JP2000203815A - Porous inorganic composite and its production - Google Patents

Porous inorganic composite and its production

Info

Publication number
JP2000203815A
JP2000203815A JP10372517A JP37251798A JP2000203815A JP 2000203815 A JP2000203815 A JP 2000203815A JP 10372517 A JP10372517 A JP 10372517A JP 37251798 A JP37251798 A JP 37251798A JP 2000203815 A JP2000203815 A JP 2000203815A
Authority
JP
Japan
Prior art keywords
composite
carrier
weight
calcium phosphate
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10372517A
Other languages
Japanese (ja)
Other versions
JP3072759B2 (en
Inventor
Hidemitsu Kasahara
英充 笠原
Shigeo Takiyama
成生 瀧山
Mitsunobu Aoyama
光延 青山
Hiroshi Shibata
洋志 柴田
Shiro Motoyoshi
嗣郎 源吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruo Calcium Co Ltd
Original Assignee
Maruo Calcium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruo Calcium Co Ltd filed Critical Maruo Calcium Co Ltd
Priority to JP10372517A priority Critical patent/JP3072759B2/en
Publication of JP2000203815A publication Critical patent/JP2000203815A/en
Application granted granted Critical
Publication of JP3072759B2 publication Critical patent/JP3072759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the percentage loss of weight on heating while holding the dispersibility or uniformity of a carrier (M) composed of a porous inorganic material and to produce a composite (MR) excellent in thermal stability by supporting a calcium phosphate-based compound (R) on the carrier (M) and satisfying specific relationships. SOLUTION: A calcium phosphate-based compound is supported on a carrier composed of a porous inorganic material to produce a porous inorganic composite satisfying the following relationships: (A) 0.1<=Dmr<=30 (μm) and 1<=Dmr/ Dm<=5 (Dmr and Dm are each the average particle diameter of particles of the composite and carrier measured by a scanning type electron micrograph), (B) 3<=Smr<=300 (m2/g) and 0.01<=Smr/Sm<=1 (Smr and Sm are each the BET specific surface area by a nitrogen adsorption method of the composite and carrier), (C) 0.5<=Tmr<=15 (wt.%) and 0.01<=mr1/Tm1<1 (Tmr1 and Tm1 are each percentage of loss of weight on heating of the composite and carrier at 500 deg.C) and (D) 0.3<=Tmr2<=10 (wt.%) and 0.01<=Tmr2/Tm2<1 (Tmr2 and Tm2 are each the percentage of loss of weight on heating of the composite and carrier at 200 deg.C).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質無機系複合
体(MR)及びその製造方法に関し、更に詳しくは、熱
安定性の改良された多孔質無機系複合体及びその製造方
法に関する。本発明の新規な多孔質無機系複合体(M
R)は、触媒、医薬、微生物、抗菌剤、光触媒などの各
種担体、脱臭剤、除湿剤、徐放体、殺菌剤、防虫剤、紫
外線吸収剤、光拡散剤、重合用分散剤、濾過剤、成形助
剤、食品添加剤、乾燥剤、芳香剤、セラミックス原料、
歯科用歯磨剤、プラスチック、ゴム、製紙、感熱記録
紙、シーリング材、合成樹脂フィルム用ブロッキング防
止剤、インク用体質顔料、塗料用顔料、レーキ顔料、化
粧料、マイクロカプセルなど、耐酸性、多孔性、熱安定
性、樹脂との親和性、透明性、分散性などを必要とする
各種分野に有用である。また、上記各種の用途を複合す
ることにより、更に新規な用途展開も期待できる。
The present invention relates to a porous inorganic composite (MR) and a method for producing the same, and more particularly, to a porous inorganic composite having improved thermal stability and a method for producing the same. The novel porous inorganic composite of the present invention (M
R) includes various carriers such as catalysts, pharmaceuticals, microorganisms, antibacterial agents, and photocatalysts, deodorants, dehumidifiers, sustained-release bodies, bactericides, insect repellents, ultraviolet absorbers, light diffusing agents, polymerization dispersants, and filtering agents. , Molding aids, food additives, desiccants, fragrances, ceramic raw materials,
Acid resistance and porosity, such as dental dentifrice, plastic, rubber, papermaking, thermal recording paper, sealing material, antiblocking agent for synthetic resin film, extender pigment for ink, pigment for paint, lake pigment, cosmetics, microcapsule, etc. It is useful in various fields requiring thermal stability, affinity with resin, transparency, dispersibility and the like. Further, by combining the above-mentioned various applications, further new applications can be expected.

【0002】[0002]

【従来の技術】従来より多孔質無機系物質として、ゼオ
ライト、活性炭、ケイ酸カルシウム、炭化ケイ素、リン
酸カルシウム等が知られ、吸液、触媒などの担体、増粘
剤、成形助剤の他、粒子の均一性、分散性が良好なもの
は合成樹脂フィルム用ブロッキング防止剤等に使用され
ている。しかしながら、これら多孔質無機系物質は、粒
子の熱安定性(熱減量率)が必ずしも十分ではなく、特
に合成樹脂用途に、このような多孔質無機系物質を添加
した場合、樹脂の劣化による黄変が問題となり、従っ
て、熱減量率が抑制された、熱安定性の良好な多孔質無
機系物質が熱望されている。
2. Description of the Related Art Zeolite, activated carbon, calcium silicate, silicon carbide, calcium phosphate and the like have been conventionally known as porous inorganic substances. In addition to carriers such as liquid absorption and catalysts, thickeners, molding aids, and particles, Those having good uniformity and dispersibility are used as antiblocking agents for synthetic resin films. However, these porous inorganic materials do not always have sufficient thermal stability (heat loss rate) of the particles. Particularly, when such a porous inorganic material is added to a synthetic resin application, the yellow color due to deterioration of the resin is reduced. Therefore, there is a need for a porous inorganic material having a good thermal stability and a reduced heat loss rate.

【0003】従来の多孔質無機物質の一つで、例えば本
発明者らが、既に特開平9−25108号公報、WO9
7/03119号公報、WO98/29490号公報で
開示しているリン酸カルシウム系多孔質粒子は、粒子の
均一性、分散性に優れているが、熱減量率の面では必ず
しも十分とは言えず、従って熱減量率を抑制改善するこ
とにより、従来、支障をきたしていた特定分野での利用
が期待できるとして、その改善が待たれている。
One of the conventional porous inorganic substances, for example, the present inventors have already disclosed in Japanese Patent Application Laid-Open No.
The calcium phosphate-based porous particles disclosed in JP-A-7 / 03119 and WO98 / 29490 are excellent in the uniformity and dispersibility of the particles, but are not necessarily sufficient in terms of the heat loss rate. By suppressing and improving the heat loss rate, it can be expected to be used in a specific field that has hindered the conventional technology.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、この
ような従来の多孔質無機物質の、粒子均一性、分散性を
保持したまま熱減量率を抑制し、熱安定性を改良した多
孔質無機系複合体(MR)を工業的に合成し、安価に提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a porous inorganic material having improved thermal stability by suppressing the heat loss rate while maintaining the uniformity and dispersibility of the particles. It is an object of the present invention to industrially synthesize a high-quality inorganic composite (MR) and provide it at a low cost.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前述した
問題に鑑み、鋭意研究した結果、担体(M)に、リン酸
カルシウム系化合物(R)を担持させることにより、担
体粒子の均一性、分散性を保持したまま熱減量率が抑制
され、熱安定性に優れた複合体(MR)が得られること
を見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above-mentioned problems. As a result, the carrier (M) is loaded with a calcium phosphate compound (R), whereby the uniformity of the carrier particles is improved. The inventors have found that the heat loss rate is suppressed while maintaining the dispersibility, and a composite (MR) having excellent heat stability can be obtained, and the present invention has been completed.

【0006】すなわち本発明の第1は、担体(M)に、
リン酸カルシウム系化合物(R)を担持せしめてなり、
且つ下記の式(a)〜(h)を満足することを特徴とす
る複合体(MR)を内容とする。 (a)0.1≦Dmr≦30(μm) (b)1≦Dmr/Dm≦5 (c)3≦Smr≦300(m2/g) (d)0.01≦Smr/Sm≦1 (e)0.5≦Tmr1≦15(重量%) (f)0.01≦Tmr1/Tm1<1 (g)0.3≦Tmr2≦10(重量%) (h)0.01≦Tmr2/Tm2<1 但し、 Dmr :複合体(MR)を走査型電子顕微鏡(SE
M)写真により測定した粒子の平均粒子径(μm) Dm :担体(M)を走査型電子顕微鏡(SEM)写
真により測定した粒子の平均粒子径(μm) Smr :複合体(MR)の窒素吸着法によるBET比
表面積(m2/g) Sm :担体(M)の窒素吸着法によるBET比表面
積(m2/g) Tmr1:複合体(MR)の500℃における熱減量率
(重量%) Tm1 :担体(M)の500℃における熱減量率(重
量%) Tmr2:複合体(MR)の200℃における熱減量率
(重量%) Tm2 :担体(M)の200℃における熱減量率(重
量%)
That is, the first aspect of the present invention is to provide a carrier (M) with:
It carries a calcium phosphate compound (R),
In addition, a composite (MR) characterized by satisfying the following formulas (a) to (h) is included. (A) 0.1 ≦ Dmr ≦ 30 (μm) (b) 1 ≦ Dmr / Dm ≦ 5 (c) 3 ≦ Smr ≦ 300 (m 2 / g) (d) 0.01 ≦ Smr / Sm ≦ 1 ( e) 0.5 ≦ Tmr1 ≦ 15 (% by weight) (f) 0.01 ≦ Tmr1 / Tm1 <1 (g) 0.3 ≦ Tmr2 ≦ 10 (% by weight) (h) 0.01 ≦ Tmr2 / Tm2 < 1 However, Dmr: The composite (MR) was scanned with a scanning electron microscope (SE).
M) Average particle diameter (μm) of particles measured by photograph Dm: Average particle diameter (μm) of particles measured by scanning electron microscope (SEM) photograph of carrier (M) Smr: Nitrogen adsorption of composite (MR) BET specific surface area according to the method (m 2 / g) Sm: BET specific surface area according to the nitrogen adsorption method of the carrier (M) (m 2 / g) Tmr1: Heat loss (weight%) at 500 ° C. of the composite (MR) Tm1 : Heat loss at 500 ° C. (% by weight) of carrier (M) Tmr2: Heat loss at 200 ° C. (% by weight) of composite (MR) Tm2: Heat loss at 200 ° C. of carrier (M) (% by weight) )

【0007】本発明の第2は、担体(M)水懸濁液中に
おいて、水溶性リン酸塩とアルカリ性カルシウム化合物
とを反応させてリン酸カルシウム系化合物(R)を合成
することにより、担体(M)にリン酸カルシウム系化合
物(R)を担持せしめることを特徴とする上記複合体
(MR)の製造方法を内容とするものである。
A second aspect of the present invention is to react a water-soluble phosphate with an alkaline calcium compound in an aqueous suspension of a carrier (M) to synthesize a calcium phosphate compound (R), thereby obtaining a carrier (M). ) On which a calcium phosphate compound (R) is supported.

