JP2000209705A - Automatic guided vehicle system - Google Patents

Automatic guided vehicle system

Info

Publication number
JP2000209705A
JP2000209705A JP11007009A JP700999A JP2000209705A JP 2000209705 A JP2000209705 A JP 2000209705A JP 11007009 A JP11007009 A JP 11007009A JP 700999 A JP700999 A JP 700999A JP 2000209705 A JP2000209705 A JP 2000209705A
Authority
JP
Japan
Prior art keywords
guided vehicle
automatic guided
battery
charging
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11007009A
Other languages
Japanese (ja)
Inventor
Masahide Yamamoto
政秀 山本
Yoji Fusato
洋二 房登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP11007009A priority Critical patent/JP2000209705A/en
Publication of JP2000209705A publication Critical patent/JP2000209705A/en
Priority to JP2006313249A priority patent/JP4453695B2/en
Priority to KR1020097012150A priority patent/KR101450927B1/en
Priority to PCT/JP2007/072480 priority patent/WO2008062801A1/en
Priority to CNA2007800422957A priority patent/CN101535084A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

PROBLEM TO BE SOLVED: To provide an automatic guided vehicle system which will not stop a carrier due to overspeed tripping of a vector inverter for controlling a vehicle traveling motor, even if wheels slip. SOLUTION: A vector inverter 20M drives a wheel 50M through a speed reducer 40M based on a speed command signal V, while a vector inverter 20S drives a wheel 50S through a speed reducer 40S based on a torque command signal T from the vector inverter 20M. A controller 10 receives rotational speed signals Vm, Vs which indicate the rotational speeds of the wheels 50M, 50S respectively from the vector inverters 20M, 20S to find out the difference in rotating speed between these wheels. Based on the detection result, the controller 10 supplies torque limit values Tm, Ts to the vector inverters 20M, 20S respectively to control the turning torque of each wheel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軌道上を自動走行
して貨物などを目的地まで搬送する無人搬送車システム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic guided vehicle system for automatically traveling on a track and transporting cargo or the like to a destination.

【0002】[0002]

【従来の技術】従来、現在位置から指定された目的地ま
での走行ルートを求めて貨物を目的地まで搬送する無人
搬送車システムがある。一般に、この種の無人搬送車
は、バッテリを搭載し、モータを動力機としてレール上
を自動走行するように構成されている。
2. Description of the Related Art Conventionally, there is an automatic guided vehicle system that transports cargo to a destination in search of a traveling route from a current position to a designated destination. Generally, this type of automatic guided vehicle has a battery mounted thereon and is configured to automatically run on rails using a motor as a power machine.

【0003】また、この搬送車の中には、前輪を駆動す
る主走行装置と、後輪を駆動する従走行装置を備え、全
輪を駆動するように構成されたものがある。図6に、こ
の主走行装置と従走行装置を備えた無人搬送車100J
の概略構成を示す。同図において、主走行装置は、ベク
トルインバータ2Mと、走行モータ3Mと、減速機4M
と、車輪5Mとから構成され、速度指令信号Vに基づい
てベクトルインバータ2Mが走行モータ3Mの回転を制
御し、この走行モータ3Mの駆動力を減速機4Mを介し
て車輪5M(前輪)に伝達する。
[0003] Some of the transport vehicles include a main traveling device for driving front wheels and a sub traveling device for driving rear wheels, and are configured to drive all wheels. FIG. 6 shows an automatic guided vehicle 100J equipped with the main traveling device and the sub traveling device.
The schematic configuration of is shown. In the figure, a main traveling device includes a vector inverter 2M, a traveling motor 3M, and a speed reducer 4M.
And a wheel 5M. The vector inverter 2M controls the rotation of the traveling motor 3M based on the speed command signal V, and transmits the driving force of the traveling motor 3M to the wheels 5M (front wheels) via the reduction gear 4M. I do.

【0004】また、従走行装置は、ベクトルインバータ
2Sと、走行モータ3Sと、上述の減速機4Mと同一の
減速比を有する減速機4Sと、車輪5Sとから構成さ
れ、主走行装置のベクトルインバータ2Mからのトルク
指令信号Tに基づいてベクトルインバータ2Sが走行モ
ータ3Sの回転を制御し、この走行モータ3Sの駆動力
を減速機4Sを介して車輪5S(後輪)に伝達する。走
行モータ3M,3Sの各回転出力は、減速比が同一の減
速機4M,4Sにより別々に減速されて各車輪を回転駆
動している。
[0004] The slave traveling device is composed of a vector inverter 2S, a traveling motor 3S, a speed reducer 4S having the same reduction ratio as the above-described speed reducer 4M, and wheels 5S. Vector inverter 2S controls the rotation of traveling motor 3S based on torque command signal T from 2M, and transmits the driving force of traveling motor 3S to wheels 5S (rear wheels) via reduction gear 4S. The rotational outputs of the traveling motors 3M, 3S are separately decelerated by the speed reducers 4M, 4S having the same reduction ratio, and each wheel is rotationally driven.

【0005】この無人搬送車100Jによれば、マスタ
側のベクトルインバータ2Mは、速度指令信号Vを入力
し、これをスレーブ側のベクトルインバータ2Sにトル
ク指令信号として与える。これにより、マスタ側とスレ
ーブ側の走行装置の車輪が同一のトルクで駆動されて、
この無人搬送車100Jが走行する。
[0005] According to the automatic guided vehicle 100J, the master-side vector inverter 2M receives the speed command signal V and supplies it to the slave-side vector inverter 2S as a torque command signal. Thereby, the wheels of the traveling device on the master side and the slave side are driven with the same torque,
This automatic guided vehicle 100J runs.

【0006】また、この無人搬送車100Jには、図7
(a)に示すように、走行モータを駆動するためのバッ
テリ101が台車本体内に収納されている。このバッテ
リ101は、図7(b)に示すように、コネクタ102
を介して台車本体側の各機器に接続されている。このバ
ッテリ101は、過放電状態に達すると、コネクタ10
2が切り離されてクレーン等により台車外部に取り出さ
れ、予備のバッテリと交換される。
FIG. 7 shows an automatic guided vehicle 100J.
As shown in (a), a battery 101 for driving a traveling motor is housed in a bogie main body. As shown in FIG. 7B, the battery 101
Is connected to each device on the bogie main body side. When the battery 101 reaches an overdischarged state, the connector 10
2 is separated and taken out of the carriage by a crane or the like, and is replaced with a spare battery.

【0007】また、図8に示すように、マスタ側とスレ
ーブ側の無人搬送車を連結して運転する場合がある。同
図において、無人搬送車100Jは、マスタ側の無人搬
送車であり、コントローラ101Mと、ベクトルインバ
ータ102M(マスタ)と、ベクトルインバータ103
M(スレーブ)と、スレーブ側の無人搬送車100Sに
与えるトルク指令信号を電流信号に変換する変換器10
4とを有する。
Further, as shown in FIG. 8, there is a case where the unmanned guided vehicles on the master side and the slave side are connected and operated. In the figure, an unmanned guided vehicle 100J is an unmanned guided vehicle on the master side, and includes a controller 101M, a vector inverter 102M (master), and a vector inverter 103.
M (slave) and a converter 10 that converts a torque command signal given to the slave guided vehicle 100S into a current signal
And 4.

【0008】また、スレーブ側の無人搬送車100S
は、マスタ側の無人搬送車100Jからのトルク指令信
号(電流信号)を電圧信号に変換する変換器104と、
ベクトルインバータ103Mに従属するベクトルインバ
ータ102S(スレーブ)と、このベクトルインバータ
102Sに従属するベクトルインバータ103S(スレ
ーブ)とを有する。
[0008] The slave-side automatic guided vehicle 100S
A converter 104 for converting a torque command signal (current signal) from the master-side automatic guided vehicle 100J into a voltage signal;
It has a vector inverter 102S (slave) subordinate to the vector inverter 103M and a vector inverter 103S (slave) subordinate to the vector inverter 102S.

