JP2000205200A - Air-lift pump device - Google Patents

Air-lift pump device

Info

Publication number
JP2000205200A
JP2000205200A JP11001428A JP142899A JP2000205200A JP 2000205200 A JP2000205200 A JP 2000205200A JP 11001428 A JP11001428 A JP 11001428A JP 142899 A JP142899 A JP 142899A JP 2000205200 A JP2000205200 A JP 2000205200A
Authority
JP
Japan
Prior art keywords
liquid
bubble
gas
mixing
pump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11001428A
Other languages
Japanese (ja)
Inventor
Noboru Niihara
登 新原
Takahiro Ohashi
隆弘 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP11001428A priority Critical patent/JP2000205200A/en
Publication of JP2000205200A publication Critical patent/JP2000205200A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simultaneously progress the generation, dispersion and mixing of bubbles to add the bubbles in the state suppressed in energy loss by providing, within a liquid duct, a gas adding and mixing device with a bubble dispersing mechanism for adding a gas to a liquid, and atomizing a large quantity of bubbles to dispersively add and mix them to the liquid. SOLUTION: A bubble dispersing mechanism 5 is mounted on a gas adding and mixing chamber 1 having a liquid conduit 2, and the addition, atomization, dispersion and mixing of a gas are simultaneously performed by the bubble dispersing mechanism 5. The bubble dispersing mechanism 5 has a gas chamber 3, and the gas is supplied to the gas chamber 3 through a gas inlet conduit 4. A number of independent pores are provided on the surface contact with the liquid of the bubble dispersing mechanism 5 to atomize the bubbles by the shearing force of the liquid. Since the bubble dispersing mechanism 5 forms a part of the liquid duct wall, and it is provided on the whole circumference of the duct wall surface, extending in the liquid duct direction, the bubbles can be efficiently added to the liquid without causing the disturbance or stagnation of the flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液体吐出装置に関す
るものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a liquid discharging apparatus.

【0002】[0002]

【従来の技術】特開平9−236100、特開平9−2
09998では液体そのものに大きな熱エネルギーを与
えることで液体を蒸発させ、発生した気泡によりポンプ
として機能する液体加熱装置が開示されている。
2. Description of the Related Art JP-A-9-236100, JP-A-9-2
Japanese Patent Application Laid-Open No. 09998 discloses a liquid heating device that functions as a pump by applying large thermal energy to the liquid itself to evaporate the liquid and generate bubbles.

【0003】また特開平4−203498、特開平4−
203499にみられるように、気体を液体中に加圧溶
解し、その後減圧することにより微細気泡を析出させ、
浴槽や液体槽の洗浄及び養魚槽の酸化等に用いる微細気
泡発生装置が開示されている。
Further, Japanese Patent Application Laid-Open Nos. Hei 4-203498 and Hei 4-
As shown in 203499, a gas is dissolved under pressure in a liquid, and then the pressure is reduced to precipitate fine bubbles,
A microbubble generator used for cleaning a bathtub or a liquid tank, oxidizing a fish tank, and the like is disclosed.

【0004】[0004]

【発明が解決しようとする課題】液体に蒸発潜熱を与え
ることで気泡を発生させ、圧力ヘッドを得るポンプ装置
においては、液体を蒸発させるために必要なエネルギー
が甚大であることから、ポンプそのものとしての機能よ
りも伝熱の付与的効果として利用されていることから、
ポンプとしてみた場合には装置全体が大型化しエネルギ
ーを浪費するものであった。また伝熱をかならず伴うこ
とから、液体そのものの温度制御が困難であり、低い温
度の液体に適用した場合にはポンプとして機能しないこ
ともあり、また発生させる気泡量や大きさが伝熱量や温
度により定められるため、ポンプの能力を決定付ける気
泡径や気泡量を任意に制御できず、もっぱら特殊な用途
に使用目的が限定されていた。
In a pump device that obtains a pressure head by generating bubbles by giving latent heat of vaporization to a liquid, the energy required for evaporating the liquid is enormous. Because it is used as an additional effect of heat transfer rather than the function of
When viewed as a pump, the entire apparatus becomes large and wastes energy. In addition, since heat transfer is always involved, it is difficult to control the temperature of the liquid itself, and when it is applied to a low-temperature liquid, it may not function as a pump. Therefore, the bubble diameter and bubble amount that determine the capacity of the pump cannot be arbitrarily controlled, and the purpose of use has been limited to special applications.

【0005】気体を液体中に加圧溶解させ、その後減圧
して微細気泡を得る装置においては、気体及び液体を加
圧するための大型のタンク装置が必要であり、ポンプ能
力を高めることを目的として大量の気体を溶解させるに
は加圧に要するエネルギーも大きなものとなり、ポンプ
の総合効率としては非常に低いものであった。
A device for dissolving a gas under pressure in a liquid and then depressurizing it to obtain fine bubbles requires a large tank device for pressurizing the gas and the liquid. In order to dissolve a large amount of gas, the energy required for pressurization was also large, and the overall efficiency of the pump was very low.

【0006】本願発明の発明者は液体に気体を混入する
気体混入混合装置における気泡分散機構の表面開孔の構
造を規定することにより液体中に微細な単独気泡を大量
に安定して分散混入することができ、これによって気体
の持つ運動量を効率よく確実に液体に伝達しうることを
見出した。本願発明は係る知見に基づくものであり、微
細な気泡を大量に液体中に分散混入させることにより、
液体の運動量を効率よく確実に増加させることにより液
体の速度を大幅に向上させ、効率よく機能するポンプ装
置に関するものである。
The inventor of the present invention specifies a structure of the surface opening of a bubble dispersing mechanism in a gas mixing and mixing apparatus for mixing a gas into a liquid, thereby stably dispersing and mixing a large amount of fine single bubbles into the liquid. It has been found that the momentum of the gas can be efficiently and reliably transmitted to the liquid. The present invention is based on such knowledge, by dispersing and mixing a large amount of fine bubbles in a liquid,
TECHNICAL FIELD The present invention relates to a pump device that functions efficiently by reliably and efficiently increasing the momentum of a liquid to greatly increase the speed of the liquid.

【0007】液対中に単に気体を混入させただけでは、
気体を大量に混入させた場合の気液二相流の流動様相は
スラグ流あるいは環状流となり、液体速度よりも気体速
度が非常に大きく液体への運動量伝達が有効に行われな
い。
[0007] If a gas is simply mixed into a liquid pair,
The flow aspect of the gas-liquid two-phase flow when a large amount of gas is mixed is a slug flow or an annular flow, and the gas velocity is much larger than the liquid velocity, and the momentum transfer to the liquid cannot be performed effectively.

【0008】このように従来の気体混入機構では大量の
気体を細かくすると同時に液体中に均一に分散させる手
段を持たないために、混合後の流動様相が環状流やスラ
グ流となり気体から液体へのせん断による運動量伝達が
進まず気体は大きな速度を保ったまま液体よりも高速に
流れ去る。このような状態では液体の速度が上昇しない
ばかりか、液体のみの単相流と比較して気体塊が存在す
ることにより圧力損失が増えるために失うエネルギーも
大きくポンプ効率も低い。
As described above, since the conventional gas mixing mechanism has no means for making a large amount of gas fine and dispersing it uniformly in the liquid, the flow pattern after mixing becomes an annular flow or a slag flow, and the gas flows from the gas to the liquid. Momentum transfer by shearing does not proceed, and the gas flows away faster than the liquid while maintaining a large velocity. In such a state, not only the speed of the liquid does not increase but also the energy lost due to the increase in pressure loss due to the presence of the gas mass compared with the single-phase flow of the liquid alone is large, and the pump efficiency is low.

【0009】スラグ流、環状流は気相と液相が完全に独
立しているために、また噴霧流はエネルギーを有する液
相が細かく分離しているために、これらを大気中に放出
した場合は大きな振動や騒音を発生したり、管路で輸送
する場合にはその振動により壁面を摩耗させたり不要な
固体伝播振動や固体伝播騒音を発生させていた。
In the case of slag flow and annular flow, the gas and liquid phases are completely independent, and in the case of spray flow, the liquid phase having energy is finely separated. Generates large vibrations and noises, and when transported by pipes, the vibrations wear down the walls and generate unnecessary solid-borne vibrations and noises.

【0010】本発明は、上記課題を解決するためになさ
れたもので、本発明の目的は、大量の気体を液体中に微
細な形で混合し分散させることで液体の速度を効率よく
確実に増加させ節液体化を図るとともに、噴出した液体
を十分に制御された連続流で提供することにより従来の
液体のみで洗浄する場合と同じように洗浄できる液体を
供給することが可能であり、さらにこれらをエネルギー
損失が少なく高効率に行うことができる気泡ポンプ装置
を提供することにある。また本発明によれば、スラグ
流、環状流や噴霧流のように不安定な挙動を示さない安
定した連続気泡流であるため、不要な振動や騒音を発生
させることが無い。また大量の微細な気泡を液体中に分
散させるために、気液の接触界面積が非常に大きくとれ
流動様相も安定なので化学反応や物理溶解の場としても
使用することができる。同時に高効率な気泡ポンプとし
て機能するので低駆動圧で作動することが可能な気泡ポ
ンプ装置を提供することが可能である。
The present invention has been made to solve the above problems, and an object of the present invention is to efficiently and reliably increase the speed of a liquid by mixing and dispersing a large amount of gas in a fine form in the liquid. It is possible to supply a liquid that can be washed in the same manner as in the case of washing only with a conventional liquid by providing the ejected liquid in a well-controlled continuous flow while increasing the amount of liquid to be saved, and furthermore, It is an object of the present invention to provide a bubble pump device capable of performing these operations with low energy loss and high efficiency. Further, according to the present invention, a stable continuous bubble flow that does not exhibit unstable behavior like a slag flow, an annular flow or a spray flow does not generate unnecessary vibration or noise. In addition, since a large amount of fine bubbles are dispersed in the liquid, the contact area between the gas and liquid is very large and the flow appearance is stable, so that it can be used as a field for chemical reaction or physical dissolution. At the same time, since it functions as a highly efficient bubble pump, it is possible to provide a bubble pump device that can operate at a low driving pressure.

【0011】[0011]

【課題を解決するための手段及び作用】本発明は上記課
題を解決するために、大量の気泡を微細化し液体中に分
散混入させることにより、気泡の生成、分散、混合が同
時に進行するので、気体の運動量を液体に確実に伝達す
ることにより液体を十分に制御された連続流で提供する
ことにより、エネルギー損失が少なく高効率に作動する
気泡ポンプ装置を提供することにある。
According to the present invention, in order to solve the above-mentioned problems, a large amount of air bubbles are finely divided and dispersed and mixed in a liquid, so that generation, dispersion and mixing of the air bubbles proceed simultaneously. It is an object of the present invention to provide a bubble pump device that operates with high efficiency with little energy loss by reliably transmitting the momentum of gas to the liquid to provide the liquid in a well-controlled continuous flow.