【0008】[0008]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明で用いる担体(M)は特に限定されない
が、粒度については、好ましくは分散係数(αm )、シ
ャープネス(βm )がそれぞれ1≦αm ≦5、0≦βm
≦2、さらに好ましくは1≦αm ≦2、0≦βm ≦1で
ある。このような条件を満足する好ましい担体(M)と
して、特開平9−25108号公報、WO97/031
19号公報、WO98/29490号公報に開示されて
いるような分散性に優れ、高比表面積の多孔質リン酸カ
ルシウム系粒子、市販のケイ酸カルシウム(商品名:フ
ローライトRN、株式会社トクヤマ製)、特開平6−1
71925号公報に記載の多孔質球状ケイ酸塩粒子、特
開平8−26716号公報に記載の多孔質球状シリカ等
が例示される。該粒度のαm が5を越えると、複合体
(MR)の分散性が低下するだけでなく、均一な担持が
困難となり、個々の粒子の物性に差異が生じやすくな
り、また、βm が2を越えると、複合体(MR)の粒度
分布幅がブロードになり、均一な担持が困難となり、個
々の粒子の物性に差異が生じやすくなる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The carrier (M) used in the present invention is not particularly limited, but the particle size is preferably such that the dispersion coefficient (αm) and the sharpness (βm) are 1 ≦ αm ≦ 5 and 0 ≦ βm, respectively.
≦ 2, more preferably 1 ≦ αm ≦ 2, 0 ≦ βm ≦ 1. As preferred carriers (M) satisfying such conditions, JP-A-9-25108, WO97 / 031
No. 19, WO98 / 29490, porous calcium phosphate-based particles having excellent dispersibility and high specific surface area, commercially available calcium silicate (trade name: Florite RN, manufactured by Tokuyama Corporation), JP-A-6-1
Examples include porous spherical silicate particles described in JP-A-71925 and porous spherical silica described in JP-A-8-26716. When the particle size αm exceeds 5, not only the dispersibility of the composite (MR) decreases, but also it becomes difficult to uniformly support the composite (MR), and the physical properties of the individual particles tend to be different. If it exceeds, the particle size distribution width of the composite (MR) becomes broad, uniform loading becomes difficult, and the physical properties of the individual particles tend to be different.

【0009】本発明で、担体(M)に担持せしめるリン
酸カルシウム系化合物(R)の結晶形態は、それ自身熱
安定性が高いものであれば特に限定されないが、針状、
柱状、板状などの形態をとるヒドロキシアパタイトが好
適である。また、リン酸源には水溶性リン酸塩、カルシ
ウム源にはアルカリ性カルシウム化合物が好ましい。
尚、本発明でいう担持とは、リン酸カルシウム系化合物
(R)の微粒子が担体(M)に物理的に吸着する場合、
又は、リン酸カルシウム系化合物(R)の微粒子が化学
的に吸着、つまり沈着析出化して結晶層を形成する場合
の両方を包含する。
In the present invention, the crystal form of the calcium phosphate compound (R) to be supported on the carrier (M) is not particularly limited as long as it has high thermal stability itself.
Hydroxyapatite in the form of a column, a plate or the like is preferred. Further, a water-soluble phosphate is preferred for the phosphoric acid source, and an alkaline calcium compound is preferred for the calcium source.
The term “support” in the present invention means that the fine particles of the calcium phosphate compound (R) are physically adsorbed on the carrier (M).
Alternatively, both cases where fine particles of the calcium phosphate compound (R) are chemically adsorbed, that is, deposited and deposited to form a crystal layer are included.

【0010】上記担体(M)にリン酸カルシウム系化合
物を担持させてなる本発明の複合体(MR)の走査型電
子顕微鏡(SEM)写真により測定した粒子の平均粒子
径(Dmr)は、0.1〜30μmである。また、複合
体(MR)の平均粒子径(Dmr)と担体(M)の平均
粒子径(Dm)との比(Dmr/Dm)は、1〜5であ
る。該平均粒子径(Dmr)が0.1μm未満の場合、
1次粒子径の分散性が保持できず凝集して、リン酸カル
シウム系化合物が均一に、あるいは十分に担持されず、
満足し得る物性が付与されない。また、30μmを越え
る場合、物性面では別段問題ないが、特に合成樹脂組成
物での用途においては、成形品の表面が荒れてしまった
り、粒子が脱落し易いため用途が限定される。また、平
均粒子径の比(Dmr/Dm)が5を越える場合、例え
ば、脱臭剤、除湿剤、徐放体等の分野で基剤として用い
た場合に、十分な機能を発現できない。
The average particle diameter (Dmr) of the composite (MR) of the present invention, in which the calcium phosphate compound is supported on the carrier (M), measured by a scanning electron microscope (SEM) is 0.1. 3030 μm. The ratio (Dmr / Dm) of the average particle diameter (Dmr) of the composite (MR) to the average particle diameter (Dm) of the carrier (M) is 1 to 5. When the average particle diameter (Dmr) is less than 0.1 μm,
The dispersibility of the primary particle diameter cannot be maintained, and the particles are aggregated, and the calcium phosphate compound is not uniformly or sufficiently supported.
Satisfactory physical properties are not provided. If it exceeds 30 μm, there is no particular problem in terms of physical properties, but in particular, when used with a synthetic resin composition, the use is limited because the surface of a molded article is roughened and particles are easily dropped off. When the average particle diameter ratio (Dmr / Dm) exceeds 5, for example, when used as a base in the fields of deodorants, dehumidifiers, sustained-release bodies, etc., sufficient functions cannot be exhibited.

【0011】本発明の複合体(MR)の窒素吸着法によ
るBET比表面積(Smr)は、3〜300m2/gであ
る。また、複合体(MR)の比表面積(Smr)と担体
(M)の比表面積(Sm)との比(Smr/Sm)は、
0.01〜1、好ましくは0.01以上1未満である。
比表面積(Smr)が3m2/g未満の場合あるいは比表面
積比(Smr/Sm)が0.01未満の場合、例えば、
脱臭剤、除湿剤、徐放体等の分野で基剤として用いた場
合に、十分な機能を発現できず、300m2/gを越える場
合あるいは比表面積比(Smr/Sm)が1を越える場
合、熱減量率の面で不十分となり、例えば合成樹脂フィ
ルム用ブロッキング防止剤として使用した場合に、樹脂
の劣化で黄変してしまい、本発明の目的を達成し得な
い。
The BET specific surface area (Smr) of the composite (MR) of the present invention by a nitrogen adsorption method is 3 to 300 m 2 / g. The ratio (Smr / Sm) between the specific surface area (Smr) of the composite (MR) and the specific surface area (Sm) of the carrier (M) is as follows:
It is 0.01 to 1, preferably 0.01 or more and less than 1.
When the specific surface area (Smr) is less than 3 m 2 / g or when the specific surface area ratio (Smr / Sm) is less than 0.01, for example,
When used as a base in the fields of deodorants, dehumidifiers, sustained-release products, etc., they cannot exhibit sufficient functions and exceed 300 m 2 / g or when the specific surface area ratio (Smr / Sm) exceeds 1. In addition, the heat loss rate becomes insufficient. For example, when used as an antiblocking agent for a synthetic resin film, the yellowing occurs due to deterioration of the resin, and the object of the present invention cannot be achieved.

【0012】本発明の複合体(MR)の500℃の熱減
量率(Tmr1)、200℃の熱減量率(Tmr2)
は、それぞれ0.5〜15重量%、0.3〜10重量%
である。また、複合体(MR)の500℃の熱減量率
(Tmr1)と担体(M)の500℃の熱減量率(Tm
1)との比(Tmr1/Tm1)、及び複合体(MR)
の200℃の熱減量率(Tmr2)と担体(M)の20
0℃の熱減量率(Tm2)との比(Tmr2/Tm2)
は、それぞれ0.01以上1未満である。500℃の熱
減量(Tm1)が、0.5重量%未満の場合、複合体
(MR)の多孔性が完全に消失してしまい、例えば、脱
臭剤、除湿剤、徐放体等の分野に基剤として使用した場
合に支障をきたし、15重量%を越えると、熱減量率が
大き過ぎるため、例えば、合成樹脂分野に使用した場
合、樹脂の劣化により黄変しやすく、本発明の目的を達
成し得ない。従って、好ましくは0.5〜10重量%、
さらに好ましくは0.5〜5重量%である。200℃の
熱減量率(Tmr2)も同様の理由により、好ましくは
0.3〜3重量%、さらに好ましくは0.3〜1重量%
である。また、熱減量率の比(Tmr1/Tm1)、
(Tmr2/Tm2)が、それぞれ0.01未満の場
合、分散性の保持に問題が生じ、例えば、合成樹脂フィ
ルム用ブロッキング防止剤の基剤に使用した場合、十分
な耐ブロッキング性が発現できない。
The composite (MR) of the present invention has a heat loss at 500 ° C. (Tmr1) and a heat loss at 200 ° C. (Tmr2).
Are 0.5 to 15% by weight and 0.3 to 10% by weight, respectively.
It is. Further, the heat loss of the composite (MR) at 500 ° C. (Tmr1) and the heat loss of the carrier (M) at 500 ° C. (Tmr1)
1) and the ratio (Tmr1 / Tm1), and the composite (MR)
Loss at 200 ° C. (Tmr2) of the carrier (M) and 20
Ratio (Tmr2 / Tm2) to 0 ° C. heat loss rate (Tm2)
Is 0.01 or more and less than 1. When the heat loss (Tm1) at 500 ° C. is less than 0.5% by weight, the porosity of the composite (MR) is completely lost, and for example, it is used in the fields of deodorants, dehumidifiers, and sustained-release materials. If it is used as a base, there is a problem. If it exceeds 15% by weight, the rate of loss of heat is too large. For example, when it is used in the field of synthetic resins, it tends to yellow due to deterioration of the resin. I can't achieve it. Therefore, preferably 0.5 to 10% by weight,
More preferably, it is 0.5 to 5% by weight. For the same reason, the heat loss rate (Tmr2) at 200 ° C. is preferably 0.3 to 3% by weight, more preferably 0.3 to 1% by weight.
It is. Also, the ratio of the heat loss rate (Tmr1 / Tm1),
When (Tmr2 / Tm2) is less than 0.01, a problem arises in retention of dispersibility. For example, when used as a base for a synthetic resin film antiblocking agent, sufficient blocking resistance cannot be exhibited.