【0009】このように複数の無人搬送車を連結する
と、マスタ側の無人搬送車100Jのベクトルインバー
タ103Mからスレーブ側の無人搬送車100Sのベク
トルインバータ103Sに与えられるトルク指令信号を
伝送するための配線が長くなる。この結果、この配線を
介して伝送されるトルク指令信号がノイズの影響を受け
やすくなる。
When a plurality of automatic guided vehicles are connected as described above, wiring for transmitting a torque command signal given from the vector inverter 103M of the master automatic guided vehicle 100J to the vector inverter 103S of the slave automatic guided vehicle 100S. Becomes longer. As a result, the torque command signal transmitted via this wiring is easily affected by noise.

【0010】そこで、このノイズ対策として、台車間の
トルク指令信号の伝送は電流信号で行われている。すな
わち、マスタ側の無人搬送車では、変換器14Mにより
トルク指令信号を電圧信号から電流信号に変換してスレ
ーブ側の無人搬送車に送信し、スレーブ側の無人搬送車
では、変換器104Sによりトルク指令信号を電圧信号
に戻してベクトルインバータ102Sに与える。
Therefore, as a countermeasure against the noise, the transmission of the torque command signal between the carts is performed by a current signal. That is, in the automatic guided vehicle on the master side, the torque command signal is converted from a voltage signal to a current signal by the converter 14M and transmitted to the automatic guided vehicle on the slave side. The command signal is returned to a voltage signal and given to the vector inverter 102S.

【0011】[0011]

【発明が解決しようとする課題】ところで、上述の従来
技術にかかる無人搬送車システムによれば、雨天時に登
坂や降坂を含む軌道を走行する場合、車輪と軌道との間
の摩擦が低減し、車輪がスリップして空転するときがあ
る。ここで、例えばスレーブ側の車輪5Sがスリップす
ると、走行モータ3Sの負荷が低減する結果、ベクトル
インバータ2Sが過回転トリップし、搬送車が停止する
という第1の問題がある。
According to the above-described automatic guided vehicle system according to the prior art, when the vehicle travels on a track including uphill and downhill in rainy weather, friction between wheels and the track is reduced. There are times when the wheels slip and slip. Here, for example, when the wheel 5S on the slave side slips, the load on the traveling motor 3S is reduced, and as a result, there is a first problem that the vector inverter 2S trips excessively and the transport vehicle stops.

【0012】また、バッテリが過放電状態となって、バ
ッテリの交換作業を行う場合、バッテリ交換作業中に台
車を使用できず、しかもバッテリの交換作業にクレーン
などの設備を必要とする上、バッテリが大きく重量物で
あるために作業に時間を要するという第2の問題があ
る。
When the battery is over-discharged and the battery is to be replaced, the truck cannot be used during the battery replacement, and the battery replacement requires equipment such as a crane. The second problem is that work is time-consuming because of the large size and heavy weight.

【0013】さらに、複数の無人搬送車を連結して運転
中に、マスタ側からスレーブ側にトルク指令信号を伝送
するための配線が断線したり短絡すると、スレーブ側の
変換器104Sの特性上、スレーブ側の搬送車に与えら
れるトルク指令信号が最大トルクを指令するものとな
る。この結果、スレーブ側の無人搬送車が走行状態に固
定され、マスタ側の無人搬送車に追従して停車しなくな
るという第3の問題がある。
Furthermore, if the wiring for transmitting the torque command signal from the master side to the slave side is disconnected or short-circuited during operation while connecting a plurality of automatic guided vehicles, the characteristics of the converter 104S on the slave side may cause a problem. The torque command signal given to the slave carrier commands the maximum torque. As a result, there is a third problem that the unmanned guided vehicle on the slave side is fixed in the running state and does not stop following the unmanned guided vehicle on the master side.

【0014】この発明は、上記事情に鑑みてなされたも
ので、第1の目的は、車輪がスリップしてもベクトルイ
ンバータが過回転トリップして搬送車が停止することの
ない無人搬送車システムを提供することにあり、第2の
目的は、バッテリの交換作業を要することなくバッテリ
を充電することができる無人搬送車システムを提供する
ことにあり、第3の目的は、トルク指令信号の伝送路が
断線したり短絡した場合に無人搬送車を安全に停車させ
ることができる無人搬送車システムを提供することにあ
る。
The present invention has been made in view of the above circumstances, and a first object is to provide an automatic guided vehicle system in which a vector inverter does not stop due to overspeed trip of a vector inverter even if a wheel slips. A second object is to provide an automatic guided vehicle system that can charge a battery without requiring a battery replacement operation, and a third object is to provide a transmission path for a torque command signal. It is an object of the present invention to provide an automatic guided vehicle system that can safely stop the automatic guided vehicle when disconnection or short circuit occurs.

【0015】[0015]

【課題を解決するための手段】上記課題を解決達成する
ため、この発明は以下の構成を有する。即ち、この発明
にかかる無人搬送車システムは、バッテリを搭載し、該
バッテリで駆動される走行モータによって移動する無人
搬送車と、前記バッテリを充電する充電装置とを含む無
人搬送車システムにおいて、前記無人搬送車が、速度指
令信号に基づき主駆動輪を駆動して走行する主走行装置
と、前記主走行装置からのトルク指令信号に基づき従駆
動輪を駆動して走行する従走行装置と、前記主駆動輪と
前記従駆動輪との回転差に基づき前記従駆動輪の回転ト
ルクを抑制するように前記従走行装置を制御する制御装
置と、を備えたことを特徴としている。
In order to achieve the above object, the present invention has the following arrangement. That is, the automatic guided vehicle system according to the present invention is an automatic guided vehicle system that includes a battery, and includes an automatic guided vehicle that is moved by a traveling motor driven by the battery, and a charging device that charges the battery. An automatic guided vehicle that drives a main drive wheel based on a speed command signal to travel, and a driven device that drives and drives a driven wheel based on a torque command signal from the main travel device; A control device for controlling the sub-traveling device so as to suppress a rotational torque of the sub-drive wheel based on a rotation difference between the main drive wheel and the sub-drive wheel.

【0016】前記制御装置は、例えば、前記主走行装置
から前記主駆動輪の回転速度信号を入力すると共に前記
従走行装置から前記従駆動輪の回転速度信号を入力して
これらの差分値を演算し、前記差分値と所定値とを比較
し、この比較の結果に基づき前記従駆動輪の回転トルク
を抑制するように前記従走行装置を制御する。
For example, the control device inputs a rotation speed signal of the main driving wheel from the main traveling device and inputs a rotation speed signal of the sub driving wheel from the sub traveling device to calculate a difference value between them. Then, the difference value is compared with a predetermined value, and based on the result of the comparison, the slave traveling device is controlled so as to suppress the rotational torque of the slave drive wheel.

【0017】この発明によれば、主走行装置の主駆動輪
と従走行装置の従駆動輪との回転差に基づき、従駆動輪
の回転トルクが抑制される。したがって、例えば従駆動
輪がスリップして主駆動輪と従駆動輪との間に回転差が
生じた場合、制御装置は従駆動輪の回転トルクを抑制
し、この従駆動輪のグリップを回復する。すなわち、主
駆動輪と従駆動輪の各回転速度信号から、これら主駆動
輪と従駆動輪との回転差が検出される。この差分値は所
定値と比較され、これらの大小関係に応じて、スリップ
が発生しているか否かが判断される。そして、この結
果、スリップが発生している場合には従駆動輪の回転ト
ルクが抑制される。
According to the present invention, the rotational torque of the sub-drive wheels is suppressed based on the rotation difference between the main drive wheels of the main traveling device and the sub-drive wheels of the sub-travel device. Therefore, for example, when the slave drive wheel slips and a rotation difference occurs between the main drive wheel and the slave drive wheel, the control device suppresses the rotational torque of the slave drive wheel and recovers the grip of the slave drive wheel. . That is, the rotation difference between the main drive wheel and the slave drive wheel is detected from the rotation speed signals of the main drive wheel and the slave drive wheel. This difference value is compared with a predetermined value, and it is determined whether or not a slip has occurred, according to the magnitude relationship. As a result, when slippage occurs, the rotational torque of the driven wheels is suppressed.