【0012】請求項1、2においては、液体に気体を混
入させるのに気泡分散機構を設けたので、流動液体中に
混入した気体が気泡となる過程で独立気泡を保ったま
ま、周囲の気泡との合一を抑止できる。気泡の合一を防
止すればスラグ流、環状流や噴霧流となることなく気体
の運動量を液体に伝達することができるため、高効率で
作動する気泡ポンプ装置を得ることができる。
In the first and second aspects, a bubble dispersing mechanism is provided for mixing gas into the liquid. Therefore, while the gas mixed in the flowing liquid becomes bubbles, the surrounding bubbles are maintained while maintaining the closed cells. Can be suppressed. If the coalescence of bubbles is prevented, the momentum of the gas can be transmitted to the liquid without forming a slag flow, an annular flow or a spray flow, so that a highly efficient bubble pump device can be obtained.

【0013】請求項3においては、平均直径が100μ
m乃至1000μmの微細な気泡を液体中に供給する微
細気泡供給手段を設けたので、気泡の剛性が高く変形し
にくいので気泡合一を起こしにくく安定した気泡流を得
ることができ、液体中で不要な運動を起こさないのでエ
ネルギー損失も少なく、騒音や振動を防止することがで
きる。また気液接触界面積が大きく取れるので、気体を
液体中に溶解させる物理溶解や、気体と液体の化学反応
を行なう場を提供するも可能である。
In the third aspect, the average diameter is 100 μm.
Since fine bubble supply means for supplying fine bubbles of m to 1000 μm into the liquid is provided, the rigidity of the bubbles is high and the bubbles are hardly deformed, so that it is possible to obtain a stable bubble flow which does not easily cause the coalescence of the bubbles, Since unnecessary movement is not caused, energy loss is small and noise and vibration can be prevented. Further, since the gas-liquid contact area can be increased, it is possible to provide a physical dissolution in which a gas is dissolved in a liquid or a place for performing a chemical reaction between a gas and a liquid.

【0014】請求項4においては、気泡分散機構の液体
に接している面の開孔を多数分割された独立開孔で構成
したので、流動液体中に混入した気体が気泡となる過程
で独立気泡を保ったまま、周囲の気泡との合一を抑止で
きる。さらに気泡は所定の気泡径となるまで成長し、流
動している液体のせん断力がこのせん断力と逆方向に作
用する気液の界面張力により発生する力を上回ったとき
に、気泡は気泡分散機構の開孔部から離脱し液体中に分
散する。気泡は流れの乱れにより拡散し管内に均一に分
散するが、この気泡が流動液体中に分散する過程で合一
の無い微細な気泡の移動速度は迅速に液体速度とほぼ同
一となり、液体の速度は質量保存に従い上昇する。また
小さな径の気泡形状は球形に近く、また剛性も高いので
変形や合一が発生しにくく単独気泡のまま流動液体中に
拡散してゆく。このようにして気体混入混合装置におい
て微細な気泡を生成し同時に液体と混合することによ
り、気体の持つ運動量を液体側に迅速に伝達しエネルギ
ーのロスなく気泡ポンプとして機能させることが可能で
ある。
According to the fourth aspect, since the opening of the surface of the bubble dispersing mechanism which is in contact with the liquid is constituted by a large number of independent openings, the gas mixed in the flowing liquid becomes bubbles while the bubbles are mixed. , And coalescence with surrounding bubbles can be suppressed. Further, the bubbles grow to a predetermined bubble diameter, and when the shearing force of the flowing liquid exceeds the force generated by the interfacial tension of gas-liquid acting in the opposite direction to this shearing force, the bubbles are dispersed in the bubbles. Dissociates from the opening of the mechanism and disperses in the liquid. The bubbles diffuse due to the turbulence of the flow and are uniformly dispersed in the tube, but in the process of dispersing the bubbles in the flowing liquid, the moving speed of the unburied fine bubbles quickly becomes almost the same as the liquid speed, and the speed of the liquid Increases with conservation of mass. In addition, the shape of the bubble having a small diameter is close to a sphere and the rigidity is high, so that deformation and coalescence hardly occur, and the bubble is diffused into the flowing liquid as a single bubble. In this manner, by generating fine bubbles in the gas mixing and mixing apparatus and simultaneously mixing them with the liquid, it is possible to quickly transmit the momentum of the gas to the liquid side and to function as a bubble pump without loss of energy.

【0015】請求項5においては、開孔部の開孔配置を
略格子状に規則的としたので、単位面積当たりの開孔数
を増やすことができ、発生する気泡間の距離を均一に保
つことができるので、気泡生成時に連続気泡となりにく
くスラグ流や環状流となりにくいので、確実に液体に運
動量を伝達できる。また開孔密度を増やすことにより気
泡分散機構の小型化も可能である。
According to the fifth aspect of the present invention, since the openings are arranged in a regular grid pattern, the number of openings per unit area can be increased, and the distance between generated bubbles is kept uniform. Therefore, the momentum can be reliably transmitted to the liquid because it is difficult to form a continuous bubble when generating bubbles, and it is difficult to form a slag flow or an annular flow. Also, by increasing the aperture density, the size of the bubble dispersion mechanism can be reduced.

【0016】請求項6においては、気泡分散機構の開孔
部が液体管路形状に沿って延長されたので、流れを乱し
たり流れのよどみを発生させたりすることなく気泡を分
散混入可能である。なお流れに乱れやよどみが発生する
と、気泡の接触機会が増加したり滞留時間が増えるの
で、気泡合一が発生しやすく気泡の大径化を起こしやす
い。
In the sixth aspect, since the opening of the bubble dispersing mechanism is extended along the shape of the liquid conduit, bubbles can be dispersed and mixed without disturbing the flow or generating stagnation of the flow. is there. If the flow is disturbed or stagnation occurs, the chance of contact with the bubbles increases or the residence time increases, so that coalescence of the bubbles is likely to occur and the diameter of the bubbles is likely to increase.

【0017】請求項7においては、気泡分散機構の開孔
部を液体管路壁面に設けたので、流れを乱したり流れの
よどみを発生させたりすることなく気泡を分散混入可能
である。なお流れに乱れやよどみが発生すると、気泡の
接触機会が増加したり滞留時間が増えるので、気泡合一
が発生しやすく気泡の大径化を起こしやすい。
In the seventh aspect, since the opening of the bubble dispersing mechanism is provided on the wall of the liquid conduit, bubbles can be dispersed and mixed without disturbing the flow or generating stagnation of the flow. If the flow is disturbed or stagnation occurs, the chance of contact with the bubbles increases or the residence time increases, so that coalescence of the bubbles is likely to occur and the diameter of the bubbles is likely to increase.

【0018】請求項8においては、気体混入混合装置を
ポンプ装置として機能させるので、気体側のエネルギー
を液体に伝達させることにより、より少ない圧力での駆
動が可能となるので、装置全体の小型化を図ることがで
きる。
In the eighth aspect, since the gas mixing and mixing device functions as a pump device, it is possible to drive the device at a lower pressure by transmitting the energy on the gas side to the liquid. Can be achieved.

【0019】請求項9においては、気体混入混合装置で
の気体混入比率を4以下とするので、気泡の合一が発生
しにくくスラグ流や環状流となることなく、効率よく節
液体化が図れ、使用感にも優れる。
In the ninth aspect, since the gas mixing ratio in the gas mixing and mixing device is set to 4 or less, coalescence of bubbles hardly occurs and a slag flow or an annular flow is prevented, so that efficient liquid saving can be achieved. Also excellent in usability.

【0020】請求項10においては、気泡分散機構を略
球状粒子の集合体で構成したので、球状粒子の充填率を
高めやすく、開孔部の形状を均一とできるので、開孔同
士が連結した連続開孔となりにくい。開孔が独立してい
るので、気泡が独立気泡となりやすく環状流やスラグ流
となりにくい。
In the tenth aspect, since the bubble dispersing mechanism is constituted by an aggregate of substantially spherical particles, the filling rate of the spherical particles can be easily increased, and the shape of the opening can be made uniform. It is difficult to make continuous holes. Since the openings are independent, the air bubbles are likely to become closed air bubbles and are unlikely to be an annular flow or a slag flow.

【0021】請求項11においては、気泡分散機構を加
熱溶融性粉体を用いて成形したので、粒子間の接触面が
溶解結合し、独立開孔を形成できるとともに、使用時の
液体圧や気体圧等に対しても十分な強度を保つことがで
きる。
In the eleventh aspect, since the bubble dispersing mechanism is formed by using a heat-meltable powder, the contact surfaces between the particles can be melt-bonded to form independent openings, and the liquid pressure and gas during use can be increased. Sufficient strength can be maintained against pressure and the like.

【0022】請求項12においては、気泡分散機構の液
体に接している面を略網目状構造としたので、独立開孔
となりやすく環状流やスラグ流となりにくい。また網目
状構造は繊維等を重ね合せたり織り込むことで容易に形
成可能なので、繊維等の太さ、間隔や配向を制御するこ
とで容易に開孔形状、開孔面積や開孔間距離などを調整
できる。
In the twelfth aspect, since the surface of the bubble dispersing mechanism which is in contact with the liquid has a substantially mesh structure, independent openings are easily formed and an annular flow or a slag flow is unlikely. In addition, since the mesh structure can be easily formed by overlapping or weaving fibers and the like, by controlling the thickness, spacing and orientation of the fibers and the like, the opening shape, the opening area and the distance between the openings can be easily adjusted. Can be adjusted.

【0023】請求項13においては、気体を供給する手
段として加圧気体供給手段を使用したので、液体量、気
泡ポンプ特性等を自由に制御可能である。
In the thirteenth aspect, since the pressurized gas supply means is used as the gas supply means, it is possible to freely control the liquid amount, the bubble pump characteristics, and the like.

【0024】請求項14においては、本発明を気泡ポン
プ装置の液体吐出口近傍に配置して適用したので、気泡
の合一が発生しにくく安定した液体の吐出が可能であ
る。気体を大量に混入して液体の速度が上昇することに
より発生する、管路抵抗を減少させることができ必要な
液体圧や気体圧を減少させることができる。
In the present invention, since the present invention is applied in the vicinity of the liquid discharge port of the bubble pump device, it is possible to stably discharge the liquid with less occurrence of coalescence of bubbles. Pipe resistance, which is generated by mixing a large amount of gas and increasing the velocity of the liquid, can be reduced, and required liquid pressure and gas pressure can be reduced.