【0013】尚、本発明でいう熱減量率とは、試料を1
10℃で24時間乾燥後、熱天秤装置(商品名:TG8
110、リガク株式会社製)を用いて、15℃/分で昇
温して200℃あるいは500℃に到達したときの重量
減量率をいい、下記式により求められる。 (W−W′/W)×100 W :110℃で24時間乾燥したときの試料の重量 W′:200℃あるいは500℃に到達したときの試料
の重量
The heat loss rate in the present invention means that a sample is 1%.
After drying at 10 ° C. for 24 hours, a thermobalance device (trade name: TG8
110, manufactured by Rigaku Corporation) at a rate of 15 ° C./min to reach 200 ° C. or 500 ° C., which is obtained by the following equation. (W−W ′ / W) × 100 W: weight of the sample when dried at 110 ° C. for 24 hours W ′: weight of the sample when the temperature reaches 200 ° C. or 500 ° C.

【0014】以上の条件を充足することにより本発明の
目的は十分達成されるが、例えば、合成樹脂フィルム用
ブロッキング防止剤などに使用する場合などにおいて、
より一層の効果を発現させるためには、マイクロトラッ
クFRAレーザー式粒度分布計により測定した粒度が、
好ましくは1≦αmr≦5、0≦βmr≦2、さらに好まし
くは1≦αmr≦2、0≦βmr≦1である。すなわち、担
体(M)と複合体(MR)の分散係数、シャープネス
が、ともに近似した粒度であることが望ましい。αmrが
5を越える場合あるいはβmrが2を越える場合は、例え
ば、合成樹脂フィルム用ブロッキング防止剤に使用した
場合に十分な耐ブロッキング性が得られ難い。
The object of the present invention can be sufficiently achieved by satisfying the above conditions. For example, when the present invention is used as an antiblocking agent for synthetic resin films,
In order to achieve a further effect, the particle size measured by a Microtrack FRA laser type particle size distribution meter is as follows:
Preferably, 1 ≦ αmr ≦ 5, 0 ≦ βmr ≦ 2, more preferably 1 ≦ αmr ≦ 2, 0 ≦ βmr ≦ 1. That is, it is desirable that both the dispersion coefficient and the sharpness of the carrier (M) and the composite (MR) have similar particle sizes. When αmr exceeds 5 or βmr exceeds 2, for example, when used as an antiblocking agent for a synthetic resin film, it is difficult to obtain sufficient blocking resistance.

【0015】また、本発明の複合体(MR)は、例え
ば、脱臭剤、除湿剤、徐放体等の分野や、合成樹脂用添
加剤用途における樹脂との親和性等において、比表面積
計(商品名:NOVA2000、ユアサアイオニクス株
式会社製)で測定した比表面積値(Smr)を、SEM
写真により測定した粒子を球換算で導いた理論比表面積
値(S1)で割った数値(Smr/S1)が3〜125
が好ましく、さらに好ましくは5〜100、最も好まし
くは30〜70の範囲である。従って、従来のコロイド
状ヒドロキシアパタイト(市販品)は3未満であり、本
発明の複合体(MR)とは区別される。
Further, the composite (MR) of the present invention can be used in a specific surface area meter (MR) in the fields of deodorizer, dehumidifier, sustained-release body and the like, and affinity with resin in additives for synthetic resin. Product name: NOVA2000, manufactured by Yuasa Ionics Co., Ltd.) was measured by SEM
The value (Smr / S1) obtained by dividing the particles measured by the photograph by the theoretical specific surface area value (S1) derived in sphere conversion is 3 to 125.
Is more preferable, more preferably 5 to 100, and most preferably 30 to 70. Therefore, the number of the conventional colloidal hydroxyapatite (commercial product) is less than 3, which is distinguished from the composite (MR) of the present invention.

【0016】尚、理論比表面積値(S1)は、下記の計
算式から算出される。 理論比表面積=(1/w)/(4πr3 /3)×4πr
2 =3/wr(m2/g) 但し、 w:粒子の真比重(JIS K−5101に準ずる) r:走査型電子顕微鏡(SEM)写真で測定した平均粒
子半径(μm)
The theoretical specific surface area (S1) is calculated from the following equation. Theoretical specific surface area = (1 / w) / ( 4πr 3/3) × 4πr
2 = 3 / wr (m 2 / g), where: w: true specific gravity of particles (according to JIS K-5101) r: average particle radius (μm) measured by a scanning electron microscope (SEM) photograph

【0017】本発明の複合体(MR)は、担体(M)水
懸濁液中において、リン酸カルシウム系化合物(R)を
合成することにより、担体(M)にリン酸カルシウム系
化合物(R)を担持せしめることにより得られる。具体
的には、(a)担体(M)水懸濁液とアルカリ性カルシ
ウム化合物水懸濁液を混合し、水溶性リン酸塩水溶液を
滴下混合するか、もしくは、(b)担体(M)水懸濁液
中に、アルカリ性カルシウム化合物と水溶性リン酸塩水
溶液を別々に滴下混合することにより、合成されたリン
酸カルシウム系化合物(R)が担体(M)に担持され、
複合体(MR)が調製される。(a)の方法は作業性が
良く、一方、(b)の方法は合成状況を確認できる利点
がある。
In the composite (MR) of the present invention, the calcium phosphate compound (R) is supported on the carrier (M) by synthesizing the calcium phosphate compound (R) in an aqueous suspension of the carrier (M). It can be obtained by: Specifically, (a) an aqueous suspension of the carrier (M) and an aqueous suspension of an alkaline calcium compound are mixed, and a water-soluble phosphate aqueous solution is dropped and mixed, or (b) the aqueous solution of the carrier (M) By separately dropping and mixing the alkaline calcium compound and the water-soluble phosphate aqueous solution into the suspension, the synthesized calcium phosphate compound (R) is supported on the carrier (M),
A composite (MR) is prepared. The method (a) has good workability, while the method (b) has an advantage that the synthesis status can be confirmed.

【0018】複合体(MR)の好ましい調製条件、下記
のとおりである。 (反応材料の濃度) 担体(M)の水懸濁液固形分濃度(又はアルカリ性カル
シウム化合物が混在した系の濃度):50重量部以下
(水100重量部当り) リン酸塩水溶液の濃度 :400重量部以下(水
100重量部当り) アルカリ性カルシウム化合物水懸濁液濃度:50重量部
以下(水100重量部当り) (混合) Ca/Pの原子比 :1.5〜10 反応温度 :20〜97℃ 滴下時間 :1〜600分 リン酸カルシウム系化合物(R)の担持量:1〜10
000重量部〔担体(M)100重量部当り〕 撹拌羽根周速 :0.5〜50(m/秒) pH :8〜10 (熟成) 温度 :20〜97℃ pH :8〜10 熟成時間 :1〜6000分 攪拌羽根周速 :0.5〜50(m/秒)
Preferred conditions for preparing the composite (MR) are as follows. (Concentration of reaction material) Solid concentration of aqueous suspension of carrier (M) (or concentration of system in which alkaline calcium compound is mixed): 50 parts by weight or less (per 100 parts by weight of water) Concentration of aqueous phosphate solution: 400 Part by weight or less (per 100 parts by weight of water) Alkaline calcium compound aqueous suspension concentration: 50 parts by weight or less (per 100 parts by weight of water) (mixing) Atomic ratio of Ca / P: 1.5-10 Reaction temperature: 20- 97 ° C Dropping time: 1 to 600 minutes Carrying amount of calcium phosphate compound (R): 1 to 10
000 parts by weight [per 100 parts by weight of carrier (M)] Stirring blade peripheral speed: 0.5 to 50 (m / sec) pH: 8 to 10 (aging) Temperature: 20 to 97 ° C pH: 8 to 10 Maturing time: 1 to 6000 minutes stirring blade peripheral speed: 0.5 to 50 (m / sec)

【0019】反応材料の固形分濃度は特に限定されない
が、上記(a)の場合、担体(M)とアルカリ性カルシ
ウム化合物が混合懸濁化した系の濃度が、水100重量
部当たり50重量部以下が好ましく、またリン酸塩水溶
液の濃度は、水100重量部当たり400重量部以下が
好ましい。一方、上記(b)の場合、担体(M)の水懸
濁液濃度は、水100重量部当たり50重量部以下が好
ましく、アルカリ性カルシウム化合物水懸濁液の濃度
は、水100重量部当たり50重量部以下、リン酸塩水
溶液の濃度は、水100重量部当たり400重量部以下
が好ましい。固形分濃度が上記より大きくなると、調製
される複合体(MR)の分散性に支障をきたす場合があ
る。
The solid content concentration of the reaction material is not particularly limited. In the case of the above (a), the concentration of the system in which the carrier (M) and the alkaline calcium compound are mixed and suspended is 50 parts by weight or less per 100 parts by weight of water. The concentration of the aqueous phosphate solution is preferably 400 parts by weight or less per 100 parts by weight of water. On the other hand, in the case of the above (b), the concentration of the aqueous suspension of the carrier (M) is preferably 50 parts by weight or less per 100 parts by weight of water, and the concentration of the aqueous alkaline calcium compound suspension is 50 parts by weight per 100 parts by weight of water. It is preferable that the concentration of the aqueous phosphate solution be 400 parts by weight or less per 100 parts by weight of water. If the solid content is higher than the above, the dispersibility of the prepared composite (MR) may be affected.