【0018】また、この発明にかかる無人搬送車システ
ムは、バッテリを搭載し、該バッテリで駆動される走行
モータによって移動する無人搬送車と、前記バッテリを
充電する充電装置とを含む無人搬送車システムにおい
て、前記無人搬送車が、前記充電装置による充電のため
の停車位置を検出する位置検出手段と、前記充電装置側
に充電を要求する充電要求手段とを備えてなり、前記充
電装置が、前記無人搬送車からの充電要求に応じて該無
人搬送車のバッテリを充電することを特徴としている。
前記充電装置は、例えば、前記無人搬送車が待機中にバ
ッテリの充電を行う。
An automatic guided vehicle system according to the present invention includes an automatic guided vehicle mounted with a battery and moved by a traveling motor driven by the battery, and a charging device for charging the battery. In the automatic guided vehicle, comprises a position detection means for detecting a stop position for charging by the charging device, and charging request means for requesting the charging device side charging, the charging device, the charging device, The battery of the automatic guided vehicle is charged in response to a charging request from the automatic guided vehicle.
The charging device charges the battery while the automatic guided vehicle is on standby, for example.

【0019】この発明によれば、無人搬送車は、停車位
置を検出して停車し、充電を要求する。充電装置は、停
車位置に停車している無人搬送車を確認した場合、この
無人搬送車からの要求に応じて充電を行う。
According to the present invention, the automatic guided vehicle detects the stop position, stops, and requests charging. When the charging device confirms the automatic guided vehicle stopped at the stop position, the charging device performs charging in response to a request from the automatic guided vehicle.

【0020】また、この発明にかかる無人搬送車システ
ムは、バッテリを搭載し、該バッテリで駆動される走行
モータによって移動する無人搬送車と、前記バッテリを
充電する充電装置とを含む無人搬送車システムにおい
て、前記無人搬送車が、速度指令信号に基づき車輪を駆
動して走行する主搬送車と、前記主搬送車からのトルク
指令信号に基づき車輪を駆動して走行する従搬送車とか
らなり、前記主搬送車が、前記トルク指令信号を電圧信
号として前記従搬送車に与えることを特徴としている。
Further, an automatic guided vehicle system according to the present invention includes an automatic guided vehicle mounted with a battery and moved by a traveling motor driven by the battery, and a charging device for charging the battery. In the automatic guided vehicle, a main carrier that travels by driving wheels based on a speed command signal, and a subsidiary carrier that drives and runs wheels based on a torque command signal from the main carrier, The main carrier supplies the torque command signal as a voltage signal to the sub-carrier.

【0021】前記無人搬送車は、例えば、前記主走行装
置からのトルク指令信号を電圧信号に変換する第1の変
換器と、前記前記第1の変換器により変換されたトルク
指令信号を元の信号に変換する第2の変換器と、を備え
る。
The automatic guided vehicle may include, for example, a first converter for converting a torque command signal from the main traveling device into a voltage signal, and an original torque command signal converted by the first converter. A second converter for converting the signal into a signal.

【0022】この発明によれば、トルク指令信号は電圧
信号に変換されて、主搬送車から従搬送車に伝送され
る。したがって、主搬送車と従搬送車との間のトルク指
令信号の伝送路が断線したり短絡すると、従搬送車には
トルク指令信号として「0」が与えられ、この従搬送車
が停止(停車)状態に固定される。
According to the present invention, the torque command signal is converted into a voltage signal and transmitted from the main carrier to the slave carrier. Therefore, when the transmission path of the torque command signal between the main carrier and the sub-carrier is disconnected or short-circuited, “0” is given to the sub-carrier as the torque command signal, and the sub-carrier stops (stops). ) State is fixed.

【0023】また、無人搬送車は、例えば、充電位置を
検出するための番地検出センサと定位置検出センサや、
充電器側との通信を行うための例えば光通信などによる
通信手段や、無人搬送車上のバッテリの電極と充電装置
の電極との接続を検出するためのセンサや、地上側の充
電装置には、無人搬送車の在車状態を検出するためのセ
ンサなどを備えてもよい。
The automatic guided vehicle includes, for example, an address detection sensor and a fixed position detection sensor for detecting a charging position,
For example, communication means such as optical communication for performing communication with the charger side, a sensor for detecting the connection between the electrode of the battery on the automatic guided vehicle and the electrode of the charging device, and the charging device on the ground side include , A sensor for detecting the presence state of the automatic guided vehicle may be provided.

【0024】[0024]

【発明の実施の形態】以下、図面を参照しながら、この
発明の実施の形態を説明する。 実施の形態1.図1に、この発明の実施の形態1にかか
る無人搬送車の構成を示す。同図において、ベクトルイ
ンバータ20M、走行モータ30M、減速機40M、お
よび車輪50M(主駆動輪)は、速度指令信号Vに基づ
き走行する主走行装置を構成する。また、ベクトルイン
バータ20S、走行モータ30S、減速機40S、およ
び車輪50S(従駆動輪)は、主走行装置からのトルク
指令信号Tに基づき走行する従走行装置を構成する。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. FIG. 1 shows a configuration of the automatic guided vehicle according to the first embodiment of the present invention. In the figure, a vector inverter 20M, a traveling motor 30M, a speed reducer 40M, and wheels 50M (main driving wheels) constitute a main traveling device that travels based on a speed command signal V. In addition, the vector inverter 20S, the traveling motor 30S, the speed reducer 40S, and the wheels 50S (slave driving wheels) form a slave traveling device that travels based on a torque command signal T from the main traveling device.

【0025】ここで、ベクトルインバータ20Mは、速
度指令信号Vに基づいて走行モータ30Mの回転を制御
するものであり、この走行モータ30Mの駆動力が減速
機40Mを介して車輪50Mに伝達される。また、ベク
トルインバータ20Sは、主走行装置のベクトルインバ
ータ20Mからのトルク指令信号Tに基づいて走行モー
タ3Sの回転を制御するものであり、この走行モータ3
Sの駆動力が減速機4Sを介して車輪50Sに伝達され
る。走行モータ30M,30Sの各回転出力は、減速比
が同一の減速機40M,40Sにより別々に減速されて
各車輪を回転駆動する。
Here, the vector inverter 20M controls the rotation of the traveling motor 30M based on the speed command signal V, and the driving force of the traveling motor 30M is transmitted to the wheels 50M via the speed reducer 40M. . The vector inverter 20S controls the rotation of the traveling motor 3S based on a torque command signal T from the vector inverter 20M of the main traveling device.
The driving force of S is transmitted to wheels 50S via reduction gear 4S. The rotation outputs of the traveling motors 30M, 30S are separately reduced by the reduction gears 40M, 40S having the same reduction ratio, and each wheel is rotationally driven.

【0026】コントローラ(PLC)10は、上述のベ
クトルインバータ20M,20Sから、車輪50M,5
0Sの各回転速度を表す回転速度信号Vm,Vsを入力
してこれらの車輪の回転差を求め、この回転差に基づき
トルク制限値Tm,Tsをベクトルインバータ20M,
20Sにそれぞれ与えて各車輪の回転トルクを制御する
ものである。また、図示しないが、この無人搬送車に
は、各走行モータを駆動するためのバッテリなど、自動
走行する上で必要な機材が搭載されている。
The controller (PLC) 10 outputs the signals from the above-mentioned vector inverters 20M and 20S to the wheels 50M and 5M.
The rotation speed signals Vm and Vs representing the respective rotation speeds of 0S are input to determine the rotation difference between these wheels, and based on the rotation difference, the torque limit values Tm and Ts are determined by the vector inverters 20M,
20S to control the rotational torque of each wheel. Although not shown, the automatic guided vehicle is equipped with equipment required for automatic traveling, such as a battery for driving each traveling motor.