【0025】請求項15においては、液体中に気体を物
理吸収させる物理吸収手段を設けたので、微細気泡流の
非常に大きな気液接触界面積により迅速にかつ効果的な
物理吸収が可能である。また気体を物理吸収させた場合
には、もともと液体中に溶存していた気体がラウールの
法則に従い脱気されるため、脱気装置としても利用する
ことが可能である。
According to the fifteenth aspect, since the physical absorption means for physically absorbing the gas in the liquid is provided, rapid and effective physical absorption is possible due to the extremely large gas-liquid contact area of the fine bubble flow. . When a gas is physically absorbed, the gas originally dissolved in the liquid is degassed according to Raoul's law, so that the gas can also be used as a degasser.

【0026】請求項16、17においては、微細気泡流
を化学反応媒体として用いたので、微細気泡流の非常に
大きな気液接触界面積により迅速にかつ効果的な化学反
応が可能である。また固体表面に衝突する際には、単位
時間あたりの気泡数であらわされる非常に高い周波数の
振動を発生するので、反応境界層を薄くするので反応速
度が大幅に高まる。
In the embodiments of the present invention, since the microbubble flow is used as the chemical reaction medium, a very large gas-liquid contact area of the microbubble flow enables a rapid and effective chemical reaction. Also, when colliding with the solid surface, a very high frequency vibration expressed by the number of bubbles per unit time is generated, and the reaction boundary layer is thinned, so that the reaction speed is greatly increased.

【0027】請求項18においては、液体吐出口の下流
側に液体およびまたは気体を貯流する貯流槽を備えたの
で、液体を吐出口から放出させて他の固体に衝突させて
洗浄や化学反応等を行なった場合等であっても反応後の
気体や液体を効率的に回収可能である。
According to the eighteenth aspect, since the storage tank for storing the liquid and / or the gas is provided downstream of the liquid discharge port, the liquid is discharged from the discharge port and collides with other solids to perform cleaning or chemical cleaning. Even when a reaction or the like is performed, the gas or liquid after the reaction can be efficiently recovered.

【0028】請求項19においては、液体吐出口の下流
側に配置された貯流槽を攪拌するので、あらたな攪拌駆
動装置を設けなくても吸収および反応後の液体や気体を
均一に保持することができる。
According to the nineteenth aspect, since the storage tank disposed downstream of the liquid discharge port is stirred, the liquid and gas after absorption and reaction are uniformly held without providing a new stirring drive device. be able to.

【0029】請求項20においては、気泡分散機構を取
り外し可能に構成したので、気泡分散機構の洗浄や交換
などのメンテナンス、保守が容易に行なえる。
In the twentieth aspect, since the bubble dispersing mechanism is configured to be detachable, maintenance such as cleaning and replacement of the bubble dispersing mechanism can be easily performed.

【0030】請求項21においては、液体および気体を
加熱、冷却し温度を調整する温度調整手段を設けたの
で、化学反応、物理吸収、あるいは洗浄などの用いた場
合に最適な温度条件とすることができる。
In the twenty-first aspect, the temperature adjusting means for adjusting the temperature by heating and cooling the liquid and the gas is provided, so that the optimum temperature condition is used when a chemical reaction, physical absorption, washing or the like is used. Can be.

【0031】請求項22においては、液体吐出口から吐
出される液体中に含まれる気泡径を制御する気泡径制御
手段を備えたので、液体や気体の物性に応じて気泡径を
制御することができる。吐出された液体を固体に衝突さ
せた場合の振動周波数を制御できるので、洗浄力、化学
反応速度や振動の及ぶ範囲等を制御することができる。
In the twenty-second aspect, a bubble diameter control means for controlling the diameter of bubbles contained in the liquid discharged from the liquid discharge port is provided, so that the bubble diameter can be controlled in accordance with the physical properties of the liquid or gas. it can. Since the vibration frequency when the discharged liquid collides with the solid can be controlled, the detergency, the chemical reaction speed, the range over which the vibration can be controlled, and the like can be controlled.

【0032】[0032]

【実施例】図1に示す本発明の第一実施例に係る気泡ポ
ンプ装置は上記知見を具現化させたものである。気体混
入混合室1には気泡分散機構5が取り付けられており、
液体管路2から供給される液体に対して、気泡分散機構
5において気体の混入、微細化、分散、混合が同時に行
われる。気泡分散機構5には気体室3が設けられてお
り、気体室3には気体導入管路4から気体が供給され
る。このとき気体室3においては圧力変動や圧力分布を
吸収させる緩衝領域として機能する。気泡分散機構5の
液体に接する面には、多数の独立開孔が設けられてお
り、液体のせん断力により気泡を微細化する。気泡分散
機構5は液体管路壁の一部をなしており、管路壁面全周
に設けられ、液体管路方向に延長して設けられているの
で、流れの乱れやよどみを発生させないし、開孔面積を
大きくすることができ開孔部における気泡発生密度が低
いので大量の気体を混入させても気泡生成時の気泡合一
が発生しにくく微細な独立気泡を生成できるので、気体
の圧力による運動量を確実に、効率よく、迅速に液体に
伝達することができる。また微細な気泡は剛性が高く変
形しにくく、不要な運動をしないのでエネルギー損失は
少ない。なおPは圧力、Vは速度、Qは流量、ρは密度
をあらわしており、添え字wは液体の状態を、添え字a
は気体の状態を、添え字tは気液二相流の状態をあらわ
している。ただしPaからは気泡分散機構通過時の気体
圧力損失は除外しており、また気体の密度は液体の密度
に比べて無視できるほど小さいので気体の運動エネルギ
ーは無視している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A bubble pump device according to a first embodiment of the present invention shown in FIG. 1 embodies the above findings. A bubble dispersing mechanism 5 is attached to the gas-mixed mixing chamber 1.
The gas is mixed, miniaturized, dispersed, and mixed with the liquid supplied from the liquid pipe 2 in the bubble dispersing mechanism 5 at the same time. A gas chamber 3 is provided in the bubble dispersion mechanism 5, and gas is supplied to the gas chamber 3 from a gas introduction pipe 4. At this time, the gas chamber 3 functions as a buffer region for absorbing pressure fluctuation and pressure distribution. A large number of independent openings are provided on the surface of the bubble dispersing mechanism 5 which is in contact with the liquid, and the bubbles are miniaturized by the shear force of the liquid. The bubble dispersing mechanism 5 forms a part of the wall of the liquid pipe, is provided on the entire circumference of the wall of the pipe, and is provided so as to extend in the direction of the liquid pipe, so that turbulence and stagnation of the flow are not generated. Since the opening area can be increased and the bubble generation density at the opening is low, even if a large amount of gas is mixed, bubble coalescence is hardly generated during bubble generation, and fine closed cells can be generated, so the gas pressure Momentum can be reliably, efficiently, and quickly transmitted to the liquid. In addition, fine bubbles have high rigidity and are not easily deformed, and do not perform unnecessary movement, so that energy loss is small. Note that P represents pressure, V represents speed, Q represents flow rate, and ρ represents density, and the subscript w represents the state of the liquid, and the subscript a
Represents the state of gas, and the suffix t represents the state of gas-liquid two-phase flow. However, Pa excludes the gas pressure loss when passing through the bubble dispersion mechanism, and ignores the kinetic energy of the gas because the density of the gas is negligibly small compared to the density of the liquid.

【0033】図2に示すように超高分子量ポリエチレン
の略球形粒子を充填して加熱成型した場合の表面は粒子
により互いの空隙が分割された独立開孔となっており、
独立気泡を生成するのに好適である。また略均一な粒子
を充填することで、開孔は略格子状に規則的な配置とな
り、生成時に気泡同士が合一することが少ない。なお超
高分子量ポリエチレンは一般的にメルトインデックス
(MI)が低くかつ溶融時の性状がゴムに近いため溶融
状態でも流れにくく、粒子と粒子が形状を変えずに接点
のみが接着される構造となる。ここで用いている超高分
子量ポリエチレンのMIは0.2〜1.0であり通常の
射出成形用の樹脂材料に比較して1/10程度であるこ
とから、加熱温度を十分制御して樹脂の融点をわずかに
上回る温度で溶融させることにより球形粒子同士がほぼ
点接触に近い形で成形される。このように接触点のみが
融合する構造となることから、表面形状は原材料粒子の
形状、粒度分布及び充填率でほぼ決定されるので、製造
上も非常に表面性状を制御しやすい物性を有している。
さらに化学的に安定であることから塩素、酸塩基、有機
溶媒等を含有する洗浄液体に適しており、吸湿性がほと
んど無いことから液体への適用にも適している。
As shown in FIG. 2, the surface when filled with substantially spherical particles of ultra-high molecular weight polyethylene and heat-molded has independent openings in which the voids are divided by the particles.
It is suitable for generating closed cells. In addition, by filling the particles with substantially uniform particles, the openings are arranged regularly in a substantially lattice shape, and bubbles are less likely to coalesce at the time of generation. In addition, ultra-high molecular weight polyethylene generally has a low melt index (MI) and hardly flows even in a molten state because the property at the time of melting is close to that of rubber, so that particles have a structure in which only the contacts are bonded without changing the shape. . The MI of the ultrahigh molecular weight polyethylene used here is 0.2 to 1.0, which is about 1/10 of that of a normal resin material for injection molding. Are melted at a temperature slightly higher than the melting point of the spherical particles, so that the spherical particles are formed in a shape almost close to point contact. Since the structure is such that only the contact points are fused, the surface shape is almost determined by the shape, particle size distribution, and filling factor of the raw material particles. ing.
Further, since it is chemically stable, it is suitable for a cleaning liquid containing chlorine, an acid base, an organic solvent, and the like, and is also suitable for application to a liquid because it has almost no hygroscopicity.

【0034】図3に示すのはアクリル樹脂の略球形粒子
を加熱した場合で、若干流動性が高いものの粒子間が結
合し網目構造に近い構造を有する独立開孔となってお
り、これも好適である。また略均一な粒子を充填するこ
とで、開孔は略格子状に規則的な配置となり、生成時に
気泡同士が合一することが少ない。なおアクリル樹脂は
表面張力が低く液体との親和性も高い。また粒度分布が
均一であると気孔径も均一となりやすく気孔形状も制御
しやすいので、加熱成形前に粒度分布をそろえるため篩
にかけることも望ましい。
FIG. 3 shows a case where substantially spherical particles of an acrylic resin are heated. Although the particles have a slightly high fluidity, the particles are bonded to each other to form independent openings having a structure close to a network structure. It is. In addition, by filling the particles with substantially uniform particles, the openings are arranged regularly in a substantially lattice shape, and bubbles are less likely to coalesce at the time of generation. The acrylic resin has a low surface tension and a high affinity for liquid. Further, if the particle size distribution is uniform, the pore diameter is likely to be uniform, and the pore shape is easily controlled. Therefore, it is desirable that the particles are sieved before heat molding to uniform the particle size distribution.