【0020】また、リン酸カルシウム系化合物(R)の
Ca/Pの原子比は、用途によって異なるため一概に規
定されるものではないが、通常1.5〜10、好ましく
は1.6〜5、より好ましくは1.62〜2である。モ
ル比が1.5未満の場合、未反応のリン酸塩が増え、水
洗等に手間がかかり、コスト高になりやすく、一方、モ
ル比が10を越えると、炭酸カルシウムと複合体とが別
々に混在しやすく、粒子の均一性や分散性に悪影響を及
ぼしやすい。
Further, the Ca / P atomic ratio of the calcium phosphate compound (R) is not generally defined because it varies depending on the application, but it is usually 1.5 to 10, preferably 1.6 to 5, Preferably it is 1.62 to 2. When the molar ratio is less than 1.5, unreacted phosphate increases, it takes time and effort to wash with water, and the cost tends to be high. On the other hand, when the molar ratio exceeds 10, calcium carbonate and the complex are separated. And easily adversely affect the uniformity and dispersibility of the particles.

【0021】水溶性リン酸塩としては、リン酸一アンモ
ニウム、リン酸二アンモニウム、リン酸三アンモニウ
ム、リン酸一ナトリウム、リン酸二ナトリウム、リン酸
三ナトリウム、リン酸一カリウム、リン酸二カリウム、
リン酸三カリウム等が例示でき、これらは単独で用いて
も、2種以上組み合わせて用いても何ら差し支えない。
Examples of the water-soluble phosphate include monoammonium phosphate, diammonium phosphate, triammonium phosphate, monosodium phosphate, disodium phosphate, trisodium phosphate, monopotassium phosphate and dipotassium phosphate. ,
Tripotassium phosphate and the like can be exemplified, and these may be used alone or in combination of two or more.

【0022】アルカリ性カルシウム化合物としては、炭
酸カルシウムや(水)酸化カルシウムが挙げられ、特に
pHが8〜10の炭酸カルシウムが、リン酸カルシウム
系化合物(R)の生成速度、又は担体(M)へのリン酸
カルシウム系化合物(R)の沈着析出化による結晶層の
生成度合いが良好なため好ましい。さらにSEMによる
平均径が0.01〜5μm、好ましくは0.03〜1μ
m、さらに好ましくは、0.05〜0.5μmのコロイ
ド状炭酸カルシウムが汎用性があり好適に使用される。
Examples of the alkaline calcium compound include calcium carbonate and (aqueous) calcium oxide. In particular, calcium carbonate having a pH of 8 to 10 can be used for the formation rate of the calcium phosphate compound (R) or the calcium phosphate to the carrier (M). It is preferable because the degree of formation of a crystal layer by deposition of the compound (R) is good. Further, the average diameter by SEM is 0.01 to 5 μm, preferably 0.03 to 1 μm.
m, more preferably, 0.05 to 0.5 μm colloidal calcium carbonate is widely used and is preferably used.

【0023】具体的な反応条件としては、系の反応温
度、リン酸塩水溶液、又はアルカル性カルシウム化合
物及び水溶性リン酸塩の滴下時間、リン酸カルシウム
系化合物(R)の担持量、撹拌、が挙げられる。の
反応温度に関しては、通常20〜97℃、好ましくは4
0〜90℃、さらに好ましくは50〜80℃の範囲であ
る。20℃未満の場合、反応効率が低く工業的に不利に
なりやく、また反応が追いつかず凝集しやすい。97℃
を越えると、反応が速すぎ、担体(M)と別々に混在し
やすい。
Specific reaction conditions include the reaction temperature of the system, the aqueous solution of the phosphate or the dripping time of the alkaline calcium compound and the water-soluble phosphate, the amount of the calcium phosphate compound (R) supported, and stirring. Can be The reaction temperature is usually 20 to 97 ° C, preferably 4 to 97 ° C.
The temperature is in the range of 0 to 90C, more preferably 50 to 80C. When the temperature is lower than 20 ° C., the reaction efficiency is low, which is industrially disadvantageous, and the reaction cannot catch up with the cohesion. 97 ° C
When the ratio exceeds, the reaction is too fast, and it is easy to mix with the carrier (M) separately.

【0024】の滴下時間とは、リン酸塩水溶液単独も
しくはアルカリ性カルシウム化合物水懸濁液と同時に滴
下する場合において、担体(M)100重量部に対し
て、100重量部のリン酸カルシウム系化合物(R)が
生成する濃度になるまでの滴下時間を意味し、特に限定
されないが、通常1〜600分、好ましくは10〜30
0分、さらに好ましくは15〜150分である。滴下時
間が1分未満の場合、担体(M)の分散性を保持できず
凝集しやすくなり、600分を越えると、工業的にコス
ト高になりやすい。
The dropping time refers to 100 parts by weight of the calcium phosphate compound (R) with respect to 100 parts by weight of the carrier (M) when the aqueous phosphate solution is added alone or simultaneously with the aqueous suspension of the alkaline calcium compound. Means a dropping time until a concentration is generated, and is not particularly limited, but is usually 1 to 600 minutes, preferably 10 to 30 minutes.
0 minutes, more preferably 15 to 150 minutes. If the dropping time is less than 1 minute, the dispersibility of the carrier (M) cannot be maintained, and the carrier (M) tends to aggregate, and if it exceeds 600 minutes, the cost tends to increase industrially.

【0025】に関しては、担体(M)に対するリン酸
カルシウム系化合物(R)の担持量(R/M)は、調製
される複合体(MR)の熱減量率の抑制に不可欠であ
る。しかし、担体(M)の平均粒子径や所望の熱安定性
によっても異なるため、一概に規定されないが、通常、
担体(M)100重量部に対して1〜10000重量
部、好ましくは10〜1000重量部、より好ましくは
100〜500重量部である。1重量部未満では、熱減
量率の抑制が発現されにくく、10000重量部を越え
ると、物性面では別段問題は無いが、例えば、脱臭剤、
除湿剤、徐放体等の分野で基剤として用いた場合に、十
分な機能を発現しない恐れがある。
With respect to the amount of the calcium phosphate compound (R) supported on the carrier (M), the amount (R / M) of the calcium phosphate compound (R) is indispensable for suppressing the heat loss rate of the prepared composite (MR). However, since it varies depending on the average particle size of the carrier (M) and the desired thermal stability, it is not specified unconditionally, but usually,
The amount is 1 to 10000 parts by weight, preferably 10 to 1000 parts by weight, more preferably 100 to 500 parts by weight based on 100 parts by weight of the carrier (M). When the amount is less than 1 part by weight, suppression of the heat loss rate is hardly exhibited, and when it exceeds 10,000 parts by weight, there is no particular problem in physical properties.
When used as a base in the fields of dehumidifiers, sustained-release products and the like, there is a possibility that sufficient functions may not be exhibited.

【0026】に関しては、リン酸カルシウム系化合物
(R)の合成には特に限定されないが、一定以上の撹拌
力で撹拌することが望ましい。一定以上の撹拌力とは、
懸濁液系全体が均一に撹拌できる程度の攪拌力で、撹拌
の機構はパドル、タービン、プロペラ、高速インペラー
分散機等が使用できる。また、容器に邪魔板を取り付け
た方が好ましい。撹拌力は、通常、撹拌羽根の周速が
0.5〜50m/秒、好ましくは1〜30m/秒であ
る。0.5m/秒未満の場合、均一な合成が困難とな
り、一方、50m/秒を越えると、反応装置を大型化す
るのに支障をきたすため、工業化において生産性が著し
く低下する傾向がある。以上の〜が、担体(M)の
分散性、均一性を保持したまま、リン酸カルシウム系化
合物を効率よく担体(M)に担持させるための条件であ
る。
Regarding the synthesis of the calcium phosphate compound (R), there is no particular limitation, but it is desirable to stir with a certain or more stirring force. With a certain level of stirring power,
With a stirring force enough to uniformly stir the entire suspension system, a paddle, turbine, propeller, high-speed impeller disperser, or the like can be used as a stirring mechanism. Further, it is preferable to attach a baffle plate to the container. As for the stirring power, the peripheral speed of the stirring blade is usually 0.5 to 50 m / sec, preferably 1 to 30 m / sec. When it is less than 0.5 m / sec, uniform synthesis becomes difficult. On the other hand, when it exceeds 50 m / sec, there is a problem in increasing the size of the reaction apparatus, so that the productivity tends to be remarkably reduced in industrialization. The above conditions are conditions for efficiently supporting the calcium phosphate compound on the carrier (M) while maintaining the dispersibility and uniformity of the carrier (M).

【0027】反応終了後、リン酸カルシウム系化合物
(R)の合成及び担体(M)への担持を完結させるため
に、熟成を行うのが好ましい。熟成条件は特に制限され
ないが、通常、温度は20〜97℃、pHは8〜10、
熟成時間は0.1〜100時間、攪拌羽根周速は0.5
〜50(m/秒)程度が好ましい。熟成終了後、必要に応
じて、生成した複合体(MR)懸濁液中に含まれるアル
カリ金属イオンなどの夾雑イオンを濾過過水洗する。こ
れは、例えばコンデンサーフィルム用での絶縁性向上
等、所望の物性を得るのに好ましい。また、水洗の際、
濾液の電気伝導度は特に限定されないが、通常、10m
S/以下、好ましくは1mS/以下、さらに好ましくは
100μS/以下とするのがよい。水洗方法については
特に制限はなく、遠心脱水機、UF膜、MF膜、シック
ナー、ロータリーフィルター等を用い、濃縮、水希釈を
繰り返せばよい。
After completion of the reaction, aging is preferably performed to complete the synthesis of the calcium phosphate compound (R) and the loading on the carrier (M). The aging conditions are not particularly limited, but usually, the temperature is 20 to 97 ° C, the pH is 8 to 10,
Aging time is 0.1 to 100 hours, stirring blade peripheral speed is 0.5
About 50 (m / sec) is preferable. After the completion of the aging, if necessary, impurities such as alkali metal ions contained in the formed composite (MR) suspension are filtered and washed with water. This is preferable for obtaining desired physical properties such as, for example, improvement of insulation properties for a capacitor film. Also, when washing with water,
Although the electric conductivity of the filtrate is not particularly limited, it is usually 10 m
S / or less, preferably 1 mS / or less, more preferably 100 μS / or less. The washing method is not particularly limited, and concentration and dilution with water may be repeated using a centrifugal dehydrator, a UF membrane, an MF membrane, a thickener, a rotary filter, or the like.