【0027】以下、図2に示すフローチャートに沿っ
て、この実施の形態1にかかる無人搬送車システムの動
作を説明する。 ステップS1:走行中、コントローラ10は、ベクトル
インバータ20M,20Sから、車輪50M,50Sの
各回転速度を表す回転速度信号Vm,Vsを随時入力
し、これらの差分値Vd(=Vs−Vm)を演算する。
この差分値Vdは、主走行装置の車輪50Mと従走行装
置の車輪50Sとの回転差を表す。例えば、車輪50S
(従駆動輪)がスリップして空転した場合、回転速度信
号Vsは大きな値を示し、差分値Vdが増大する。
The operation of the automatic guided vehicle system according to the first embodiment will be described below with reference to the flowchart shown in FIG. Step S1: During traveling, the controller 10 inputs rotation speed signals Vm, Vs representing the rotation speeds of the wheels 50M, 50S from the vector inverters 20M, 20S as needed, and calculates a difference value Vd (= Vs−Vm) of these. Calculate.
This difference value Vd represents a rotation difference between the wheel 50M of the main traveling device and the wheel 50S of the sub traveling device. For example, wheel 50S
When the (slave drive wheel) slips and idles, the rotation speed signal Vs shows a large value, and the difference value Vd increases.

【0028】ステップS2:続いて、この差分値Vdと
所定値とを比較して、スリップ状態かどうかを判定す
る。この所定値は、スリップの判断基準を与えるもの
で、実際の運用に応じて適切に設定される。 ステップS3:ここで、差分値Vdが所定値以下の場
合、スリップ状態ではないと判定し(ステップS2:N
O)、トルク制限値Tsを主走行装置側のトルク制限値
Tmと同一にする。 ステップS4:また、差分値Vdが所定値より大きい場
合、スリップ状態と判定し(ステップS2:YES)、
トルク制限値Tsを主走行装置側に与えるトルク制限値
Tmより小さい値に下げる。
Step S2: Subsequently, the difference value Vd is compared with a predetermined value to determine whether or not the vehicle is in a slip state. The predetermined value provides a criterion for determining slip, and is appropriately set according to actual operation. Step S3: Here, when the difference value Vd is equal to or less than the predetermined value, it is determined that the vehicle is not in the slip state (Step S2: N
O), the torque limit value Ts is made equal to the torque limit value Tm on the main traveling device side. Step S4: If the difference value Vd is larger than the predetermined value, it is determined that the vehicle is in the slip state (Step S2: YES),
The torque limit value Ts is reduced to a value smaller than the torque limit value Tm applied to the main traveling device.

【0029】このように、実施の形態1によれば、車輪
50S(従駆動輪)にスリップが発生している場合、車
輪50Mと車輪50Sとの回転差に基づき車輪50Sの
回転トルクが抑制され、この車輪(従駆動輪)のグリッ
プが回復する。したがって、車輪のトルクが適正値に保
たれ、従走行装置のベクトルインバータ20Sが過回転
トリップすることがなくなり、車輪のスリップに起因し
て無人搬送車が停止することがなくなる。
As described above, according to the first embodiment, when the wheel 50S (the driven wheel) is slipping, the rotational torque of the wheel 50S is suppressed based on the rotational difference between the wheel 50M and the wheel 50S. The grip of the wheel (the driven wheel) is restored. Therefore, the torque of the wheels is maintained at an appropriate value, and the vector inverter 20S of the driven device does not trip overspeed, and the automatic guided vehicle does not stop due to the slip of the wheels.

【0030】実施の形態2.以下、図3および図4を参
照して、この発明の実施の形態2を説明する。図3に示
すように、この実施の形態2にかかる無人搬送車100
Aは、バッテリ101を充電するための電極104が接
続されたファンタグラフ102を備え、このファンタグ
ラフ102は、無人搬送車100Aのフレーム103に
固定されている。このファンタグラフ102が伸縮する
ことにより、電極104が搬送車内部または外部に移動
し、充電時以外に電極104を搬送車の内部に収納する
ようになっている。
Embodiment 2 FIG. Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 3, the automatic guided vehicle 100 according to the second embodiment
A includes a phantom graph 102 to which an electrode 104 for charging a battery 101 is connected, and the phantom graph 102 is fixed to a frame 103 of an automatic guided vehicle 100A. As the phantom graph 102 expands and contracts, the electrode 104 moves to the inside or outside of the carrier, and the electrode 104 is stored inside the carrier except during charging.

【0031】また、充電装置300の電極201は、集
電装置200内部に固定されている。この集電装置20
0は、無人搬送車側の電極104を受容して、充電装置
300側の電極201とを接続するように構成される。
The electrode 201 of the charging device 300 is fixed inside the current collector 200. This current collector 20
0 is configured to receive the electrode 104 on the automatic guided vehicle side and connect the electrode 104 on the charging device 300 side.

【0032】図4に、この無人搬送車システムの全体を
示す。同図に示すように、ファンタグラフ102は、搬
送車100Aの両サイドに設けられ、このファンタグラ
フ102の近傍には、電極104を充電装置側の集電装
置200に接続する際に使用される光通信装置110お
よびマーク111が設けられている。集電装置200
は、無人搬送車100Aの軌道近くの所定位置に固定さ
れる。
FIG. 4 shows the entire automatic guided vehicle system. As shown in the figure, the phantom graphs 102 are provided on both sides of the carrier 100A, and are used near the phantom graphs 102 when the electrodes 104 are connected to the current collector 200 on the charging device side. An optical communication device 110 and a mark 111 are provided. Current collector 200
Is fixed at a predetermined position near the track of the automatic guided vehicle 100A.

【0033】ここで、集電装置200側には、搬送車側
の光通信装置110およびマーク111にそれぞれ対向
するように、光通信装置202および在車検出センサ2
03が設けられている。光通信装置202は、光通信装
置110と通信するためのもので、在車検出センサ20
3は、マーク111を検出するものであって、これによ
り在車(搬送車が停車位置に存在するか否か)を検出す
るものである。
Here, the optical communication device 202 and the vehicle presence detection sensor 2 are provided on the current collector 200 side so as to face the optical communication device 110 and the mark 111 on the carrier side, respectively.
03 is provided. The optical communication device 202 is for communicating with the optical communication device 110, and the presence detection sensor 20
Reference numeral 3 denotes a mark for detecting the mark 111, thereby detecting the presence of the vehicle (whether or not the carrier is at the stop position).

【0034】また、この無人搬送車100Aのフロント
側には、地上側に設けられた定位置用マーク130Aを
検出するための定位置検出センサ130が設けられ、サ
イド側には、同じく地上側に設けられた番地用マーク1
20Aを検出するための番地検出センサ120が設けら
れている。
On the front side of the automatic guided vehicle 100A, a fixed position detecting sensor 130 for detecting a fixed position mark 130A provided on the ground side is provided, and on the side side, the fixed position detection sensor 130 is also provided on the ground side. Address mark 1 provided
An address detection sensor 120 for detecting 20A is provided.

【0035】さらに、この無人搬送車100Aには、走
行モータを駆動するためのバッテリ101と、無人搬送
車の一連の動作を制御するためのシーケンサ140の
他、自動走行する上で必要とする図示しない各種の機器
が搭載されている。また、充電装置300の集電装置2
00には、充電装置側の一連の動作を制御するためのシ
ーケンサ400が接続されている。
Further, the automatic guided vehicle 100A has a battery 101 for driving a traveling motor, a sequencer 140 for controlling a series of operations of the automatic guided vehicle, and other illustrations required for automatic traveling. Not equipped with various devices. In addition, the current collecting device 2 of the charging device 300
00 is connected to a sequencer 400 for controlling a series of operations on the charging device side.