【0035】その他の材料としては、例えば四弗化エチ
レンがある。この材料は化学的に安定であり、液体との
表面張力が高く水等の液体との親和性が低いため、浸透
圧が高く開孔部を逆流しにくい等の長所を有する。また
液体や気体中のごみや析出成分等が付着しにくい。
As another material, there is, for example, ethylene tetrafluoride. This material is chemically stable, has high surface tension with a liquid, and has low affinity with a liquid such as water, and thus has advantages such as high osmotic pressure and difficulty in flowing back through an opening. In addition, dust and precipitated components in liquids and gases are less likely to adhere.

【0036】またこれらのように加熱溶融性材料を加熱
成形したものを用いると、粒子同士が融合することによ
り液体圧や気体圧に対しても強度的にも優れたものを提
供できる。粒子の平均粒径は50μm〜300μmのも
のを用いているが、材料の粒子径を制御すると気孔を制
御できるので発生気泡の気泡径は材料の平均粒径により
定まる。平均粒径が50μmから300μmのものを用
いると、100μmから1000μmの気泡径を得る気
孔が形成される。気泡径を大きくしたければ、材料の粒
子径を大きくすればよいし、気泡径を小さくしたければ
材料の粒子径を小さくすればよい。
When a heat-meltable material obtained by heating and molding such a material is used, particles having excellent strength against liquid pressure and gas pressure can be provided by fusing particles. Although the average particle diameter of the particles is 50 μm to 300 μm, the pore diameter can be controlled by controlling the particle diameter of the material. Therefore, the bubble diameter of generated bubbles is determined by the average particle diameter of the material. When the particles having an average particle diameter of 50 μm to 300 μm are used, pores for forming a bubble diameter of 100 μm to 1000 μm are formed. To increase the cell diameter, the particle diameter of the material may be increased, and to decrease the cell diameter, the particle diameter of the material may be decreased.

【0037】またナイロン等の繊維材料を略格子状に編
んだ構造であっても図3と同様に気孔間が互いに分割さ
れた独立開孔となり、使用する繊維径や間隔を略均一と
すれば略格子状の規則的な開孔配置を得ることができ
る。さらに繊維径及び間隔が任意に設定できるために、
気孔間距離、気孔径や開孔率等表面形状の制御には好適
である。なお繊維材料を使用した場合は、通常それ自身
に十分な強度が無いために支持体に設置することにより
安定した動作を確保でき、繊維表面が流れによりわずか
に振動するため気泡生成や局所的な気体混入量が変化し
液体中のゴミやスケール等の付着を抑止する効果もあ
る。また繊維材料等は十分な厚みがないために液体の圧
力変動が気体室に伝達されやすく気体混入時に不安定な
挙動を示し振動を起こすことがあるので、振動を避ける
場合は何枚かを重ねるようにすると好適である。
Further, even in a structure in which a fiber material such as nylon is knitted in a substantially lattice shape, the pores are separated from each other as shown in FIG. 3, and if the fiber diameter and spacing used are made substantially uniform. A substantially lattice-shaped regular aperture arrangement can be obtained. In addition, because the fiber diameter and spacing can be set arbitrarily,
It is suitable for controlling the surface shape such as the inter-pore distance, the pore diameter and the porosity. If a fiber material is used, stable operation can be ensured by installing it on a support because the fiber itself usually does not have sufficient strength, and since the fiber surface slightly vibrates due to the flow, bubble generation and local There is also an effect that the amount of mixed gas changes to prevent adhesion of dust, scale, and the like in the liquid. In addition, since the fiber material does not have a sufficient thickness, the pressure fluctuation of the liquid is likely to be transmitted to the gas chamber, causing unstable behavior when mixing the gas, and may cause vibration.To avoid vibration, stack several sheets This is preferable.

【0038】気泡分散機構に用いる材料としてはこれら
以外にも、ブロンズ、ステンレンス等の金属やガラス等
を用いてもよいし、製造方法としては、これら加熱溶融
性粉体を用いる以外にも転相ガラスを用いて連続気孔を
構成させたものやセラミック材料等を用いてもよい。
In addition to the above materials, metals such as bronze and stainless steel, glass, and the like may be used as the material used for the bubble dispersing mechanism. A material in which continuous pores are formed using glass, a ceramic material, or the like may be used.

【0039】図4は本発明における微細気泡流の噴出時
の流動様相の一例である。液体中に微細な気泡が大量に
含まれており、気泡自身は液体に守られるように含まれ
ているので、大気放出後も大気との間に干渉を起こしに
くいので、噴霧流のように大気放出後に速度低下を起こ
すことがなく増大した液体の運動量を確実に伝達するこ
とができる。微細気泡流の噴出後の流れは液体のみで噴
出させたときと同じような挙動を示し、スラグ流、環状
流や噴霧流とは異なり、飛散、振動、騒音の発生が少な
く、使用環境も優れる。
FIG. 4 shows an example of the flow pattern at the time of ejection of the fine bubble flow in the present invention. A large amount of fine bubbles are contained in the liquid, and the bubbles themselves are contained so as to be protected by the liquid.Therefore, they do not easily interfere with the atmosphere even after being released to the atmosphere. It is possible to reliably transmit the increased momentum of the liquid without releasing the velocity after the discharge. The flow after ejection of the microbubble flow shows the same behavior as when it is ejected with only liquid, and unlike slag flow, annular flow and spray flow, there is little generation of scattering, vibration, noise, and excellent use environment .

【0040】図5は本実施例における液体流速に対する
気泡生成直後の気泡径の一例を示している。気泡の相当
直径は液体流速により変化し、液体流速が大きいときは
せん断力が大きいことにより気泡径が小さくなり、液体
流速が小さいときにはせん断力が小さいことにより気泡
径が大きくなる関係が得られている。このことから気泡
生成時の液体流速を変化させることにより生成気泡径が
制御可能である。また生成気泡径はせん断力の効果が同
一のときには、気泡分散機構の液体に接した面の開孔面
積に概略比例するので、これを利用して気泡分散機構表
面の開孔面積を変えてもよい。
FIG. 5 shows an example of the bubble diameter immediately after bubble generation with respect to the liquid flow velocity in this embodiment. The equivalent diameter of the bubbles changes depending on the liquid flow velocity. When the liquid flow velocity is high, the shear force is large and the bubble diameter is small, and when the liquid flow velocity is low, the relation that the bubble diameter is large due to the small shear force is obtained. I have. From this, it is possible to control the generated bubble diameter by changing the liquid flow velocity at the time of bubble generation. When the effect of the shearing force is the same, the generated bubble diameter is roughly proportional to the opening area of the surface of the bubble dispersion mechanism that is in contact with the liquid. Good.

【0041】図6は気泡生成後の管路内滞留時間と気泡
成長の一例を示したものである。なおDbは生成時の気
泡径をあらわし、Dは滞留時間を変えたときの気泡径を
あらわし、D/Dbは生成時と比較して気泡径が何倍の
大きさになっているかを示している。滞留時間が増すと
ともに気泡径は合一し成長するので、滞留時間を制御す
ることにより気泡径の制御が可能である。また流量を変
更すれば気泡生成時の気泡径と気泡成長が制御できるの
で、流量が小さなときには大きな気泡径が得られ、流量
が大きいときには小さな気泡径が得られるので、微細気
泡流が固体表面等に衝突する際に発生する振動周波数を
制御可能である。また乱れの強さや遠心力を与えること
により気泡径の成長は制御できるが、気泡生成後に管路
を曲げたり屈曲させることにより気泡の合一が促進され
大きな気泡径を得ることも可能である。
FIG. 6 shows an example of the residence time in a pipe after bubble generation and bubble growth. Db represents the bubble diameter at the time of generation, D represents the bubble diameter when the residence time is changed, and D / Db represents how many times the bubble diameter is larger than that at the time of generation. I have. As the residence time increases and the bubble diameters unite and grow, the bubble diameter can be controlled by controlling the residence time. Also, by changing the flow rate, the bubble diameter and bubble growth during bubble generation can be controlled, so a large bubble diameter can be obtained when the flow rate is small, and a small bubble diameter can be obtained when the flow rate is large. It is possible to control the vibration frequency generated when the vehicle collides. Further, the growth of the bubble diameter can be controlled by applying a turbulent strength or a centrifugal force, but it is possible to promote the coalescence of the bubbles and obtain a large bubble diameter by bending or bending the pipeline after the bubbles are generated.

【0042】図7は本実施例における気体混入による運
動量増加効果の一例を示しているが、気泡分散機構の流
動液体側に接した面には多数の独立開孔が設けられてお
り、気体の混入、微細化、分散、混合が同時に行われれ
るので液体への気体混入と運動量伝達が確実に行なわ
れ、運動量増加効果は非常に高い。またこれらを同時に
行なうことにより必要な投入エネルギーは非常に少な
い。気体混入率が概略4を超えると気泡流から環状流も
しくは噴霧流に遷移するため、運動量増加効果は減少す
るとともに騒音や液体はねが増加するので、運転条件は
気体混入率を4以下とした方が望ましい。
FIG. 7 shows an example of the effect of increasing the momentum due to gas mixing in this embodiment. A large number of independent openings are provided on the surface of the bubble dispersing mechanism that is in contact with the flowing liquid, so Since mixing, miniaturization, dispersion, and mixing are performed simultaneously, mixing of gas into the liquid and transmission of momentum are reliably performed, and the effect of increasing momentum is extremely high. Further, by simultaneously performing these, the input energy required is very small. When the gas mixing ratio exceeds approximately 4, the gas flow transitions from a bubble flow to an annular flow or a spray flow, so the momentum increasing effect decreases and noise and liquid splash increase, so the operating conditions were set to a gas mixing ratio of 4 or less. Is more desirable.

【0043】図8は加熱溶融性粉体を加熱成形して得ら
れる気泡分散機構8の一例を示している。
FIG. 8 shows an example of a bubble dispersing mechanism 8 obtained by heating and molding a heat-meltable powder.