【0028】ここで、粒度分布の測定方法を説明する
と、合成した直後の水懸濁液に、1分間、超音波(US
−300、日本精機製作所製)をかけ、前述した粒度分
布計で測定する。尚、水懸濁液を例えば、エチレングリ
コール懸濁液にしても、または乾粉化したものを水懸濁
液化しても、ほぼ同様の測定結果が得られる。
Here, the method of measuring the particle size distribution will be described. The aqueous suspension immediately after the synthesis is subjected to an ultrasonic wave (US
-300, manufactured by Nippon Seiki Seisakusho), and measured with the particle size distribution meter described above. It should be noted that almost the same measurement results can be obtained by converting the aqueous suspension into, for example, an ethylene glycol suspension or by drying and drying the aqueous suspension.

【0029】本発明の複合体(MR)は、粒子の分散
性、安定性等をさらに高めるため、あるいは目的用途に
応じ、繊維素化合物、シロキサン化合物、脂肪酸、樹脂
酸酸、アクリル酸、メタクリル酸、シュウ酸、クエン酸
等の有機酸、酒石酸、燐酸、縮合燐酸、フッソ酸等の無
機酸、これら有機酸、無機酸のポリマー、それらの塩、
又はそれらのエステル類等の表面処理剤、界面活性剤等
の分散剤、チタネートカップリング剤、シランカッブリ
ング剤等のカップリング剤、界面活性剤等の分散剤等を
1種又は2種以上用い、常法に従い表面処理された後使
用されるのが好ましい。表面処理量は、一般に複合体
(MR)の粒子に対し5〜30重量%である。これらの
処理剤の中で、ステアリン酸等で代表される脂肪酸及び
脂肪酸塩や、カルボキシルメチルセルロース等で代表さ
れる繊維素化合物、或いはメチルハイドロジエンシリコ
ーンオイル等で代表されるシロキサン化合物、ポリオキ
シアルキレン化合物等がより好ましい。
The composite (MR) of the present invention is used to further improve the dispersibility and stability of the particles, or according to the intended use, a cellulose compound, a siloxane compound, a fatty acid, a resin acid, an acrylic acid, a methacrylic acid. , Oxalic acid, organic acids such as citric acid, tartaric acid, phosphoric acid, condensed phosphoric acid, inorganic acids such as fluoric acid, these organic acids, polymers of inorganic acids, their salts,
Or a surface treating agent such as an ester thereof, a dispersant such as a surfactant, a coupling agent such as a titanate coupling agent or a silane coupling agent, or one or more dispersants such as a surfactant. It is preferably used after surface treatment according to a conventional method. The surface treatment amount is generally 5 to 30% by weight based on the particles of the composite (MR). Among these treating agents, fatty acids and fatty acid salts represented by stearic acid and the like, fibrous compounds represented by carboxymethylcellulose and the like, or siloxane compounds represented by methylhydrogen silicone oil and the like, polyoxyalkylene compounds And the like are more preferable.

【0030】本発明の複合体(MR)は、従来の多孔質
無機系物質と比較して、分散性、均一性を保持したま
ま、比表面積を任意に制御することにより、熱減量率を
抑制して熱安定性を向上させることが可能であり、かつ
製造コストも安価なため、医薬、微生物、抗菌剤、光触
媒などの各種担体、脱臭剤、除湿剤、徐放体、殺菌剤、
防虫剤、紫外線吸収剤、光拡散剤、重合用分散剤、濾過
剤、成形助剤、食品添加剤、乾燥剤、芳香剤、セラミッ
クス原料、歯科用歯磨剤、プラスチックス、ゴム、製
紙、感熱紙、シーリング材、合成樹脂フィルム用ブロッ
キング防止剤、インク用体質顔料、塗料用顔料、レーキ
顔料、化粧料の他、担体(M)に機能性材料を担持した
マイクロカプセル化などの用途に広く使用可能である。
The composite (MR) of the present invention suppresses the heat loss rate by arbitrarily controlling the specific surface area while maintaining the dispersibility and uniformity as compared with the conventional porous inorganic substance. It is possible to improve the thermal stability by doing, and because the production cost is low, medicine, microorganisms, antibacterial agents, various carriers such as photocatalyst, deodorant, dehumidifier, sustained-release body, bactericide,
Insect repellents, UV absorbers, light diffusing agents, dispersants for polymerization, filtration agents, molding aids, food additives, desiccants, fragrances, ceramic materials, dental dentifrices, plastics, rubber, paper, thermal paper Can be widely used in applications such as sealing materials, antiblocking agents for synthetic resin films, extender pigments for inks, pigments for paints, lake pigments, cosmetics, and microcapsules in which a functional material is supported on a carrier (M). It is.

【0031】[0031]

【実施例】以下、実施例に基づき本発明を更に詳細に説
明するが、本発明はこれら実施例に何ら限定されるもの
でなく、その要旨を変更しない範囲において適宜変更し
て実施することが可能である。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to these Examples and can be carried out by appropriately changing the scope of the invention without changing the gist thereof. It is possible.

【0032】実施例1〜3 表1に記載の担体(M)の調製条件に従い、邪魔板付き
で、直径0.6mのタービン羽根1枚の撹拌機付きの
0.4m3 ステンレスタンクに濃度を調整し温調した炭
酸カルシウムの水懸濁液分散体を投入し、撹拌下に燐酸
の希釈水溶液を滴下混合し、熟成条件に従い攪拌を行い
ながら熟成し、多孔質リン酸カルシウム系物質からなる
担体(M)E1〜E3を調製した。次に、熟成終了後、
表1に記載の複合体(MR)の調製条件に従い、撹拌し
ながら炭酸カルシウム水懸濁液及び水溶性リン酸塩水溶
液を別々に滴下混合し、熟成条件に従い撹拌を行いなが
ら熟成し、担体(M)E1〜E3にリン酸カルシウム系
化合物(R)を担持させた複合体(MR)G1〜G3を
調製した。担体(M)E1〜E3及び複合体(MR)G
1〜G3の物性を表3に示す。表3より、複合体(M
R)G1〜G3は、粒子の均一性、分散性を保持したま
ま、熱減量率が抑制されていることが確認される。これ
は、水溶性リン酸塩と炭酸カルシウムのみが反応し、担
体(M)の多孔質リン酸カルシウム系物質とは反応しな
かったことに因るためと考えられる。特に、実施例1の
ように、担持量を調整することにより、担体(M)の平
均径も保持することが可能である。また、G1〜G3と
E1〜E3のXRD(X線回折)の結果、結晶形態は、
どちらもヒドロキシアパタイトを主成分とするピークで
あったが、担体(M)よりも複合体(MR)の方が、ま
たG1からG3と担持量が増えるほど、結晶化度が向上
していることが確認された。図1に担体(M)E1、図
2に複合体(MR)G1のSEM写真(1万倍)を示
す。
Examples 1-3 According to the preparation conditions of the carrier (M) shown in Table 1, the concentration was measured in a 0.4 m 3 stainless steel tank equipped with a baffle plate and one stirrer having a turbine blade having a diameter of 0.6 m. An aqueous suspension of calcium carbonate whose temperature was adjusted and adjusted was charged, and a diluted aqueous solution of phosphoric acid was added dropwise and mixed with stirring, and the mixture was aged while stirring under aging conditions to obtain a carrier (M) made of a porous calcium phosphate-based material. ) E1 to E3 were prepared. Next, after aging,
According to the preparation conditions of the complex (MR) shown in Table 1, the aqueous calcium carbonate suspension and the aqueous phosphate solution were separately dropped and mixed while stirring, and the mixture was aged while stirring under the aging conditions. M) Complexes (MR) G1 to G3 in which calcium phosphate compound (R) was supported on E1 to E3 were prepared. Carrier (M) E1 to E3 and composite (MR) G
Table 3 shows the physical properties of 1 to G3. From Table 3, it can be seen that the complex (M
R) It is confirmed that G1 to G3 suppress the heat loss rate while maintaining the uniformity and dispersibility of the particles. This is considered to be due to the fact that only the water-soluble phosphate and calcium carbonate reacted and did not react with the porous calcium phosphate-based substance of the carrier (M). In particular, as in Example 1, the average diameter of the carrier (M) can be maintained by adjusting the amount of the carrier. As a result of XRD (X-ray diffraction) of G1 to G3 and E1 to E3,
Both peaks were mainly composed of hydroxyapatite, but the composite (MR) had a higher degree of crystallinity than the carrier (M), and the more the amount supported from G1 to G3, the higher the supported amount. Was confirmed. FIG. 1 shows an SEM photograph (magnification: 10,000) of the carrier (M) E1 and FIG. 2 shows a composite (MR) G1.

【0033】実施例4 表1に記載したように、担体(M)として市販のケイ酸
カルシウム(商品名:フローライトRN、株式会社トク
ヤマ製)E4を使用して、反応温度を80℃に、リン酸
カルシウム系化合物(R)の担持量を200重量部に変
更した他は実施例1と同様の方法でケイ酸カルシウム−
リン酸カルシウム系複合体(MR)G4を調製した。担
体(M)E4及び複合体(MR)G4の物性を表3に示
す。担体(M)の粒度を保持したまま、比表面積を低減
することができ、熱減量が抑制されていることが確認さ
れる。
Example 4 As described in Table 1, commercially available calcium silicate (trade name: Florite RN, manufactured by Tokuyama Corporation) E4 was used as the carrier (M), and the reaction temperature was raised to 80 ° C. Calcium silicate was prepared in the same manner as in Example 1 except that the loading amount of the calcium phosphate compound (R) was changed to 200 parts by weight.
Calcium phosphate composite (MR) G4 was prepared. Table 3 shows the physical properties of the carrier (M) E4 and the composite (MR) G4. It is confirmed that the specific surface area can be reduced while maintaining the particle size of the carrier (M), and the heat loss is suppressed.