【0036】以下、この実施の形態2にかかる無人搬送
車システムの動作を説明する。無人搬送車100Aは、
貨物の搬送を終えて待機状態になると、充電装置300
が設けられたステーションに向かう。そして、定位置検
出センサ130がステーションに設けられた定位置用マ
ーク130Aを検出し、番地検出センサ120が番地用
マーク120Aを検出すると、無人搬送車100Aは、
これらのマークで指定される定位置に停車する。そし
て、定位置と番地を確認した後、光通信装置110によ
り充電装置300側に対して充電を要求する。
The operation of the automatic guided vehicle system according to the second embodiment will be described below. The automatic guided vehicle 100A
When the standby state is reached after the transportation of the cargo, the charging device 300
To the station provided with. When the fixed position detection sensor 130 detects the fixed position mark 130A provided in the station and the address detection sensor 120 detects the address mark 120A, the automatic guided vehicle 100A
Stop at the fixed position specified by these marks. After confirming the home position and the address, the optical communication device 110 requests the charging device 300 to perform charging.

【0037】充電装置300側では、在車検出センサ2
03により無人搬送車側のマーク111を検出して、在
車の状態(停車位置など)に異常がないことを確認し、
光通信装置202により無人搬送車100A側に対して
充電の要求を受諾する旨の返答を行う。無人搬送車10
0Aは、充電装置側からの返答を受信すると、ファンタ
グラフ102を伸ばして、バッテリ101の電極104
を集電装置200側の電極201に接続する。
On the charging device 300 side, the vehicle presence detection sensor 2
03, the mark 111 on the automatic guided vehicle side is detected, and it is confirmed that there is no abnormality in the state of the vehicle (such as the stop position).
The optical communication device 202 replies to the automatic guided vehicle 100A that the request for charging is accepted. Automatic guided vehicle 10
0A, upon receiving the response from the charging device side, extends the phantom graph 102 and
Is connected to the electrode 201 on the current collector 200 side.

【0038】充電装置300側では、搬送車側の電極1
04が集電装置200内の電極201に接続されたこと
を確認すると、バッテリ101に対して充電を開始す
る。そして、バッテリ101の電圧を検出し、この電圧
が充電完了を示す電圧に達すると、充電回路(図示な
し)をオフさせて充電を終了する。充電が完了すると、
充電装置300側は、光通信装置202により、充電が
終了した旨を無人搬送車100A側に報告する。この報
告を受けて、無人搬送車100Aは、ファンタグラフ1
02を縮めて電極104を内部に収納する。以上によ
り、無人搬送車100Aは、バッテリ101が充電され
て待機状態とされる。
On the charging device 300 side, the electrode 1 on the transport vehicle side
When it is confirmed that the battery 04 is connected to the electrode 201 in the current collector 200, the battery 101 starts charging. Then, the voltage of the battery 101 is detected, and when this voltage reaches a voltage indicating the completion of charging, the charging circuit (not shown) is turned off to end charging. When charging is complete,
The charging device 300 reports, to the automatic guided vehicle 100A, that the charging has been completed by using the optical communication device 202. In response to this report, the automatic guided vehicle 100A
02 is retracted to house the electrode 104 therein. As described above, the automatic guided vehicle 100A is charged with the battery 101 and enters a standby state.

【0039】この実施の形態2によれば、待機状態にあ
る搬送車は、自動的にバッテリが充電される。したがっ
て、クレーン等によるバッテリの交換作業が不要とな
り、バッテリ交換作業時間が不規則とならないため、運
行パターンが崩れない。また、人手によらず自動的に充
電が行われるため、充電口切替や通電などの充電作業を
安全に行うことができる。また、充電場所を搬送車側と
地上側で確認し、所定の充電場所以外では、充電作業が
行われないため、充電作業の安全性を確保できる。さら
に、番地検出を行っているため、搬送車に設けられた2
カ所の電極の切替が可能となる。さらにまた、地上側で
バッテリの接続状態を確認して充電を開始するため、通
常時において充電器側の電極は無電圧であり、感電に対
する安全性を確保できる。
According to the second embodiment, the transport vehicle in the standby state is automatically charged with the battery. Therefore, the operation of replacing the battery by a crane or the like becomes unnecessary, and the operation time of the battery exchange does not become irregular, so that the operation pattern does not collapse. In addition, since charging is performed automatically without manual operation, charging operations such as charging port switching and energization can be performed safely. In addition, the charging place is confirmed on the carrier side and the ground side, and the charging work is not performed at a place other than the predetermined charging place, so that the safety of the charging work can be secured. Further, since the address is detected, the 2
It is possible to switch the electrodes at various places. Furthermore, since charging is started after checking the connection state of the battery on the ground side, the electrode on the charger side is normally free of voltage, so that safety against electric shock can be ensured.

【0040】実施の形態3.以下、図5を参照して、こ
の発明の実施の形態3を説明する。図5に示すように、
この実施の形態3にかかる無人搬送車は、主搬送車10
0Mと、この主搬送車に従属して走行する従搬送車10
0Sとを連結して構成され、主搬送車100M側から従
搬送車100S側にトルク指令信号を電圧信号に変換し
て伝達するように構成される。
Embodiment 3 Hereinafter, a third embodiment of the present invention will be described with reference to FIG. As shown in FIG.
The automatic guided vehicle according to the third embodiment includes a main guided vehicle 10
0M, and a sub-carrier 10 that runs subordinate to the main carrier.
0S, and is configured to convert a torque command signal into a voltage signal and transmit the voltage command signal from the main carrier 100M to the slave carrier 100S.

【0041】ここで、主搬送車100Mのベクトルイン
バータ102Mは、前述の図1に示すベクトルインバー
タ20Mに対応し、またこの主搬送車100Mのベクト
ルインバータ103Mと、従搬送車100Sのベクトル
インバータ102Sおよび103Sは、図1に示すベク
トルインバータ20Sに対応する。すなわち、1つのベ
クトルインバータ102Mに対して、3つのベクトルイ
ンバータ103M,102S,103Sが従属するよう
に構成される。
Here, the vector inverter 102M of the main carrier 100M corresponds to the vector inverter 20M shown in FIG. 1, and the vector inverter 103M of the main carrier 100M and the vector inverter 102S of the sub carrier 100S. 103S corresponds to the vector inverter 20S shown in FIG. That is, three vector inverters 103M, 102S, and 103S are configured to be subordinate to one vector inverter 102M.

【0042】また、主搬送車100Mには、ベクトルイ
ンバータ103Mが出力するトルク指令信号を電圧信号
に変換して従搬送車100Sに送出するための変換器1
05Mが搭載されており、一方の従搬送車100Sに
は、主搬送車100Mから送出されたトルク指令信号
(電圧信号)を元のトルク指令信号に戻すための変換器
105Sが搭載されている。
A converter 1 for converting the torque command signal output from the vector inverter 103M into a voltage signal and sending it to the sub-carrier 100S is provided in the main carrier 100M.
05M is mounted, and a converter 105S for returning the torque command signal (voltage signal) sent from the main carrier 100M to the original torque command signal is mounted on one of the sub-carriers 100S.

【0043】ここで、変換器105Mによりトルク指令
信号を変換して得られる電圧信号は、伝送路でのノイズ
の影響が少なくなるように生成される。例えば、ベクト
ルインバータ103Mが出力するトルク指令信号を、こ
のトルク指令信号の値に応じた差分電圧を有する1対の
電圧信号に変換する。この場合、伝送路にノイズが侵入
しても、この1対の電圧信号のノイズは同相となるの
で、この1対の電圧信号の差分電圧はノイズの影響を受
けない。よって、トルク指令信号は、ノイズの影響を受
けることなく、電圧信号として主搬送車100Mから従
搬送車100Sに伝送されることとなる。
Here, the voltage signal obtained by converting the torque command signal by the converter 105M is generated such that the influence of noise on the transmission line is reduced. For example, the torque command signal output from the vector inverter 103M is converted into a pair of voltage signals having a differential voltage corresponding to the value of the torque command signal. In this case, even if noise enters the transmission line, the noise of the pair of voltage signals has the same phase, so that the differential voltage of the pair of voltage signals is not affected by the noise. Therefore, the torque command signal is transmitted from the main carrier 100M to the slave carrier 100S as a voltage signal without being affected by noise.