【0044】図9はナイロンメッシュにより気泡分散機
構10を構成した場合の一例を示している。気泡分散機
構10は独立開孔を有するナイロン製のメッシュ12が
支持体11に加熱溶着されて構成されており、十分な強
度を有するとともに、メッシュ32の開孔形状は使用す
る繊維の太さや間隔により任意に調整可能である。作動
中に気体の供給が停止すると、液体の浸透圧や管路抵抗
等による圧力により液体の一部が開孔部を通り気体側管
路に進入する可能性があるため、気体混入を停止して液
体のみを供給する場合においても気体側を加圧してわず
かに気体が液体中に流れるようにすれば、液体の気体側
管路への進入を防止することができて望ましい。
FIG. 9 shows an example in which the bubble dispersion mechanism 10 is constituted by a nylon mesh. The bubble dispersing mechanism 10 is configured by heating and welding a nylon mesh 12 having independent openings to a support 11 and has sufficient strength. The opening shape of the mesh 32 is determined by the thickness and spacing of the fibers used. Can be adjusted arbitrarily. If the gas supply is stopped during operation, part of the liquid may enter the gas side pipe through the opening due to the pressure due to the osmotic pressure of the liquid or the pipe resistance. Even when only the liquid is supplied, it is desirable to pressurize the gas side so that the gas slightly flows into the liquid, so that the liquid can be prevented from entering the gas-side pipe.

【0045】本発明では、気体の混入時に微細な単独気
泡を生成し液体中に分散、混合させるので、大量の気泡
を安定して液体と混合させることができるので、スラグ
流、環状流や噴霧流となることがなく、少ない投入エネ
ルギーで確実に液体の運動量を増大させることができ、
節液体効果は高い。なお気泡生成後の滞留時間により気
泡径は異なるが、このように確実に気体の持つ運動量を
液体に伝えて気泡の速度と液体の速度が略同一となった
後は、気体はほとんどエネルギーを持たないために気泡
径等気体の挙動は節液体率に影響を与えないので、気泡
径の大きさの違いによる使用感の違いを利用して、異な
る洗浄を設けることが望ましい。
In the present invention, when a gas is mixed, fine single air bubbles are generated and dispersed and mixed in the liquid. Therefore, a large amount of air bubbles can be stably mixed with the liquid. The momentum of the liquid can be surely increased with little input energy without flowing,
The liquid saving effect is high. Note that the bubble diameter varies depending on the residence time after bubble generation, but after the momentum of the gas is reliably transmitted to the liquid and the speed of the bubble and the speed of the liquid become substantially the same, the gas has almost all energy. Since the behavior of the gas such as the bubble diameter does not affect the liquid saving rate because there is no bubble, it is desirable to provide different cleaning by utilizing the difference in feeling of use due to the difference in the bubble diameter.

【0046】図10は本実施例における気泡ポンプ効果
を示した一例である。Et/Ewはエネルギー増幅効果を
示しており、Etは微細気泡流の気体混入混合装置の下
流側における出力エネルギーをあらわし、Ewは気体混
入混合装置上流側の液体のエネルギーである。効率はE
t/(Ew+Ea)であらわされ、出力エネルギーをすべ
ての入力エネルギーで除したポンプとしての総合効率で
ある。{ここでEw=PwQw+(ρw/2)QwVw2、 E
t=PtQt+(ρt/2)QtVt2、 Ea=PaQa 、Pは
圧力、Qは流量、ρは密度、Vは速度をあらわし、添え
字wは前記気泡分散機構直近上流側における気体未混入
時の液体の状態をあらわし、添え字tは前記気泡分散機
構直近下流側における気体混入後の二相流となった液体
の状態をあらわし、添え字aは気体の状態をあらわす、
とくにPaは気泡分散機構の通過圧力損失を除外した気
体混入圧力である}。気体の混入時に微細な単独気泡を
生成し液体中に大量に分散、混合させると、気体の運動
量を液体に伝達し、液体の運動量を確実に増大させるこ
とができるが、気泡生成、分散、混合を同時に行なうと
気泡混入後直ちに気泡速度は液体速度と略同一となるの
で非常に効率よく気体の圧力運動量を液体に伝達するこ
とができ気泡ポンプとして機能する、また気泡径が小さ
いと剛性が高いので液体中で不要な変形や振動を起こさ
ないので、気泡が液体中にあることによるエネルギー損
失も少ない。なお気体混入率が概略4を超えると、気泡
流から環状流もしくは噴霧流に遷移するため、気泡ポン
プとしての機能は低下するので、運転条件は気体混入率
を4以下とした方が望ましい。
FIG. 10 is an example showing the bubble pump effect in this embodiment. Et / Ew indicates an energy amplifying effect, Et represents the output energy of the fine bubble flow on the downstream side of the gas mixing and mixing apparatus, and Ew is the energy of the liquid on the upstream side of the gas mixing and mixing apparatus. Efficiency is E
It is expressed by t / (Ew + Ea), and is the total efficiency as a pump obtained by dividing output energy by all input energy. {Where Ew = PwQw + (ρw / 2) QwVw 2 , E
t = PtQt + (ρt / 2) QtVt 2 , Ea = PaQa, P is pressure, Q is flow rate, ρ is density, V is velocity, and the subscript w is when gas is not mixed immediately upstream of the bubble dispersion mechanism. The subscript t represents the state of the liquid that has become a two-phase flow after gas mixing on the downstream side immediately downstream of the bubble dispersion mechanism, and the subscript a represents the state of the gas.
In particular, Pa is the gas mixing pressure excluding the pressure loss passing through the bubble dispersion mechanism. When gas is mixed, fine single bubbles are generated and dispersed and mixed in a large amount in the liquid.The momentum of the gas can be transmitted to the liquid, and the momentum of the liquid can be surely increased. Simultaneously, the bubble velocity becomes almost the same as the liquid velocity immediately after the bubbles are mixed, so that the pressure momentum of the gas can be transmitted to the liquid very efficiently, and it functions as a bubble pump. If the bubble diameter is small, the rigidity is high. Therefore, unnecessary deformation and vibration do not occur in the liquid, so that energy loss due to bubbles in the liquid is small. If the gas mixing ratio exceeds approximately 4, the function as a bubble pump is reduced since the bubble flow changes to an annular flow or a spray flow. Therefore, it is desirable to set the gas mixing ratio to 4 or less as an operating condition.

【0047】また液体ポンプ等を使用する場合において
も、全く同様の理由でポンプの小型化が図れる。さら
に、通常ポンプアップのため液体道配管に液体ポンプを
接続するためには、液体ポンプの作動が液体道圧力に影
響を与えることによる汚液体の逆流を防ぐために液体道
配管と液体ポンプの間に大気開放された貯液体槽を設け
る必要があるが、本発明における気泡ポンプは従来の液
体ポンプとは全く作動原理が異なるため、気泡ポンプを
作動させても液体道圧力に影響を与えないので液体道配
管と直接接続することが可能であり、装置全体の大幅な
簡略化も図れる。なお作動液体圧が低くできることは、
気体混入に必要な圧力も同時に低くできることは無論で
ある。
When a liquid pump or the like is used, the size of the pump can be reduced for exactly the same reason. Furthermore, in order to connect the liquid pump to the liquid path pipe for normal pump-up, the liquid pump must be connected between the liquid path pipe and the liquid pump to prevent the backflow of dirty liquid due to the operation of the liquid pump affecting the liquid path pressure. Although it is necessary to provide a liquid storage tank that is open to the atmosphere, the operation principle of the bubble pump in the present invention is completely different from that of the conventional liquid pump. It is possible to directly connect to the road piping, so that the entire apparatus can be greatly simplified. It should be noted that the working fluid pressure can be lowered
It goes without saying that the pressure required for gas mixing can be lowered at the same time.

【0048】本発明においては、液体と気体との間のせ
ん断力、すなわち液体速度と、気泡分散機構の開孔面
積、気泡生成後の滞留時間を制御することにより気泡径
の制御が可能である。このように気泡径を制御すること
により、洗浄力の制御も可能である。被洗浄部において
は気泡を含む液体は、密度が小さく運動エネルギーの小
さな気泡と、密度が大きく運動エネルギーの大きな気泡
間の液体とが、短周期で交互に被洗浄部に衝突する。こ
の結果、被洗浄部に圧力変動、すなわち振動が発生す
る。この振動の周波数は単位時間当たりに衝突する気泡
数を変えることにより制御できるため、特に洗浄力の高
い超音波振動をも発生可能である。超音波振動は波長が
短いため、吐出後に固体表面等に衝突させた場合は、固
体表面の微細な凹凸の中にまで作用することが可能なの
で、洗浄に用いた場合の洗浄力は格段に高く、化学反応
や熱交換に用いた場合は反応境界層や温度境界層を薄く
することができるとともに境界層内の拡散速度も向上す
るので非常に好適である。また振動周波数がこれら作用
に及ぼす影響は、振動周波数が高いほど波長が短いの
で、表面の細かい凹凸の中まで作用するものの振動の減
衰が速く作用面積は小さくなり、振動周波数が低いほど
波長が長いので、局所的な作用力は低下するが振動の減
衰が遅く作用面積は広くなる。このように振動周波数を
変えることにより制御が可能であるが、同一の気体量の
もとで気泡径を制御すると単位時間当たりの気泡数が異
なり、衝突する際に発生する振動の周波数を変えること
ができる。すなわち気泡径を制御することで作用の及ぶ
範囲や強さを制御することが可能である。また本発明
を、スケール等を大量に含有する液体に用いた場合に
は、気泡分散機構表面に存在する独立開孔が、炭酸カル
シウム等のスケール成分の化合物により閉塞することが
ある。あるいは固体成分を析出させる化学反応を発生さ
せても同様に閉塞することがある。開孔が閉塞を起こす
と気体混入時の圧力が上昇するために、気体流量が減少
するなどの不具合を生ずることがあり、好ましくない。
このような硬度成分の化合物は酸性条件下では容易に溶
解可能であるため、閉塞した部分を酸性液体溶液で洗浄
すると硬度成分の化合物は脱落し、初期状態を得ること
ができる。閉塞が避けられない作動条件で用いる場合に
は、開孔が閉塞を起こした場合に交換や洗浄等のメンテ
ナンス、保守が可能なように気泡分散機構を取り外し可
能にしておくことが好ましい。
In the present invention, the bubble diameter can be controlled by controlling the shearing force between the liquid and the gas, that is, the liquid velocity, the opening area of the bubble dispersion mechanism, and the residence time after bubble generation. . By controlling the bubble diameter in this way, it is possible to control the cleaning power. In the portion to be cleaned, in the liquid containing bubbles, bubbles having a small density and a small kinetic energy and a liquid between bubbles having a large density and a large kinetic energy alternately collide with the portion to be cleaned in a short cycle. As a result, pressure fluctuation, that is, vibration occurs in the portion to be cleaned. Since the frequency of this vibration can be controlled by changing the number of bubbles colliding per unit time, it is possible to generate ultrasonic vibration having particularly high detergency. Since ultrasonic vibration has a short wavelength, if it collides with a solid surface etc. after ejection, it can act even into fine irregularities on the solid surface, so the cleaning power when used for cleaning is extremely high It is very suitable when used for a chemical reaction or heat exchange because the reaction boundary layer and the temperature boundary layer can be thinned and the diffusion rate in the boundary layer can be improved. The effect of the vibration frequency on these effects is that the higher the vibration frequency, the shorter the wavelength.Thus, it works even in the fine irregularities on the surface, but the vibration is quickly attenuated and the working area becomes smaller, and the lower the vibration frequency, the longer the wavelength. Therefore, the local acting force is reduced, but the vibration is attenuated slowly and the acting area is widened. Controlling is possible by changing the vibration frequency in this way, but if the bubble diameter is controlled with the same amount of gas, the number of bubbles per unit time will be different, and the frequency of the vibration generated when colliding will be changed. Can be. That is, by controlling the bubble diameter, it is possible to control the range and strength of the action. Further, when the present invention is used for a liquid containing a large amount of scale or the like, an independent opening present on the surface of the bubble dispersing mechanism may be closed by a compound of a scale component such as calcium carbonate. Alternatively, even when a chemical reaction that precipitates a solid component occurs, the blockage may occur similarly. If the opening is closed, the pressure at the time of gas mixing increases, which may cause problems such as a decrease in gas flow rate, which is not preferable.
Since such a compound of the hardness component can be easily dissolved under acidic conditions, when the closed portion is washed with an acidic liquid solution, the compound of the hardness component falls off and an initial state can be obtained. When used under operating conditions in which blockage is unavoidable, it is preferable to make the bubble dispersion mechanism detachable so that maintenance and maintenance such as replacement and cleaning can be performed when the hole is blocked.