【0034】比較例1 表2に示すように、水溶性リン酸塩をリン酸に置き換え
る他は、実施例1と同様の方法で、複合体(MR)N1
を調整した。担体(M)E1及び得られた複合体(M
R)N1の物性を表4に示す。表4より、比較例1の複
合体(MR)は、粒子径がバラバラで、凝集した粒度で
あり、また、熱減量率が十分に抑制されていないことが
確認される。これは、リン酸が炭酸カルシウムと反応す
るのみならず、担体(M)の多孔質リン酸カルシウム系
物質とも反応したためと考えられる。また、結晶形態
は、どちらもヒドロキシアパタイトを主成分とするピー
クであり、結晶化度は、実施例1のG1粒子より低いこ
とが確認された。
Comparative Example 1 As shown in Table 2, the composite (MR) N1 was prepared in the same manner as in Example 1 except that the water-soluble phosphate was replaced with phosphoric acid.
Was adjusted. The carrier (M) E1 and the resulting complex (M
Table 4 shows the physical properties of R) N1. From Table 4, it is confirmed that the composite (MR) of Comparative Example 1 has a different particle size, an agglomerated particle size, and the heat loss rate is not sufficiently suppressed. This is probably because phosphoric acid reacted not only with calcium carbonate but also with the porous calcium phosphate-based substance of the carrier (M). In addition, each of the crystal forms was a peak mainly composed of hydroxyapatite, and it was confirmed that the crystallinity was lower than that of the G1 particles of Example 1.

【0035】比較例2 表2に示すように、水溶性リン酸塩と炭酸カルシウム
を、それぞれリン酸と水酸化カルシウムに置き換える他
は、実施例1〜3と同様の方法で、複合体(MR)N2
を調製した。担体(M)E1及び得られた複合体(M
R)N2の物性を表4に示す。表4より、比較例2の複
合体(MR)は、粒子径がバラバラで、凝集した粒度で
あり、また、熱減量率の抑制効果は実施例1より低いこ
とが確認される。これは、比較例1と同様に、リン酸が
炭酸カルシウムと反応するのみならず、担体(M)の多
孔質リン酸カルシウム系物質とも反応したためと考えら
れる。また、結晶形態は、どちらもヒドロキシアパタイ
トを主成分とするピークであり、結晶化度は、実施例1
のG1より低いことが確認された。
Comparative Example 2 As shown in Table 2, the composite (MR) was prepared in the same manner as in Examples 1 to 3, except that the water-soluble phosphate and calcium carbonate were replaced with phosphoric acid and calcium hydroxide, respectively. ) N2
Was prepared. The carrier (M) E1 and the resulting complex (M
R) The physical properties of N2 are shown in Table 4. From Table 4, it is confirmed that the composite (MR) of Comparative Example 2 has a different particle size and an agglomerated particle size, and the effect of suppressing the heat loss rate is lower than that of Example 1. This is presumably because, as in Comparative Example 1, not only did phosphoric acid react with calcium carbonate but also with the porous calcium phosphate-based substance of the carrier (M). The crystal morphology was a peak mainly composed of hydroxyapatite, and the crystallinity was determined in Example 1.
It was confirmed that it was lower than G1.

【0036】比較例3 表2に示すように、リン酸カルシウム系化合物(R)と
して、市販のコロイド状ヒドロキシアパタイト(商品
名:第三リン酸三カルシウム、米山化学製)を用い、こ
れをE1に担持させて複合体(MR)N3を調製した。
担体(M)E1及び得られた複合体(MR)N3の物性
を表4に示す。表4より、比較例3の複合体(MR)
は、担体(M)であるE1と、コロイド状ヒドロキシア
パタイト(R)が別々に存在しており、粒子径がバラバ
ラで、凝集した粒度であった。また、熱減量率の抑制効
果や結晶化度は、実施例1のG1より低いことが確認さ
れた。尚、市販のヒドロキシアパタイトの平均粒子径等
各種特性の参考値を表5に示す。
Comparative Example 3 As shown in Table 2, a commercially available colloidal hydroxyapatite (trade name: tricalcium phosphate, manufactured by Yoneyama Chemical Co., Ltd.) was used as the calcium phosphate compound (R) and supported on E1. Thus, a composite (MR) N3 was prepared.
Table 4 shows the physical properties of the carrier (M) E1 and the obtained composite (MR) N3. From Table 4, the composite (MR) of Comparative Example 3 was obtained.
In the sample, E1 as the carrier (M) and colloidal hydroxyapatite (R) were separately present, and the particle diameter was varied and the particles were aggregated. Further, it was confirmed that the effect of suppressing the heat loss rate and the degree of crystallinity were lower than G1 of Example 1. Table 5 shows reference values of various characteristics such as the average particle diameter of commercially available hydroxyapatite.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】応用例1〜4、比較応用例1〜7:光拡散
用プラスチックス試験 実施例1〜4の複合体(MR)G1〜G4と、それらの
担体(M)E1〜E4、及び比較例1〜3の複合体(M
R)N1〜N3の熱安定性や粒子の均一性、分散性を調
べるため、メタクリル系樹脂ビーズ(商品名:スミベッ
クスーEXA、住友化学工業株式会社製)100重量部
に、脂肪酸で処理(処理量:5重量%)した実施例1〜
4の複合体(MR)G1〜G4と、それらの担体(M)
E1〜E4、及び比較例1〜3の複合体(MR)N1〜
N3を2重量部配合し、ヘンシェルミキサーで高速60
秒混合攪拌し、十分に分散せしめた。次いで、65mmφ
ベント付き押し出し機及びダイス幅が600mmのコート
ハンガーダイスにより樹脂温度250℃にてシート状に
押出し、ポリッシング三本ロールより厚さ2mmに板状加
工し光拡散板を得た。得られたシートを用いて、下記の
方法で各種物性を測定した。結果を表6に示す。
Application Examples 1 to 4, Comparative Application Examples 1 to 7: Plastics test for light diffusion Composites (MR) G1 to G4 of Examples 1 to 4, their carriers (M) E1 to E4, and comparison Complexes of Examples 1 to 3 (M
R) To examine the thermal stability of N1 to N3 and the uniformity and dispersibility of the particles, 100 parts by weight of methacrylic resin beads (trade name: Sumivex-EXA, manufactured by Sumitomo Chemical Co., Ltd.) are treated with a fatty acid (processing amount). : 5% by weight)
(MR) G1 to G4 and their carriers (M)
E1 to E4 and the composite (MR) N1 of Comparative Examples 1 to 3
Mix 2 parts by weight of N3 and use a Henschel mixer at high speed 60
The mixture was stirred for 2 seconds and sufficiently dispersed. Then, 65mmφ
The resin was extruded into a sheet at a resin temperature of 250 ° C. using an extruder equipped with a vent and a coat hanger die having a die width of 600 mm. Using the obtained sheet, various physical properties were measured by the following methods. Table 6 shows the results.

【0043】<評価方法> 黄色度(Yellow Index) スガ試験機(株)SM−2を使用し、反射光と透過光の
黄色度を求めた。数値が高い程、黄色度が大きいことを
示す。
<Evaluation Method> Yellow Index (Yellow Index) The yellow index of the reflected light and the transmitted light was determined using Suga Test Machine Co., Ltd. SM-2. The higher the value, the higher the yellowness.

【0044】全光線透過率 ASTMD−1003−61Tに準じて、積分球式HT
Rメーターで測定した。
Total light transmittance According to ASTM D-1003-61T, integrating sphere type HT
It was measured with an R meter.

【0045】光拡散率 ゴニオホトメーター((株)村上色彩技術研究所製HR
−100型)で測定した角度20°および70°で透過
した光強度の平均を、角度5°で透過した光強度で除し
た値を百分率として求めた。
Light diffusivity Goniometer (HR, manufactured by Murakami Color Research Laboratory)
The average value of the light intensities transmitted at angles of 20 ° and 70 ° measured at −100 type) was divided by the light intensity transmitted at an angle of 5 ° to obtain a value as a percentage.

【0046】平滑性(表面の凹凸性) 光拡散用板を目視で観察し、下記の基準により5段階評
価を行った。 5点:表面の凹凸が全く認められず平滑である。 4点:表面の一部に微小な凹凸がほとんど認められな
い。 3点:表明全面に微小な凹凸が認められるが、実用上問
題ない。 2点:表面全体面微小な凹凸が認められ、且つ粗大凹凸
が一部存在し実用上問題がある。 1点:表面全面に粗大凹凸がある。
Smoothness (Surface Irregularity) The light diffusing plate was visually observed and evaluated on a 5-point scale according to the following criteria. 5 points: No unevenness on the surface was observed at all, and the surface was smooth. 4 points: Almost no fine irregularities are observed on a part of the surface. 3 points: Fine irregularities are observed on the entire surface of the expression, but there is no practical problem. 2 points: Fine irregularities are observed on the entire surface, and there are some coarse irregularities, which is problematic in practical use. 1 point: Coarse irregularities are present on the entire surface.

【0047】[0047]

【表6】 [Table 6]

【0048】表6より、複合体(MR)G1〜G3は、
光拡散板の黄色度から、担体(M)E1〜E3より飛躍
的に熱安定性が向上し、且つ粒子の均一性や分散性も良
好で、優れた光拡散剤であることが確認された。また、
複合体(MR)G4(ケイ酸カルシウムーリン酸カルシ
ウム系複合体)は、光拡散剤には適していないが、E4
担体(M)より熱安定性が向上し、粒子の均一性や分散
性も保持していることが認められる。一方、複合体(M
R)N1〜N3は、担体(M)であるE1と比較して、
熱安定性の改善が悪く、粒子の均一性や分散性も劣って
いる。
As shown in Table 6, the composites (MR) G1 to G3
From the yellowness of the light diffusion plate, it was confirmed that the heat stability was remarkably improved as compared with the carriers (M) E1 to E3, and the uniformity and dispersibility of the particles were also good, and it was an excellent light diffusion agent. . Also,
Complex (MR) G4 (calcium silicate-calcium phosphate complex) is not suitable as a light diffusing agent, but E4
It is recognized that the thermal stability is improved as compared with the carrier (M), and the uniformity and dispersibility of the particles are maintained. On the other hand, the complex (M
R) N1 to N3 are compared with E1 which is a carrier (M),
The thermal stability is poorly improved, and the uniformity and dispersibility of the particles are also poor.