【0044】一方、従搬送車100Sが搭載する変換器
105Sには、その入力部と所定の電位との間に負荷回
路(図示なし)が接続されており、無信号状態の場合に
入力部に所定の電位が現れるようになっている。この所
定の電位は、主搬送車100Mから送出されるトルク指
定信号が表す回転トルクが小さくなるように設定され
る。この実施の形態3では、この所定の電位として、ト
ルク指令信号の値(回転トルク)の最小値を表す「0」
(接地電位)を設定する。
On the other hand, a load circuit (not shown) is connected between the input unit and a predetermined potential of the converter 105S mounted on the subordinate vehicle 100S. A predetermined potential appears. This predetermined potential is set so that the rotation torque indicated by the torque designation signal sent from the main carrier 100M becomes small. In the third embodiment, as the predetermined potential, “0” representing the minimum value of the torque command signal (rotation torque) is used.
(Ground potential).

【0045】このように構成された実施の形態3にかか
る無人搬送車によれば、例えば主搬送車100Mと従搬
送車100Sとの間のトルク指令信号の伝送路が分断さ
れた場合、変換器105Sの入力電圧は「0」に固定さ
れ、従搬送車100Sは走行を停止する。従って、この
場合、主搬送車100Mの駆動力のみにより無人搬送車
が走行する。
According to the automatic guided vehicle according to the third embodiment configured as described above, for example, when the transmission path of the torque command signal between the main transport vehicle 100M and the slave transport vehicle 100S is disconnected, the converter The input voltage of 105S is fixed at "0", and the subordinate vehicle 100S stops traveling. Therefore, in this case, the unmanned guided vehicle runs only by the driving force of the main guided vehicle 100M.

【0046】また、上述のトルク指令信号の伝送路が例
えば車体や軌道に短絡した場合、従搬送車100Sの変
換器105Sには、この車体や軌道の電位が入力され
る。通常、車体や軌道の電位は接地電位となっているの
で、変換器105Sは接地電位を入力する。従って、こ
の場合も従搬送車100Sは、トルク指令信号として
「0」を入力する結果、走行を停止する。
When the transmission path of the torque command signal is short-circuited, for example, to the vehicle body or the track, the potential of the vehicle body or the track is input to the converter 105S of the subordinate vehicle 100S. Normally, the potential of the vehicle body or the track is at the ground potential, so the converter 105S inputs the ground potential. Therefore, also in this case, the slave carrier 100S stops running as a result of inputting “0” as the torque command signal.

【0047】この実施の形態3によれば、主搬送車10
0Mから従搬送車100Sへのトルク指令信号の伝送路
が断線または短絡したとしても、従搬送車100Sを主
搬送車100Mに追従させることができ、運転上の安全
を確保することができる。
According to the third embodiment, the main carrier 10
Even if the transmission path of the torque command signal from 0M to the sub-carrier 100S is broken or short-circuited, the sub-carrier 100S can follow the main carrier 100M, and driving safety can be ensured.

【0048】以上、この発明の実施の形態1ないし3を
説明したが、この発明は、これらの実施の形態に限られ
るものではなく、この発明の要旨を逸脱しない範囲の設
計変更等があっても本発明に含まれる。例えば、上述の
実施の形態1では、後輪を前輪に従属させて駆動するも
のとしたが、逆に、前輪を後輪に従属するようにしても
よい。また、上述の実施の形態3では、搬送車は全輪を
駆動して走行するものとしたが、駆動輪を前輪または後
輪に限定するようにしてもよい。
Although the first to third embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and there are design changes and the like that do not depart from the gist of the present invention. Are also included in the present invention. For example, in the first embodiment described above, the rear wheels are driven to be dependent on the front wheels, but conversely, the front wheels may be dependent on the rear wheels. Further, in the third embodiment described above, the transport vehicle is driven by driving all the wheels, but the drive wheels may be limited to the front wheels or the rear wheels.

【0049】[0049]

【発明の効果】以上説明したように、この発明によれ
ば、主駆動輪と従駆動輪との回転差に基づき従駆動輪の
回転トルクを抑制するようにしたので、従駆動輪がスリ
ップして空転してもベクトルインバータが過回転トリッ
プして搬送車が停止することがない。
As described above, according to the present invention, the rotational torque of the sub-drive wheel is suppressed based on the rotation difference between the main drive wheel and the sub-drive wheel. Even if the vehicle idles, the vector inverter does not stop due to overspeed trip.

【0050】また、無人搬送車側で、充電装置による充
電のための停車位置を検出し、充電装置側に充電を要求
し、充電装置側で、無人搬送車からの充電要求に応じて
バッテリを充電するようにしたので、バッテリの交換作
業を要することなくバッテリを充電することができる。
Further, the automatic guided vehicle detects the stop position for charging by the charging device, requests the charging device to charge, and charges the battery in response to the charging request from the automatic guided vehicle. Since the battery is charged, the battery can be charged without the need to replace the battery.

【0051】さらに、主搬送車から、トルク指令信号を
電圧信号として従搬送車に与えるようにしたので、トル
ク指令信号の伝送路が断線したり短絡した場合であって
も無人搬送車を安全に停車させることができる。
Further, since the torque command signal is supplied from the main carrier to the slave carrier as a voltage signal, even if the transmission path of the torque command signal is disconnected or short-circuited, the unmanned carrier can be safely driven. You can stop.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1にかかる無人搬送車
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an automatic guided vehicle according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1にかかる無人搬送車
の動作の流れを示すフローチャートである。
FIG. 2 is a flowchart illustrating a flow of an operation of the automatic guided vehicle according to the first embodiment of the present invention.

【図3】 この発明の実施の形態2にかかる無人搬送車
の特徴部を示す図である。
FIG. 3 is a diagram illustrating a characteristic portion of an automatic guided vehicle according to a second embodiment of the present invention.

【図4】 この発明の実施の形態2にかかる無人搬送車
の構成を示す図である。
FIG. 4 is a diagram showing a configuration of an automatic guided vehicle according to a second embodiment of the present invention.

【図5】 この発明の実施の形態3にかかる無人搬送車
の構成を示す図である。
FIG. 5 is a diagram illustrating a configuration of an automatic guided vehicle according to a third embodiment of the present invention.

【図6】 従来技術にかかる複数の台車を連結してなる
無人搬送車の構成を示す図である。
FIG. 6 is a diagram illustrating a configuration of an automatic guided vehicle formed by connecting a plurality of carts according to the related art.

【図7】 従来技術にかかる無人搬送車のバッテリの充
電作業を説明するための図である。
FIG. 7 is a diagram for explaining a battery charging operation of the automatic guided vehicle according to the related art.

【図8】 従来技術にかかる複数の台車を連結してなる
無人搬送車の構成を示す図である。
FIG. 8 is a diagram showing a configuration of an automatic guided vehicle formed by connecting a plurality of carts according to the related art.

【符号の説明】[Explanation of symbols]

10,101M…コントローラ、20M,20S,10
2M,103M,102S,103S…ベクトルインバ
ータ、30M,30S…走行モータ、40M,40S…
減速機、50M,50S…車輪、100A…無人搬送
車、100M…主搬送車、100S…従搬送車、101
…バッテリ、102…ファンタグラフ、光通信装置10
4,201…電極コントローラ、110,202…光通
信装置、120…番地検出センサ、130…定位置検出
センサ、140,400…シーケンサ、200…集電装
置、203…在車検出センサ、300…充電装置。
10, 101M ... controller, 20M, 20S, 10
2M, 103M, 102S, 103S ... vector inverter, 30M, 30S ... traveling motor, 40M, 40S ...
Reduction gear, 50M, 50S: wheels, 100A: unmanned carrier, 100M: main carrier, 100S: slave carrier, 101
... Battery, 102 ... Fantograph, optical communication device 10
4, 201: electrode controller, 110, 202: optical communication device, 120: address detection sensor, 130: fixed position detection sensor, 140, 400: sequencer, 200: current collector, 203: vehicle detection sensor, 300: charging apparatus.