【0049】なお、気体から液体への運動量伝達を促進
するために混入後に機械的に破砕する方法もあるが、こ
れは管路形状を変えて流れに乱れを発生させたり、ある
いは混入後の混相流をメッシュ等に通すことによりせん
断力を利用して気体塊を破砕するものであって、この場
合は流れそのもののエネルギー損失が大きいために、作
動に必要な液体圧や与えるエネルギーは非常に大きなも
のとなってしまうと同時に噴霧流に転相しやすくなりポ
ンプとしての総合効率が低下する。
There is also a method of mechanically crushing after mixing to promote the transfer of momentum from the gas to the liquid. However, this method involves changing the pipe shape to generate turbulence in the flow or mixing the mixed phase after mixing. A gas mass is crushed by using a shear force by passing a flow through a mesh or the like. In this case, since the energy loss of the flow itself is large, the liquid pressure required for operation and the energy to be applied are very large. At the same time, the phase is easily changed to the spray flow, and the overall efficiency of the pump is reduced.

【0050】図11に示す本発明の第二実施例に係る気
体吸収手段を備えた気泡ポンプ装置は上記知見を具現化
させたものである。気体吸収手段37の液体流入口25
から流入した液体はポンプ等も用いた液体加圧手段24
により加圧され、図1に示した気体混入混合装置1へと
送られる。一方気体流入口23から流入した気体は圧縮
機等を用いた気体加圧手段22により加圧され気体混入
混合装置1で流動液体中に微細な気泡として分散混入さ
れる。気体混入混合装置1で生成された微細気泡を大量
に含む微細気泡流21は貯流槽26へと放出される。こ
こでは気体として空気に微量のオゾンが含有されたもの
が、液体には水が用いられている。オゾンは殺菌、漂白
作用があるのでオゾンを含んだオゾン水20を用いて、
各種殺菌、漂白、保存に使用することができる。気体混
入混合装置1では微細な気泡を流動液体中に大量に分散
混入させるため、運動量伝達が確実に行なわれ気泡ポン
プ装置として機能する。そのため装置の駆動に必要な駆
動力を与える液体加圧手段24と気体加圧手段22等で
消費される駆動エネルギーが非常に少ない気体吸収手段
を得る。また気体供給にはとくに気体加圧手段22を用
いなくともボンベや加圧タンク等の圧力源から直接供給
することも可能であるし、液体供給にもとくに液体加圧
手段24を用いなくとも圧力源から直接供給可能であ
る。微細気泡流21中には微細な気泡が大量に含まれる
ため気液の密度差により両相が直ちに分離することが無
く、微細気泡流21の噴流到達距離は非常に大きくでき
る。そのため貯流相26の攪拌用途としても好適である
とともに、微細気泡流を維持する時間が非常に長くかつ
気液接触界面積が非常に大きいため吸収速度を大幅に向
上させることが可能である。ここでは気体吸収手段とし
て本発明を用いているが、液体中に含まれる気体成分を
脱気することも可能であるし、気体と液体が化学反応を
起こす場合には化学反応の場として本発明を適用するこ
とも可能であるのは言うまでもない。貯流相26に貯流
される液体20は必要に応じて図示しないポンプ等で回
収されている。
A bubble pump device having a gas absorbing means according to a second embodiment of the present invention shown in FIG. 11 embodies the above findings. Liquid inlet 25 of gas absorbing means 37
The liquid flowing from the liquid is supplied to a liquid pressurizing means 24 using a pump or the like.
And sent to the gas mixing and mixing apparatus 1 shown in FIG. On the other hand, the gas flowing from the gas inlet 23 is pressurized by the gas pressurizing means 22 using a compressor or the like, and dispersed and mixed as fine bubbles in the flowing liquid by the gas mixing and mixing device 1. The fine bubble flow 21 containing a large amount of fine bubbles generated by the gas mixing and mixing device 1 is discharged to the storage tank 26. Here, air contains a small amount of ozone as a gas, and water is used as a liquid. Since ozone has a sterilizing and bleaching action, using ozone water 20 containing ozone,
It can be used for various sterilization, bleaching and storage. In the gas mixing and mixing device 1, since a large amount of fine bubbles are dispersed and mixed in the flowing liquid, momentum is reliably transmitted, and the device functions as a bubble pump device. For this reason, a gas absorbing unit that consumes very little driving energy by the liquid pressurizing unit 24 and the gas pressurizing unit 22 that provide a driving force necessary for driving the apparatus is obtained. Further, the gas can be directly supplied from a pressure source such as a cylinder or a pressure tank without using the gas pressurizing means 22, and the pressure can be supplied without using the liquid pressurizing means 24 especially when supplying the liquid. Can be supplied directly from the source. Since the fine bubble flow 21 contains a large amount of fine bubbles, both phases are not immediately separated due to a difference in density of gas and liquid, and the jet distance of the fine bubble flow 21 can be extremely large. Therefore, it is suitable as an application for stirring the storage phase 26, and the absorption time can be greatly improved because the time for maintaining the fine bubble flow is very long and the gas-liquid contact area is very large. Here, the present invention is used as the gas absorbing means, but it is also possible to degas the gas component contained in the liquid, and when the gas and the liquid cause a chemical reaction, the present invention is used as a field of the chemical reaction. Needless to say, it is also possible to apply The liquid 20 stored in the storage phase 26 is collected by a pump or the like (not shown) as necessary.

【0051】微細気泡流21は固体表面に衝突した際
に、単位時間当たりの気泡数で定義される周波数の振動
を発生させる。微細気泡流中には微細な気泡が大量に含
まれるので、その振動周波数は非常に高く超音波領域に
も達する。このような高い周波数の振動が固体表面で発
生すると、固体表面の微細な凹凸の中にまで衝突応力が
作用するので洗浄効果にすぐれ、境界層を非常に薄くで
きるため伝熱や化学反応を促進する。そこで貯流相26
を洗浄槽や反応層としても利用可能である。その場合に
は貯流槽26中に対象となる図示しない固体を入れ、微
細気泡流21を固体表面に直接衝突させることによって
得られる。とくに複数の気泡混入混合装置を用いて複数
の微細気泡流を生成させ同時に固体表面に衝突させると
広範囲を効率よく処理可能であり好適である。
When the microbubble flow 21 collides with the solid surface, it generates a vibration having a frequency defined by the number of bubbles per unit time. Since the fine bubble flow contains a large amount of fine bubbles, its vibration frequency is very high and reaches the ultrasonic range. When such high-frequency vibrations occur on the solid surface, the collision stress acts on the minute irregularities on the solid surface, so that the cleaning effect is excellent, and the boundary layer can be made extremely thin, promoting heat transfer and chemical reactions. I do. So the storage phase 26
Can also be used as a washing tank or a reaction layer. In this case, a solid (not shown) to be treated is put in the storage tank 26 and the microbubble flow 21 is caused to directly collide with the surface of the solid. In particular, it is preferable to generate a plurality of microbubble flows using a plurality of bubble-mixing / mixing devices and simultaneously impinge them on the solid surface, since a wide range can be efficiently treated.