【0049】応用例5〜8、比較応用例8〜14:徐放
性試験 実施例1〜4の複合体(MR)G1〜G4と、それらの
担体(M)E1〜E4、及び比較例1〜3の複合体(M
R)N1〜N3のそれぞれ5gを、ナフタリンの10%
四塩化炭素溶液に浸漬した後、四塩化炭素を揮発させ、
ナフタリン2gを担持させた徐放体組成物を得た。これ
らの徐放体組成物の徐放性を確認するために、温度30
℃の恒温槽に入れ、一定期間経過後の重量変化より、ナ
フタリンの残存率を測定した。ナフタリン残存率の測定
結果を表7に示す。
Application Examples 5 to 8, Comparative Application Examples 8 to 14: Sustained Release Test Complexes (MR) G1 to G4 of Examples 1 to 4, their carriers (M) E1 to E4, and Comparative Example 1 ~ 3 complex (M
R) 5 g of each of N1 to N3 was added to 10% of naphthalene
After immersion in the carbon tetrachloride solution, the carbon tetrachloride is volatilized,
Thus, a sustained-release composition supporting 2 g of naphthalene was obtained. In order to confirm the sustained-release properties of these sustained-release body compositions, a temperature of 30
The sample was placed in a constant temperature bath at ℃ and the residual rate of naphthalene was measured from the weight change after a certain period of time. Table 7 shows the measurement results of the naphthalene residual ratio.

【0050】[0050]

【表7】 [Table 7]

【0051】表7より、複合体(MR)G1〜G3は、
優れた徐放性があることが確認された。
According to Table 7, the composites (MR) G1 to G3
It was confirmed that there was excellent sustained release.

【0052】応用例9〜12、比較応用例15〜21:
歯科用研磨・補修性試験 実施例1〜4の複合体(MR)G1〜G4と、それらの
担体(M)E1〜E4、及び比較例1〜3の複合体(M
R)N1〜N3について、下記の方法で歯科用研磨力、
歯垢除去能力、及び再石灰化性能の各評価を行った。結
果を表8に示しす。
Application Examples 9 to 12, Comparative Application Examples 15 to 21:
Dental polishing / repairability test Composites (MR) G1 to G4 of Examples 1 to 4, their carriers (M) E1 to E4, and composites (M) of Comparative Examples 1 to 3
R) For N1 to N3, dental polishing power by the following method,
Each evaluation of the plaque removal ability and the remineralization performance was performed. Table 8 shows the results.

【0053】<評価方法> 研磨力 市販のヒドロキシアパタイトを真空脱気を行いながら圧
縮成型した後、焼結して、直径1.5cm、厚さ1cm
の円柱状のヒドロキシアパタイト焼結体を作成した。そ
の表面を800番のサンドペーパーを用いて均一で平滑
な表面になるように研磨し、その後、蒸留水を流しなが
らブラッシングにより粉末を取り除き人工歯を得、この
人工歯を研磨試験に用いた。上記の人工歯をブラッシン
グ装置に固定して、粉体試料1.0gを用いてブラッシ
ング圧250g/cm2 、1500回ブラッシングして人
工歯の重量減少量(研磨量)を研磨力とする。
<Evaluation Method> Abrasive force Commercially available hydroxyapatite was compression molded while performing vacuum degassing, and then sintered to a diameter of 1.5 cm and a thickness of 1 cm.
Of a hydroxyapatite sintered body was prepared. The surface was polished using a No. 800 sandpaper so as to obtain a uniform and smooth surface. Thereafter, powder was removed by brushing while flowing distilled water to obtain an artificial tooth, and this artificial tooth was used in a polishing test. The artificial tooth is fixed on a brushing device, and the tooth is brushed 1500 times with a brushing pressure of 250 g / cm 2 using 1.0 g of a powder sample, and the weight reduction (polishing amount) of the artificial tooth is defined as the polishing force.

【0054】歯垢除去能力 上記研磨力評価で用いたのと同じ人工歯を用いた。人工
歯を24時間口腔内に含み、その後、純水で洗浄して、
ブラッシング装置に固定して、粉体試料1.0gでブラ
ッシング圧250g/cm2 、1500回ブラッシングし
て研磨液中に含まれている歯垢量と、人工歯に付着して
いる歯垢量を求めた。歯垢量は、タンパク量として求め
た。
Dental plaque removing ability The same artificial teeth as those used in the evaluation of the polishing power were used. Including the artificial teeth in the oral cavity for 24 hours, then washing with pure water,
Fixing to a brushing device, brushing with a 1.0 g powder sample at a brushing pressure of 250 g / cm 2 , 1500 times to determine the amount of plaque contained in the polishing solution and the amount of plaque adhering to the artificial tooth. I asked. The amount of plaque was determined as the amount of protein.

【0055】再石灰化性能 上記研磨力評価で用いたのと同じ人工歯を再石灰化性能
試験に用いた長さ12cm、幅4cm、深さ2cmのアクリル
槽の底部に直径1.5cm、深さ0.2cmの人工歯固定用
孔5個を設け、この孔に5個の人工歯を固定した。次
に、粉体試料1gをpH9の0.1Mリン酸緩衝液中に
懸濁させ、この懸濁液5mlを加えて人工歯を浸し、ゴ
ム膜を介して、人工歯上面を1秒間に1回の速度で回転
研磨した。5分後と40分後に人工歯を取り出し、直ち
に大量の蒸留水を滴下しつつ洗浄し、PCSカクテル2
mlを加えて、液体シンチレーションカウンターで人工歯
に結合した放射能を測定した。但し、ヒドロキシアパタ
イトの結合量は、ヒドロキシアパタイトの比放射能5.
4×105CPM /mgとして計算した。
Remineralization performance The same artificial teeth used in the above evaluation of the polishing power were used for the remineralization performance test. The length was 12 cm, the width was 4 cm, and the depth was 2 cm. Five artificial tooth fixing holes having a length of 0.2 cm were provided, and five artificial teeth were fixed in the holes. Next, 1 g of the powder sample was suspended in 0.1 M phosphate buffer at pH 9, 5 ml of this suspension was added, and the artificial tooth was immersed. The rotation was polished at the same speed. After 5 minutes and 40 minutes, the artificial tooth is taken out, washed immediately while dripping a large amount of distilled water, and PCS cocktail 2
ml was added and the radioactivity bound to the artificial tooth was measured with a liquid scintillation counter. However, the binding amount of hydroxyapatite depends on the specific activity of hydroxyapatite.
Calculated as 4 × 10 5 CPM / mg.

【0056】[0056]

【表8】 [Table 8]

【0057】表8より、複合体(MR)G1〜G3は、
優れた研磨及び補修効果があることが確認された。
According to Table 8, the composites (MR) G1 to G3
It was confirmed that there was an excellent polishing and repairing effect.

【0058】[0058]

【発明の効果】叙上のとおり、本発明によれば、担体の
分散性や均一性を保持したまま、熱減量率が抑制され、
熱安定性に優れた複合体が提供される。
As described above, according to the present invention, the heat loss rate is suppressed while maintaining the dispersibility and uniformity of the carrier,
A composite having excellent thermal stability is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で用いた担体E1のSEM写真であ
る。
FIG. 1 is an SEM photograph of a carrier E1 used in Example 1.

【図2】実施例1で得られた複合体G1のSEM写真で
ある。
FIG. 2 is an SEM photograph of a composite G1 obtained in Example 1.