フロントページの続き Fターム(参考) 5H115 PC01 PG10 PI16 PI29 PO07 PU08 PV09 QE14 QN06 RB08 RB11 RB26 SE03 SF01 TB01 TD10 TI05 TU08 TU17 TW07 TZ01 5H301 AA01 AA09 BB05 CC03 CC06 FF05 GG14 JJ01 5H572 AA20 BB07 CC04 DD02 EE04 GG02 HB08 HC07 LL01 LL24 LL31 MM05 Continued on the front page F term (reference) 5H115 PC01 PG10 PI16 PI29 PO07 PU08 PV09 QE14 QN06 RB08 RB11 RB26 SE03 SF01 TB01 TD10 TI05 TU08 TU17 TW07 TZ01 5H301 AA01 AA09 BB05 CC03 CC06 FF05 GG14 JJ01 BB01A04 GG01 GG01 LL24 LL31 MM05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 バッテリを搭載し、該バッテリで駆動さ
れる走行モータによって移動する無人搬送車と、前記バ
ッテリを充電する充電装置とを含む無人搬送車システム
において、 前記無人搬送車は、 速度指令信号に基づき主駆動輪を駆動して走行する主走
行装置と、 前記主走行装置からのトルク指令信号に基づき従駆動輪
を駆動して走行する従走行装置と、 前記主駆動輪と前記従駆動輪との回転差に基づき前記従
駆動輪の回転トルクを抑制するように前記従走行装置を
制御する制御装置と、 を備えたことを特徴とする無人搬送車システム。
1. An automatic guided vehicle system including an automatic guided vehicle mounted with a battery and moved by a traveling motor driven by the battery, and a charging device for charging the battery, wherein the automatic guided vehicle includes a speed command. A main traveling device that drives by driving a main driving wheel based on a signal, a sub traveling device that drives by driving a sub driving wheel based on a torque command signal from the main traveling device, the main driving wheel and the sub driving An automatic guided vehicle system, comprising: a control device that controls the driven traveling device so as to suppress a rotational torque of the driven wheel based on a rotational difference between the driven wheel and the driven vehicle.
【請求項2】 前記制御装置は、 前記主走行装置から前記主駆動輪の回転速度信号を入力
すると共に前記従走行装置から前記従駆動輪の回転速度
信号を入力してこれらの差分値を演算し、 前記差分値と所定値とを比較し、 この比較の結果に基づき前記従駆動輪の回転トルクを抑
制するように前記従走行装置を制御することを特徴とす
る請求項1に記載された無人搬送車システム。
2. The control device inputs a rotation speed signal of the main driving wheel from the main traveling device and inputs a rotation speed signal of the sub driving wheel from the sub traveling device to calculate a difference value between them. The method according to claim 1, wherein the differential value is compared with a predetermined value, and based on a result of the comparison, the driven device is controlled so as to suppress a rotational torque of the driven wheel. Automatic guided vehicle system.
【請求項3】 バッテリを搭載し、該バッテリで駆動さ
れる走行モータによって移動する無人搬送車と、前記バ
ッテリを充電する充電装置とを含む無人搬送車システム
において、 前記無人搬送車は、 前記充電装置による充電のための停車位置を検出する位
置検出手段と、 前記充電装置側に充電を要求する充電要求手段とを備え
てなり、 前記充電装置は、前記無人搬送車からの充電要求に応じ
て該無人搬送車のバッテリを充電することを特徴とする
無人搬送車システム。
3. An automatic guided vehicle system including an automatic guided vehicle mounted with a battery and moved by a traveling motor driven by the battery, and a charging device for charging the battery, wherein the automatic guided vehicle includes the charging device. Position detecting means for detecting a stop position for charging by the device, and charging request means for requesting charging to the charging device side, wherein the charging device responds to a charging request from the automatic guided vehicle. An automatic guided vehicle system, wherein a battery of the automatic guided vehicle is charged.
【請求項4】 前記充電装置は、 前記無人搬送車が待機中にバッテリの充電を行うことを
特徴とする請求項3に記載された無人搬送車システム。
4. The automatic guided vehicle system according to claim 3, wherein the charging device charges the battery while the automatic guided vehicle is on standby.
【請求項5】 バッテリを搭載し、該バッテリで駆動さ
れる走行モータによって移動する無人搬送車と、前記バ
ッテリを充電する充電装置とを含む無人搬送車システム
において、 前記無人搬送車は、 速度指令信号に基づき車輪を駆動して走行する主搬送車
と、 前記主搬送車からのトルク指令信号に基づき車輪を駆動
して走行する従搬送車とからなり、 前記主搬送車は、前記トルク指令信号を電圧信号として
前記従搬送車に与えることを特徴とする無人搬送車シス
テム。を備えたことを特徴とする無人搬送車システム。
5. An automatic guided vehicle system that includes a battery and that is moved by a traveling motor driven by the battery and that includes a charging device that charges the battery, wherein the automatic guided vehicle has a speed command. A main carrier that travels by driving wheels based on a signal; and a subsidiary carrier that travels by driving wheels based on a torque command signal from the main carrier. The main carrier has the torque command signal. Is supplied to the slave carrier as a voltage signal. An automatic guided vehicle system comprising:
【請求項6】 前記無人搬送車は、 前記主走行装置からのトルク指令信号を電圧信号に変換
する第1の変換器と、 前記前記第1の変換器により変換されたトルク指令信号
を元の信号に変換する第2の変換器と、 を備えたことを特徴とする請求項5に記載された無人搬
送車システム。
6. An automatic guided vehicle, comprising: a first converter for converting a torque command signal from the main traveling device into a voltage signal; and an original torque command signal converted by the first converter. The automatic guided vehicle system according to claim 5, further comprising: a second converter that converts the signal into a signal.
JP11007009A 1999-01-13 1999-01-13 Automatic guided vehicle system Pending JP2000209705A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11007009A JP2000209705A (en) 1999-01-13 1999-01-13 Automatic guided vehicle system
JP2006313249A JP4453695B2 (en) 1999-01-13 2006-11-20 Automated guided vehicle system
KR1020097012150A KR101450927B1 (en) 1999-01-13 2007-11-20 Automatic guided vehicle system
PCT/JP2007/072480 WO2008062801A1 (en) 1999-01-13 2007-11-20 Automatic guided vehicle system
CNA2007800422957A CN101535084A (en) 1999-01-13 2007-11-20 Automatic guided vehicle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11007009A JP2000209705A (en) 1999-01-13 1999-01-13 Automatic guided vehicle system
JP2006313249A JP4453695B2 (en) 1999-01-13 2006-11-20 Automated guided vehicle system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006313249A Division JP4453695B2 (en) 1999-01-13 2006-11-20 Automated guided vehicle system

Publications (1)

Publication Number Publication Date
JP2000209705A true JP2000209705A (en) 2000-07-28

Family

ID=54207928

Family Applications (2)

Application Number Title Priority Date Filing Date
JP11007009A Pending JP2000209705A (en) 1999-01-13 1999-01-13 Automatic guided vehicle system
JP2006313249A Expired - Lifetime JP4453695B2 (en) 1999-01-13 2006-11-20 Automated guided vehicle system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2006313249A Expired - Lifetime JP4453695B2 (en) 1999-01-13 2006-11-20 Automated guided vehicle system

Country Status (4)