【0052】図12に示す本発明の第三実施例に係る気
泡ポンプ装置は上記知見を具現化させたものである。気
泡ポンプ装置38の液体流入口27から流入した液体は
液体加圧手段28により加圧され、図1に示した気体混
入混合装置1へと送られる。一方気体流入口36から流
入した気体は気体加圧手段35により加圧され、気体混
入混合装置1において流動液体中に微細化され分散混入
する。気体混入混合装置1で生成された微細気泡流31
は直ちに吐出口30から大気中に放出される。貯流槽3
4の内部では固体試料33が固定台32上に設置され、
微細気泡流31を衝突させる構成となっている。微細気
泡流31は微細な気泡を大量に含む気泡流であるため、
噴霧流、スラグ流、環状流とは異なり吐出口から放出さ
れる際に不要な振動、騒音や飛沫を発生させない。また
固体試料33と衝突する際にも大量の微細気泡を含むた
め飛散せず液体の回収が非常に容易であり、液体のみで
使用するよりも衝突速度を大幅に向上させることができ
る。また衝突の際に超音波等の周波数の高い振動を発生
させるために、化学反応、伝熱、洗浄を行なう際にも処
理速度を大幅に向上できるとともに、使用済み液体の回
収が容易に行なえ、振動や騒音が発生しない。ここでは
固体試料33の表面を洗浄するための洗浄装置を示して
おり、液体に水をアルコール、アセトン、メチルエチル
ケトン等の有機溶媒に微量の界面活性剤を溶解させて使
用している。これら洗浄用途以外にも半導体のエッチン
グや酸化処理等の化学反応、凍結固体の溶融等の伝熱に
用いても好適である。処理速度を制御するために液体、
気体や固体温度の制御を行なってもよく、雰囲気の温度
や酸化、還元雰囲気を変更してもよい。気泡混入混合装
置1を取り外し可能とすれば、衝突時の振動周波数を制
御するために気孔径の異なる気泡分散機構を用途に応じ
て用いることもできるし、気孔が閉塞を起こした際の洗
浄や保守等が容易に行なえるので望ましい。また気泡径
の制御は気泡生成後の滞留時間を変えても行なえるの
で、気体混入混合装置1と吐出口30との距離を変えて
もよいし、内部流速、流路断面積や液体流量を変えても
よい。これらの場合には気体混入混合装置1から下流側
の管路も取り替え可能とすることにより幅広い範囲で気
泡径の制御が可能である。
A bubble pump device according to a third embodiment of the present invention shown in FIG. 12 embodies the above findings. The liquid flowing from the liquid inlet 27 of the bubble pump device 38 is pressurized by the liquid pressurizing means 28 and sent to the gas mixing and mixing device 1 shown in FIG. On the other hand, the gas flowing from the gas inlet 36 is pressurized by the gas pressurizing means 35 and is finely dispersed and mixed in the flowing liquid in the gas mixing and mixing device 1. Microbubble flow 31 generated by gas mixing and mixing device 1
Is immediately discharged into the atmosphere from the discharge port 30. Storage tank 3
4, a solid sample 33 is set on a fixed table 32,
The structure is such that the microbubble flow 31 collides. Since the fine bubble flow 31 is a bubble flow containing a large amount of fine bubbles,
Unlike the spray, slag, and annular flows, it does not generate unnecessary vibration, noise, or droplets when discharged from the discharge port. Also, when colliding with the solid sample 33, a large amount of microbubbles are included, so that the liquid is not easily scattered and the liquid is very easily collected, so that the collision speed can be greatly improved as compared with the case of using only the liquid. In addition, in order to generate high-frequency vibrations such as ultrasonic waves at the time of collision, the processing speed can be greatly improved when performing chemical reaction, heat transfer, and cleaning, and the used liquid can be easily collected. No vibration or noise occurs. Here, a cleaning device for cleaning the surface of the solid sample 33 is shown, in which water is used by dissolving a trace amount of a surfactant in an organic solvent such as alcohol, acetone and methyl ethyl ketone. In addition to these cleaning uses, the present invention is also suitable for use in chemical reactions such as etching and oxidation of semiconductors and heat transfer such as melting of frozen solids. Liquid to control the processing speed,
The temperature of the gas or solid may be controlled, and the temperature of the atmosphere or the oxidizing or reducing atmosphere may be changed. If the bubble mixing and mixing device 1 can be removed, a bubble dispersing mechanism having a different pore diameter can be used depending on the application in order to control the vibration frequency at the time of collision, and it is possible to perform cleaning when pores are clogged. This is desirable because maintenance can be easily performed. In addition, since the bubble diameter can be controlled by changing the residence time after bubble generation, the distance between the gas mixing and mixing device 1 and the discharge port 30 may be changed, and the internal flow velocity, the flow path cross-sectional area, and the liquid flow rate may be changed. You may change it. In these cases, it is possible to control the bubble diameter in a wide range by making the pipe downstream from the gas mixing and mixing apparatus 1 replaceable.

【0053】図13は管路内における気液二相流の流動
様相の一例をあらわし、aは液相中に略均一な気泡を含
む気泡流、bは液相中に気泡塊と気泡の混在するスラグ
流、cは気泡隗同士が連通した環状流、dは気相中に液
滴が含まれる噴霧流である。
FIG. 13 shows an example of the flow pattern of a gas-liquid two-phase flow in a pipeline, where a is a bubble flow containing substantially uniform bubbles in the liquid phase, and b is a mixture of bubble lumps and bubbles in the liquid phase. Is a slug flow, c is an annular flow in which bubble aggregates communicate with each other, and d is a spray flow in which droplets are contained in the gas phase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における気泡ポンプ装置の概
念図
FIG. 1 is a conceptual diagram of a bubble pump device according to an embodiment of the present invention.

【図2】同気泡分散機構表面の拡大図FIG. 2 is an enlarged view of the surface of the bubble dispersion mechanism.

【図3】同気泡分散機構表面の拡大図FIG. 3 is an enlarged view of the surface of the bubble dispersion mechanism.

【図4】本発明の一実施例における微細気泡流噴出直後
の拡大図
FIG. 4 is an enlarged view of one embodiment of the present invention immediately after the ejection of a fine bubble flow.

【図5】同気泡生成時の気泡直径と液体流速をあらわす
グラフ
FIG. 5 is a graph showing a bubble diameter and a liquid flow velocity when the bubble is generated.

【図6】同気泡成長と滞留時間の概略をあらわすグラフFIG. 6 is a graph showing an outline of bubble growth and residence time.

【図7】本発明の一実施例における気体混入比と液体の
運動量の概略をあらわすグラフ
FIG. 7 is a graph schematically showing a gas mixing ratio and a momentum of a liquid according to an embodiment of the present invention.

【図8】同気泡分散機構の概略図FIG. 8 is a schematic diagram of the bubble dispersing mechanism.

【図9】同気泡分散機構の概略図FIG. 9 is a schematic view of the bubble dispersing mechanism.

【図10】同気泡ポンプの気体混入率とエネルギー増幅
率及び総合効率の概略をあらわすグラフ
FIG. 10 is a graph showing an outline of a gas mixing rate, an energy amplification rate, and an overall efficiency of the bubble pump.

【図11】同気体吸収手段を備えた気泡ポンプ装置をあ
らわす概略図
FIG. 11 is a schematic view showing a bubble pump device provided with the gas absorbing means.

【図12】同気泡ポンプ装置をあらわす概略図FIG. 12 is a schematic view showing the bubble pump device.

【図13】管路内の気液二相流の流動様相をあらわす概
念図
FIG. 13 is a conceptual diagram showing a flow aspect of a gas-liquid two-phase flow in a pipeline.

【符号の説明】[Explanation of symbols]

1…気体混入混合装置、2…液体管路、3…気体室、4
…気体導入管路 5…気泡分散機構、8…気泡分散機構、9…上ふた、1
0…気泡分散機構 11…支持体、12…ナイロンメッシュ、20…オゾン
水 21…微細気泡流、22…気体加圧手段、23…気体流
入口 24…液体加圧手段、25…液体流入口、26…貯流槽 27…液体流入口、28…液体加圧手段、30…吐出口 31…微細気泡流、32…固定台、33…固体試料 34…貯流槽、35…気体加圧手段、36…気体流入口 37…気体吸収手段、38…気泡ポンプ装置
DESCRIPTION OF SYMBOLS 1 ... Gas mixing device, 2 ... Liquid pipeline, 3 ... Gas chamber, 4
... gas introduction pipe line 5 ... bubble dispersion mechanism, 8 ... bubble dispersion mechanism, 9 ... top lid, 1
0: Bubble dispersion mechanism 11: Support, 12: Nylon mesh, 20: Ozone water 21: Fine bubble flow, 22: Gas pressurizing means, 23: Gas inlet 24: Liquid pressurizing means, 25: Liquid inlet, 26 ... storage tank 27 ... liquid inlet, 28 ... liquid pressurizing means, 30 ... discharge port 31 ... fine bubble flow, 32 ... fixed table, 33 ... solid sample 34 ... storage tank, 35 ... gas pressurizing means 36 gas inlet 37 gas absorbing means 38 bubble pump device

