000210595A (en) 1999-01-25 1999-01-25 Classification capacity variable cyclone

Publications (1)

Publication Number Publication Date
JP2000210595A true JP2000210595A (en) 2000-08-02

Family

ID=11886473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11015354A Pending JP2000210595A (en) 1999-01-25 1999-01-25 Classification capacity variable cyclone

Country Status (1)

Country Link
JP (1) JP2000210595A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157151A1 (en) * 2008-06-23 2009-12-30 株式会社Ihi Riser top structure for circulating fluidized bed gasifier
KR101225046B1 (en) 2012-07-25 2013-01-22 한국에너지기술연구원 Apparatus for particle separating formed vortex induction part
JP2014152940A (en) * 2013-02-05 2014-08-25 Takuma Co Ltd Circulating fluidized bed furnace
CN106111360A (en) * 2016-06-21 2016-11-16 常熟理工学院 Compound cyclone separator
KR20230150156A (en) * 2022-04-21 2023-10-30 비제이알 주식회사 High-efficiency trapping function cyclone

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157151A1 (en) * 2008-06-23 2009-12-30 株式会社Ihi Riser top structure for circulating fluidized bed gasifier
JP2010001418A (en) * 2008-06-23 2010-01-07 Ihi Corp Riser top structure of circulation fluidized-bed gasifying furnace
DE112009001497B4 (en) * 2008-06-23 2012-06-06 Ihi Corporation Gasification furnace with circulating fluidized bed with riser side structure
AU2009263678B2 (en) * 2008-06-23 2012-06-28 Ihi Corporation Riser top structure for circulating fluidized bed gasification furnace
CN102066531B (en) * 2008-06-23 2013-12-25 株式会社Ihi Riser top structure for circulating fluidized bed gasifier
US9267679B2 (en) 2008-06-23 2016-02-23 Ihi Corporation Riser top structure for circulating fluidized bed gasification furnace
KR101225046B1 (en) 2012-07-25 2013-01-22 한국에너지기술연구원 Apparatus for particle separating formed vortex induction part
JP2014152940A (en) * 2013-02-05 2014-08-25 Takuma Co Ltd Circulating fluidized bed furnace
CN106111360A (en) * 2016-06-21 2016-11-16 常熟理工学院 Compound cyclone separator
KR20230150156A (en) * 2022-04-21 2023-10-30 비제이알 주식회사 High-efficiency trapping function cyclone
KR102636639B1 (en) * 2022-04-21 2024-02-14 비제이알 주식회사 High-efficiency trapping function cyclone

Similar Documents

Publication Publication Date Title
EP0667944B1 (en) Method and apparatus for operating a circulating fluidized bed system
US4947804A (en) Fluidized bed steam generation system and method having an external heat exchanger
EP1807657B1 (en) Cyclone bypass for a circulating fluidized bed reactor
CA2118367C (en) Reheater protection in a circulating fluidized bed steam generator
JP2003207115A (en) Circulation fluidized bed boiler
US5474034A (en) Supercritical steam pressurized circulating fluidized bed boiler
US5784975A (en) Control scheme for large circulating fluid bed steam generators (CFB)
JP2000210595A (en) Classification capacity variable cyclone
JPH05149508A (en) Fluidized-bed combustion method utilizing supply fine and coarse adsorbent
US5277151A (en) Integral water-cooled circulating fluidized bed boiler system
JP2005274015A (en) Circulation fluidized bed boiler device and its operation control method
JP2007240093A (en) Solid fuel combustion device
EP0633430B1 (en) Fluidized bed combustion system having an improved pressure seal
CZ284960B6 (en) Process and apparatus for cooling circulating material within a steam boiler with a fluidized bed furnace
JP2002168423A (en) Circulation fluidized bed boiler
SU1746129A1 (en) Circulating fluidized-bed boiler
JP2000213707A (en) Combustion apparatus
JP2001311503A (en) Circulation type fluidized bed boiler
JP4077974B2 (en) Fluidized bed heat exchanger
EP4071407B1 (en) A heat exchanger for a loopseal of a circulating fluidized bed boiler and a circulating fluidized bed boiler
LaFanechere et al. Use of an expert system to study the effect of steam parameters on the size and configuration of circulating fluidized bed boilers
CN108386855B (en) A kind of deslagging device of boiler slag
US5072696A (en) Furnace temperature control method for a fluidized bed combustion system
JP2902625B1 (en) Fluid bed furnace heat recovery method and apparatus
JP2001221405A (en) Circulating type fluidized bed combustion furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115