Country Link
JP (2) JP2000209705A (en)
KR (1) KR101450927B1 (en)
CN (1) CN101535084A (en)
WO (1) WO2008062801A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210403A (en) * 2008-04-30 2008-09-11 Mitsubishi Heavy Ind Ltd Method of guidance and control for autonomous moving type robot to specified position
US7426424B2 (en) 2004-03-12 2008-09-16 Murata Kikai Kabushiki Kaisha Moving body system
US7529604B2 (en) 2003-07-23 2009-05-05 Murata Kikai Kabushiki Kaisha Moving body system and moving body
US7906919B2 (en) 2006-10-26 2011-03-15 Mitsubishi Heavy Industries, Ltd. Electric vehicle, and device and method of controlling slip thereof
WO2020032359A1 (en) * 2018-08-09 2020-02-13 현대무벡스 주식회사 Driving apparatus of automatic guided vehicle

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US8422525B1 (en) 2009-03-28 2013-04-16 Soraa, Inc. Optical device structure using miscut GaN substrates for laser applications
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9531164B2 (en) 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US9927611B2 (en) 2010-03-29 2018-03-27 Soraa Laser Diode, Inc. Wearable laser based display method and system
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
JP5429046B2 (en) * 2010-05-21 2014-02-26 株式会社豊田自動織機 Automatic traveling cart
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9318875B1 (en) 2011-01-24 2016-04-19 Soraa Laser Diode, Inc. Color converting element for laser diode
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
RU2569984C1 (en) * 2012-08-02 2015-12-10 Ниссан Мотор Ко., Лтд. Abnormality detection system for automatic guided vehicle
US9166372B1 (en) 2013-06-28 2015-10-20 Soraa Laser Diode, Inc. Gallium nitride containing laser device configured on a patterned substrate
CN103448565B (en) * 2013-07-26 2015-09-02 宁波远景汽车零部件有限公司 A kind of method and device thereof improving automatic Guided Vehicle flying power
US9379525B2 (en) 2014-02-10 2016-06-28 Soraa Laser Diode, Inc. Manufacturable laser diode
US9362715B2 (en) 2014-02-10 2016-06-07 Soraa Laser Diode, Inc Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
US9520695B2 (en) 2013-10-18 2016-12-13 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser device having confinement region
US9209596B1 (en) 2014-02-07 2015-12-08 Soraa Laser Diode, Inc. Manufacturing a laser diode device from a plurality of gallium and nitrogen containing substrates
US9520697B2 (en) 2014-02-10 2016-12-13 Soraa Laser Diode, Inc. Manufacturable multi-emitter laser diode
US9871350B2 (en) 2014-02-10 2018-01-16 Soraa Laser Diode, Inc. Manufacturable RGB laser diode source
US9564736B1 (en) 2014-06-26 2017-02-07 Soraa Laser Diode, Inc. Epitaxial growth of p-type cladding regions using nitrogen gas for a gallium and nitrogen containing laser diode
US9246311B1 (en) 2014-11-06 2016-01-26 Soraa Laser Diode, Inc. Method of manufacture for an ultraviolet laser diode
US9666677B1 (en) 2014-12-23 2017-05-30 Soraa Laser Diode, Inc. Manufacturable thin film gallium and nitrogen containing devices
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US10938182B2 (en) 2015-08-19 2021-03-02 Soraa Laser Diode, Inc. Specialized integrated light source using a laser diode
US10879673B2 (en) 2015-08-19 2020-12-29 Soraa Laser Diode, Inc. Integrated white light source using a laser diode and a phosphor in a surface mount device package
US11437775B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. Integrated light source using a laser diode
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
CN109051565B (en) * 2018-09-10 2024-04-12 中国电子科技集团公司第三十八研究所 Aerial shuttle
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US10903623B2 (en) 2019-05-14 2021-01-26 Soraa Laser Diode, Inc. Method and structure for manufacturable large area gallium and nitrogen containing substrate
US11228158B2 (en) 2019-05-14 2022-01-18 Kyocera Sld Laser, Inc. Manufacturable laser diodes on a large area gallium and nitrogen containing substrate
US11777602B2 (en) * 2021-11-09 2023-10-03 Nidec Motor Corporation Apparatus and method for arbitrating optical communication between can buses
JP7141513B1 (en) * 2021-12-15 2022-09-22 Dmg森精機株式会社 unmanned carrier system
TR2022008373A2 (en) * 2022-05-24 2022-06-21 Univ Istanbul Gelisim FOUNDED ELECTRIC VEHICLE CHARGING STATION

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176410A (en) * 1991-01-14 1993-07-13 Matsushita Electric Ind Co Ltd Automatic carrying system
JPH04347951A (en) * 1991-03-19 1992-12-03 Fuji Electric Co Ltd Method for data transmission between plural inverters
JPH0675631A (en) * 1992-08-25 1994-03-18 Meidensha Corp Automatic charging device for automated guided vehicle
JP3481787B2 (en) * 1995-09-14 2003-12-22 株式会社東芝 Electric car control device
JP2001080501A (en) * 1999-09-13 2001-03-27 Hitachi Kiden Kogyo Ltd Conveyer
JP2001266287A (en) * 2000-03-17 2001-09-28 Toyota Motor Corp Vehicle traffic system and device for supporting vehicle travel
JP2003274514A (en) * 2002-03-14 2003-09-26 Shinko Electric Co Ltd Transportation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7529604B2 (en) 2003-07-23 2009-05-05 Murata Kikai Kabushiki Kaisha Moving body system and moving body
US7426424B2 (en) 2004-03-12 2008-09-16 Murata Kikai Kabushiki Kaisha Moving body system
US7906919B2 (en) 2006-10-26 2011-03-15 Mitsubishi Heavy Industries, Ltd. Electric vehicle, and device and method of controlling slip thereof
JP2008210403A (en) * 2008-04-30 2008-09-11 Mitsubishi Heavy Ind Ltd Method of guidance and control for autonomous moving type robot to specified position
WO2020032359A1 (en) * 2018-08-09 2020-02-13 현대무벡스 주식회사 Driving apparatus of automatic guided vehicle

Also Published As

Publication number Publication date
JP4453695B2 (en) 2010-04-21
JP2007068398A (en) 2007-03-15
WO2008062801A1 (en) 2008-05-29
KR20090083460A (en) 2009-08-03
CN101535084A (en) 2009-09-16
KR101450927B1 (en) 2014-10-14

Similar Documents

Publication Publication Date Title
JP2000209705A (en) Automatic guided vehicle system
CN102161319B (en) Control device for electric vehicle
CN103118894B (en) Countermeasure device when the nothing accreditation storage battery of elec. vehicle is changed
CN103650332B (en) The control method of vehicle and vehicle
CN108058605A (en) For pair can electrically drivable motor vehicle supply of electrical energy amount energy supply vehicle
US9077279B2 (en) Load drive control system for hybrid vehicle and method of controlling hybrid vehicle
CN102858584A (en) Vehicle parking assistance device and electric vehicle equipped with same
CN103895524A (en) Driving system of electric motor coach and driving control method thereof
WO2020037220A1 (en) Redundant battery management system architecture
WO2007045159A1 (en) Ultracapacitor rapidly charging system for trolley bus
JP2018023212A (en) Brake control device for vehicle
WO2023103556A1 (en) Permanent magnet direct-drive torpedo ladle car and control method therefor
EP3894261A1 (en) An electric power transmission system for a vehicle
JP2016134983A (en) Abnormality coping control device of electric automobile
CN115023876A (en) Portable rescue portable power source
JP6318933B2 (en) Transport system for automated guided vehicles
US10821816B1 (en) Detachable electrified powertrain components
JP4709654B2 (en) Transportation system
WO2020077688A1 (en) Magnetic levitation train and traction control method therefor
JP6324682B2 (en) Maintenance vehicle
JP2016063597A (en) Drive control device
JP5445317B2 (en) Charging system
CN112339882A (en) AGV moving platform system and method based on hub motor
CN211741923U (en) AGV dolly and omnidirectional control device thereof
WO2013080335A1 (en) Vehicle drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403