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 液体管路中に気体取入口を備え液体中に
気体を混入し混合する気体混入混合装置を設け、前記気
体混入混合装置には気体取入口に連通し気体を液体中に
分散させる気泡分散機構を備えたことを特徴とする気泡
ポンプ装置。
1. A gas mixing and mixing device for mixing and mixing a gas in a liquid provided with a gas inlet in a liquid pipe, wherein the gas mixing and mixing device communicates with the gas inlet to disperse the gas in the liquid. A bubble pump device comprising a bubble dispersion mechanism for causing the bubble to be dispersed.
【請求項2】 液体管路中に気体取入口を備え液体中に
気体を混入し混合する気体混入混合装置を設け、前記気
体混入混合装置には気体取入口に連通し液体中に略均一
に気泡を分散させる気泡分散機構を備えたことを特徴と
する気泡ポンプ装置。
2. A gas mixing and mixing device for mixing and mixing a gas in a liquid and having a gas inlet in a liquid conduit, wherein the gas mixing and mixing device communicates with the gas inlet and substantially uniformly flows in the liquid. A bubble pump device comprising a bubble dispersion mechanism for dispersing bubbles.
【請求項3】 平均直径が100μm乃至1000μm
の微細な気泡を液体中に供給する微細気泡供給手段を備
えたことを特徴とする気泡ポンプ装置。
3. An average diameter of 100 μm to 1000 μm.
A bubble pump device comprising: a fine bubble supply means for supplying fine bubbles into a liquid.
【請求項4】 前記気泡分散機構の液体に接している面
の開孔部が多数分割された独立開孔で構成されたことを
特徴とする請求項1乃至3のいずれか一項に記載の気泡
ポンプ装置。
4. The air bubble dispersing mechanism according to claim 1, wherein the opening portion of the surface of the bubble dispersing mechanism which is in contact with the liquid is constituted by a large number of divided independent holes. Bubble pump device.
【請求項5】 前記気泡分散機構の前記開孔部の開孔配
置が略格子状に規則的であることを特徴とする請求項1
乃至4のいずれか一項に記載の記載の気泡ポンプ装置。
5. An aperture arrangement of the apertures of the bubble dispersing mechanism is regular in a substantially lattice shape.
The bubble pump device according to any one of claims 1 to 4.
【請求項6】 前記気泡分散機構の前記開孔部が液体管
路形状に沿って延長されたことを特徴とする請求項1及
至5のいずれか一項に記載の気泡ポンプ装置
6. The bubble pump device according to claim 1, wherein the opening of the bubble dispersing mechanism extends along a shape of a liquid conduit.
【請求項7】 前記気泡分散機構の前記開孔部が液体管
路壁面の全面もしくは一部に配置されたことを特徴とす
る請求項1及至6のいずれか一項に記載の気泡ポンプ装
置。
7. The bubble pump device according to claim 1, wherein the opening of the bubble dispersion mechanism is disposed on the entire surface or a part of the wall of the liquid conduit.
【請求項8】 前記気体混入混合装置の液体管路中の前
後において、 Ew=PwQw+(ρw/2)QwVw2、 Et
=PtQt+(ρt/2)QtVt2としたときに、Ew<Et
であらわされる条件で装置を作動せしむることを特徴と
する気泡ポンプ装置。
8. Ew = PwQw + (ρw / 2) QwVw 2 , Et before and after in the liquid line of the gas mixing and mixing device.
= PtQt + is taken as (ρt / 2) QtVt 2, Ew <Et
A bubble pump device characterized in that the device can be operated under the conditions represented by:
【請求項9】 η=Qa/Qw、Qは流量、添え字wは
液体、添え字aは気体をあらわしたときの、前記気体混
入混合装置における気体混入率ηをη≦4.0で作動せ
しむることを特徴とする請求項1及至8のいずれか一項
に記載の気泡ポンプ装置。
9. η = Qa / Qw, Q is a flow rate, suffix w is a liquid, suffix a is a gas when the gas mixing ratio η in the gas mixing and mixing apparatus is η ≦ 4.0. The bubble pump device according to any one of claims 1 to 8, wherein the bubble pump device is operated.
【請求項10】 前記気泡分散機構を略球状粒子の集合
体で構成したことを特徴とする請求項1及至9のいずれ
か一項に記載の気泡ポンプ装置。
10. The bubble pump device according to claim 1, wherein the bubble dispersion mechanism is constituted by an aggregate of substantially spherical particles.
【請求項11】 前記気泡分散機構が加熱溶融性粉体を
加熱成形したもので構成されたことを特徴とする請求項
1及至10のいずれか一項に記載の気泡ポンプ装置。
11. The bubble pump device according to claim 1, wherein the bubble dispersing mechanism is formed by heating and molding a heat-meltable powder.
【請求項12】 前記気泡分散機構の液体に接している
面が略網目状構造を有したことを特徴とする請求項1及
至11のいずれか一項に記載の気泡ポンプ装置。
12. The bubble pump device according to claim 1, wherein a surface of the bubble dispersion mechanism in contact with the liquid has a substantially network structure.
【請求項13】 前記気泡分散機構に気体を供給する手
段として加圧気体供給手段を備えたことを特徴とする請
求項1及至12のいずれか一項に記載の気泡ポンプ装
置。
13. The bubble pump device according to claim 1, further comprising a pressurized gas supply unit as a unit for supplying gas to the bubble dispersion mechanism.
【請求項14】 前記気体混入混合装置を液体吐出口近
傍に備えたことを特徴とする請求項1乃至13のいずれ
か一項に記載の気泡ポンプ装置。
14. The bubble pump device according to claim 1, wherein the gas mixing and mixing device is provided near a liquid discharge port.
【請求項15】 前記気体を液体中に物理吸収させる気
体吸収手段を備えたことを特徴とする請求項1乃至14
のいずれか一項に記載の気泡ポンプ装置。
15. The apparatus according to claim 1, further comprising gas absorbing means for physically absorbing said gas in a liquid.
The bubble pump device according to any one of the above.
【請求項16】 前記気体と前記流動液体とを化学的に
反応させる気液反応手段を備えたことを特徴とする請求
項1乃至15のいずれか一項に記載の気泡ポンプ装置。
16. The bubble pump device according to claim 1, further comprising gas-liquid reaction means for chemically reacting the gas with the flowing liquid.
【請求項17】 前記気体およびまたは前記液体と化学
的に反応する反応性固体物質を備え、該反応性固体物質
に前記気泡分散機構により混合させた前記気体および前
記液体との混合物を衝突反応させる衝突反応手段を備え
たことを特徴とする請求項1乃至16のいずれか一項に
記載の気泡ポンプ装置。
17. A reactive solid substance which chemically reacts with the gas and / or the liquid, and a mixture of the gas and the liquid mixed with the reactive solid substance by the bubble dispersing mechanism is caused to collide with the reactive solid substance. 17. The bubble pump device according to claim 1, further comprising a collision reaction unit.
【請求項18】 前記液体吐出口の下流側に配置され、
前記液体吐出口から吐出された液体及びまたは気体を貯
流する貯流槽を備えたことを特徴とする請求項1乃至1
7のいずれか一項に記載の気泡ポンプ装置。
18. A liquid discharge port disposed downstream of the liquid discharge port,
2. A storage tank for storing liquid and / or gas discharged from the liquid discharge port.
The bubble pump device according to any one of claims 7 to 10.
【請求項19】 前記液体の吐出により前記貯流槽内部
の攪拌を行なうことを特徴とする請求項18に記載の気
泡ポンプ装置。
19. The bubble pump device according to claim 18, wherein the inside of the storage tank is agitated by discharging the liquid.
【請求項20】 前記気泡分散機構は取り外し可能に構
成されたことを特徴とする請求項1乃至19のいずれか
一項に記載の気泡ポンプ装置。
20. The bubble pump device according to claim 1, wherein the bubble dispersion mechanism is detachable.
【請求項21】 前記気体およびまたは前記液体を加熱
もしくは冷却し温度の調整を行なう、温度制御手段を備
えたことを特徴とする請求項1乃至20のいずれか一項
に記載の気泡ポンプ装置。
21. The bubble pump device according to claim 1, further comprising temperature control means for heating or cooling the gas and / or the liquid to adjust the temperature.
【請求項22】 前記液体吐出口から吐出される液体中
に含まれる気泡径を制御する気泡径制御手段を備えたこ
とを特徴とする請求項1乃至21のいずれか一項に記載
の気泡ポンプ装置。
22. The bubble pump according to claim 1, further comprising a bubble diameter control unit for controlling a diameter of a bubble contained in the liquid discharged from the liquid discharge port. apparatus.
JP11001428A 1999-01-06 1999-01-06 Air-lift pump device Pending JP2000205200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11001428A JP2000205200A (en) 1999-01-06 1999-01-06 Air-lift pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11001428A JP2000205200A (en) 1999-01-06 1999-01-06 Air-lift pump device

Publications (1)

Publication Number Publication Date
JP2000205200A true JP2000205200A (en) 2000-07-25

Family

ID=11501197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11001428A Pending JP2000205200A (en) 1999-01-06 1999-01-06 Air-lift pump device

Country Status (1)

Country Link
JP (1) JP2000205200A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005672A1 (en) * 2006-02-01 2007-08-02 Helmar Haas Suction duct for liquids with an intermediate duct for introducing compressed air to the lifted liquid
JP2008120939A (en) * 2006-11-14 2008-05-29 Kao Corp Manufacturing method of carboxylic acid based polymer
KR101164404B1 (en) * 2011-03-08 2012-07-12 (주)에스티아이 Bubble generator for glass etching apparatus
JP2013536343A (en) * 2010-06-29 2013-09-19 コールドハーバー・マリーン・リミテッド Shock wave generator and shock wave transmission method
CN103508675A (en) * 2012-06-28 2014-01-15 Sti有限公司 Bubble generator for glass etching device
JP2015507314A (en) * 2011-11-04 2015-03-05 フルイディック, インク.Fluidic, Inc. Internal reflux battery
JP2016113845A (en) * 2014-12-17 2016-06-23 東亜建設工業株式会社 Air-lift pump device and aquatic contamination component removing method
US9902630B2 (en) 2011-12-22 2018-02-27 Coldharbour Marine Limited Apparatus and method for liquid pumping
US10765988B2 (en) 2013-10-14 2020-09-08 Coldharbour Marine Limited Apparatus and method for treating gas in a liquid medium with ultrasonic energy for chemical reaction
US11664547B2 (en) 2016-07-22 2023-05-30 Form Energy, Inc. Moisture and carbon dioxide management system in electrochemical cells

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005672A1 (en) * 2006-02-01 2007-08-02 Helmar Haas Suction duct for liquids with an intermediate duct for introducing compressed air to the lifted liquid
JP2008120939A (en) * 2006-11-14 2008-05-29 Kao Corp Manufacturing method of carboxylic acid based polymer
JP2013536343A (en) * 2010-06-29 2013-09-19 コールドハーバー・マリーン・リミテッド Shock wave generator and shock wave transmission method
US10711807B2 (en) 2010-06-29 2020-07-14 Coldharbour Marine Limited Gas lift pump apparatus with ultrasonic energy generator and method
KR101164404B1 (en) * 2011-03-08 2012-07-12 (주)에스티아이 Bubble generator for glass etching apparatus
US10116022B2 (en) 2011-11-04 2018-10-30 Nantenergy, Inc. Internal convection cell
JP2017199679A (en) * 2011-11-04 2017-11-02 フルイディック, インク.Fluidic, Inc. Internal convection cell
JP2015507314A (en) * 2011-11-04 2015-03-05 フルイディック, インク.Fluidic, Inc. Internal reflux battery
US10910686B2 (en) 2011-11-04 2021-02-02 Form Energy, Inc. Internal convection cell
US9902630B2 (en) 2011-12-22 2018-02-27 Coldharbour Marine Limited Apparatus and method for liquid pumping
CN103508675A (en) * 2012-06-28 2014-01-15 Sti有限公司 Bubble generator for glass etching device
US10765988B2 (en) 2013-10-14 2020-09-08 Coldharbour Marine Limited Apparatus and method for treating gas in a liquid medium with ultrasonic energy for chemical reaction
JP2016113845A (en) * 2014-12-17 2016-06-23 東亜建設工業株式会社 Air-lift pump device and aquatic contamination component removing method
US11664547B2 (en) 2016-07-22 2023-05-30 Form Energy, Inc. Moisture and carbon dioxide management system in electrochemical cells

Similar Documents

Publication Publication Date Title
JP2000205200A (en) Air-lift pump device
US20160193573A1 (en) Method and system for enhancing mass transfer in aeration/oxygenation systems
KR20170104351A (en) Apparatus for generating micro bubbles
EP0927073B1 (en) Hydromechanical mixing apparatus for producing a mixture of powder or granular state material and liquid
WO1995034370A1 (en) Gas-liquid contact gas dispersion pipe, and gas-liquid contact method and apparatus using the same
JPWO2006129807A1 (en) Solution reactor and reaction method
WO2016178421A1 (en) Liquid supply device having loop-flow-type bubble generating nozzle
CN112831986B (en) Microbubble treatment agent box assembly and washing equipment with same
JP2722373B2 (en) Method and apparatus for producing fine foam
Rogler et al. Inclusion removal in a tundish by gas bubbling
JP2003093858A (en) Method and apparatus for forming fine gas bubble
WO2017056323A1 (en) Device for dissolving oxygen in water and method for dissolving oxygen in water using same
JP4174576B2 (en) A mixing device that mixes two or more liquids or a fluid composed of liquid and gas into a solution
JP2012004389A (en) Device with fluid stirring function
JPS6148970B2 (en)
JP6536884B2 (en) Modification method of metal surface using micro and nano bubble and adhesion method of metal and resin
JP2009101263A (en) Ultra-fine bubble generator and apparatus for purification of aqueous solution
JP2002248328A (en) Emulsifying/dispersing device
EP0474835A1 (en) Apparatus and method for sparging a gas into a liquid
CN215876939U (en) Jet flow mixing nozzle
JP2011183350A (en) Gas-liquid mixing apparatus
US20030199595A1 (en) Device and method of creating hydrodynamic cavitation in fluids
JP3043315B2 (en) Bubble generator
CN101698144B (en) Hydrokinetic ultrasonic jet flow homogenizer
RU2131094C1 (en) Cavitation heat generator