フロントページの続き (72)発明者 青山 光延 兵庫県明石市魚住町西岡1455番地 丸尾カ ルシウム株式会社内 (72)発明者 柴田 洋志 兵庫県明石市魚住町西岡1455番地 丸尾カ ルシウム株式会社内 (72)発明者 源吉 嗣郎 兵庫県明石市魚住町西岡1455番地 丸尾カ ルシウム株式会社内 Fターム(参考) 4C083 AB292 CC41 EE36 EE37 EE50 FF01 4G069 AA03 BB14A BB14B BB16C BC09A BC09B BC09C BD02C BD04C BD07A BD07B DA05 EB10 Continuing on the front page (72) Inventor Mitsunobu Aoyama 1455 Nishioka, Uozumi-cho, Akashi-shi, Hyogo Prefecture Inside Maruo Carsium Co., Ltd. ) Inventor Setsuro Genyoshi 1455 Nishioka, Uozumi-cho, Akashi-shi, Hyogo F-term (reference) in Maruo Calcium Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 多孔質無機系物質からなる担体(以下、
担体(M)と記す。)にリン酸カルシウム系化合物
(R)を担持せしめてなり、且つ下記の式(a)〜
(h)を満足することを特徴とする多孔質無機系複合体
(以下、複合体(MR)と記す。): (a)0.1≦Dmr≦30(μm) (b)1≦Dmr/Dm≦5 (c)3≦Smr≦300(m2/g) (d)0.01≦Smr/Sm≦1 (e)0.5≦Tmr1≦15(重量%) (f)0.01≦Tmr1/Tm1<1 (g)0.3≦Tmr2≦10(重量%) (h)0.01≦Tmr2/Tm2<1 但し、 Dmr :複合体(MR)を走査型電子顕微鏡(SE
M)写真により測定した粒子の平均粒子径(μm) Dm :担体(M)を走査型電子顕微鏡(SEM)写
真により測定した粒子の平均粒子径(μm) Smr :複合体(MR)の窒素吸着法によるBET比
表面積(m2/g) Sm :担体(M)の窒素吸着法によるBET比表面
積(m2/g) Tmr1:複合体(MR)の500℃における熱減量率
(重量%) Tm1 :担体(M)の500℃における熱減量率(重
量%) Tmr2:複合体(MR)の200℃における熱減量率
(重量%) Tm2 :担体(M)の200℃における熱減量率(重
量%)
A carrier comprising a porous inorganic material (hereinafter referred to as a carrier)
It is described as a carrier (M). ) Is loaded with a calcium phosphate compound (R), and the following formulas (a) to (a)
A porous inorganic composite characterized by satisfying (h) (hereinafter referred to as composite (MR)): (a) 0.1 ≦ Dmr ≦ 30 (μm) (b) 1 ≦ Dmr / Dm ≦ 5 (c) 3 ≦ Smr ≦ 300 (m 2 / g) (d) 0.01 ≦ Smr / Sm ≦ 1 (e) 0.5 ≦ Tmr1 ≦ 15 (% by weight) (f) 0.01 ≦ Tmr1 / Tm1 <1 (g) 0.3 ≦ Tmr2 ≦ 10 (% by weight) (h) 0.01 ≦ Tmr2 / Tm2 <1 where Dmr: The composite (MR) is scanned with a scanning electron microscope (SE).
M) Average particle diameter (μm) of particles measured by photograph Dm: Average particle diameter of particles (μm) measured by scanning electron microscope (SEM) photograph of carrier (M) Smr: Nitrogen adsorption of composite (MR) BET specific surface area according to the method (m 2 / g) Sm: BET specific surface area according to the nitrogen adsorption method of the carrier (M) (m 2 / g) Tmr1: Heat loss (weight%) at 500 ° C. of the composite (MR) Tm1 : Heat loss at 500 ° C. (% by weight) of carrier (M) Tmr2: Heat loss at 200 ° C. (% by weight) of composite (MR) Tm2: Heat loss at 200 ° C. of carrier (M) (% by weight) )
【請求項2】 担体(M)と複合体(MR)が、下記の
式(i)〜(l)を満足することを特徴とする請求項1
記載の複合体(MR): (i)1≦αm≦5 但し、α=dm50/Dm (j)1≦αmr≦5 但し、α=dmr50/Dmr (k)0≦βm≦2 但し、β=(dm90−dm1
0)/dm50 (l)0≦βmr≦2 但し、β=(dmr90−dm
r10)/dmr50 但し αm 、αmr :分散係数 dm50 、dmr50:マイクロトラックFRAレーザー式粒
度分布計により測定した粒子の50%平均粒子径(μm
) βm 、βmr :シャープネス dm90 、dmr90:マイクロトラックFRAレーザー式粒
度分布計により測定した粒子のふるい通過側累計90%
粒子径(μm ) dm10 、dmr10:マイクロトラックFRAレーザー式粒
度分布計により測定した粒子のふるい通過側累計10%
粒子径(μm )
2. The carrier (M) and the composite (MR) satisfy the following formulas (i) to (1).
Composite (MR) described: (i) 1 ≦ αm ≦ 5, where α = dm50 / Dm (j) 1 ≦ αmr ≦ 5, where α = dmr50 / Dmr (k) 0 ≦ βm ≦ 2, where β = (Dm90-dm1
0) / dm50 (l) 0 ≦ βmr ≦ 2 where β = (dmr90−dm
r10) / dmr50 where αm, αmr: dispersion coefficient dm50, dmr50: 50% average particle diameter (μm) of particles measured by a microtrack FRA laser type particle size distribution meter
Βm, βmr: Sharpness dm90, dmr90: Cumulative 90% of the particles passing through the sieve measured by a Microtrac FRA laser type particle size distribution meter.
Particle size (μm) dm10, dmr10: Total 10% of particles passing through the sieve measured by a Microtrac FRA laser type particle size distribution meter
Particle size (μm)
【請求項3】 複合体(MR)が、下記の式を満足する
ことを特徴とする請求項1又は2記載の複合体(M
R): (m)3≦Smr/S1≦125 但し、 S1:複合体(MR)の球換算における理論比表面積値
(m2/g) ※理論比表面積値は、下記の計算式から算出される。 (1/w)/(4πr3 /3)×4πr2 =3/wr
(m2/g) 但し、 w:粒子の真比重(JIS K5101に準ずる。) r:走査型電子顕微鏡(SEM)写真で測定した平均粒
子半径(μm)
3. The composite (M) according to claim 1, wherein the composite (MR) satisfies the following formula:
R): (m) 3 ≦ Smr / S1 ≦ 125 where S1: theoretical specific surface area value (m 2 / g) in sphere equivalent of composite (MR) * Theoretical specific surface area value is calculated from the following formula You. (1 / w) / (4πr 3/3) × 4πr 2 = 3 / wr
(M 2 / g) where, w: true specific gravity of particles (according to JIS K5101) r: average particle radius (μm) measured by a scanning electron microscope (SEM) photograph
【請求項4】 リン酸カルシウム系化合物(R)が、ヒ
ドロキシアパタイトを主成分とすることを特徴とする請
求項1〜3のいずれか1項に記載の複合体(MR)。
4. The composite (MR) according to claim 1, wherein the calcium phosphate compound (R) contains hydroxyapatite as a main component.
【請求項5】 担体(M)が、多孔質リン酸カルシウム
系物質であることを特徴とする請求項1記載の複合体
(MR)。
5. The composite (MR) according to claim 1, wherein the carrier (M) is a porous calcium phosphate-based substance.
【請求項6】 担体(M)が、ヒドロキシアパタイトを
主成分とすることを特徴とする請求項1〜5のいずれか
1項に記載の複合体(MR)。
6. The composite (MR) according to claim 1, wherein the carrier (M) contains hydroxyapatite as a main component.
【請求項7】 担体(M)水懸濁液中において、水溶性
リン酸塩とアルカリ性カルシウム化合物とを反応させて
リン酸カルシウム系化合物(R)を合成することによ
り、担体(M)にリン酸カルシウム系化合物(R)を担
持せしめることを特徴とする請求項1〜6項のいずれか
1項に記載の複合体(MR)の製造方法。
7. A calcium phosphate compound (R) is synthesized by reacting a water-soluble phosphate with an alkaline calcium compound in an aqueous suspension of the carrier (M), whereby the calcium phosphate compound is added to the carrier (M). The method for producing a composite (MR) according to any one of claims 1 to 6, wherein (R) is supported.
【請求項8】 アルカリ性カルシウム化合物が炭酸カル
シウムであることを特徴とする請求項7記載の複合体
(MR)の製造方法。
8. The method for producing a composite (MR) according to claim 7, wherein the alkaline calcium compound is calcium carbonate.
JP10372517A 1998-12-28 1998-12-28 Porous inorganic composite and method for producing the same Expired - Fee Related JP3072759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10372517A JP3072759B2 (en) 1998-12-28 1998-12-28 Porous inorganic composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10372517A JP3072759B2 (en) 1998-12-28 1998-12-28 Porous inorganic composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000203815A true JP2000203815A (en) 2000-07-25
JP3072759B2 JP3072759B2 (en) 2000-08-07

Family

ID=18500581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10372517A Expired - Fee Related JP3072759B2 (en) 1998-12-28 1998-12-28 Porous inorganic composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3072759B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093895A (en) * 2001-09-27 2003-04-02 Fukui Prefecture Photocatalyst carrying organic polymer material and method for manufacturing the same
JP2005518327A (en) * 2002-02-26 2005-06-23 キム,ヒュン−マン Calcium phosphate colloids, dots, islands, thin films or granules, and their preparation
RU2475461C2 (en) * 2011-06-21 2013-02-20 Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН Method of producing porous ceramic from hydroxyapatite having antimicrobial activity
CN111384021A (en) * 2018-12-28 2020-07-07 旭化成株式会社 Semiconductor device and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093895A (en) * 2001-09-27 2003-04-02 Fukui Prefecture Photocatalyst carrying organic polymer material and method for manufacturing the same
JP2005518327A (en) * 2002-02-26 2005-06-23 キム,ヒュン−マン Calcium phosphate colloids, dots, islands, thin films or granules, and their preparation
RU2475461C2 (en) * 2011-06-21 2013-02-20 Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН Method of producing porous ceramic from hydroxyapatite having antimicrobial activity
CN111384021A (en) * 2018-12-28 2020-07-07 旭化成株式会社 Semiconductor device and method for manufacturing the same
CN111384021B (en) * 2018-12-28 2024-04-16 旭化成株式会社 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP3072759B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
RU2295948C2 (en) Amorphous silicon dioxide
JP3562878B2 (en) Petal-like porous hydroxyapatite microparticles and method for producing the same
CA2173465C (en) Spheroidal aggregate of platy synthetic hydrotalcite
KR101823170B1 (en) Composite inorganic particles and methods of making and using the same
US7981513B2 (en) Dental filler
EP2411329B1 (en) Natural amorphous silica filler products
JP3444670B2 (en) Method for producing granular amorphous silica
CN103313940A (en) Bismuth oxyhalide compounds useful as photocatalysts
JP2004059421A (en) Silica coated zinc oxide-containing powder, organic polymer composition containing the same and molded article
EP2002819B1 (en) Dental filling material, process for producing the same and dental composite material
CN1760121A (en) method for synthesizing Nano hydroxyapatite
JP3072759B2 (en) Porous inorganic composite and method for producing the same
JP4233324B2 (en) Optical functional powder and its use
JPH08209029A (en) Spherical delustering agent for coating material and coating material composition
KR100658377B1 (en) Additive for synthetic resin and synthetic resin composition
US6803023B1 (en) Composite structure for deodorization or wastewater treatment
WO2014021021A1 (en) Ultraviolet shielding material and method for producing ultraviolet shielding material
JP5177333B2 (en) Fine orange pigment, paint and resin composition using the fine orange pigment
JP2014025018A (en) Coating material and method for manufacturing the same
JP3746603B2 (en) Abrasive comprising synthetic amorphous titanium-bonded silicate and method for producing the same
JP2013203563A (en) Method for producing hydroxyapatite fine particle, and hydroxyapatite fine particle, and also dispersion thereof
JP2013203880A (en) Coating composition and coated product coated therewith
JPH10182491A (en) Petal-like porous antimicrobial agent and antimicrobial composition
JP3763987B2 (en) Method for producing aluminosilica composite particles
JP3862797B2 (en) Dental polishing / repairing agent and dentifrice

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000425

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140602

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees