JP2000199015A - Production of grain oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JP2000199015A
JP2000199015A JP11071997A JP7199799A JP2000199015A JP 2000199015 A JP2000199015 A JP 2000199015A JP 11071997 A JP11071997 A JP 11071997A JP 7199799 A JP7199799 A JP 7199799A JP 2000199015 A JP2000199015 A JP 2000199015A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
temperature
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11071997A
Other languages
Japanese (ja)
Other versions
JP3481491B2 (en
Inventor
Tomoji Kumano
知二 熊野
Nobunori Fujii
宣憲 藤井
Katsuro Kuroki
克郎 黒木
Koji Yamazaki
幸司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP07199799A priority Critical patent/JP3481491B2/en
Publication of JP2000199015A publication Critical patent/JP2000199015A/en
Application granted granted Critical
Publication of JP3481491B2 publication Critical patent/JP3481491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a grain oriented silicon steel sheet small in primary film defects, free from the ununiformity of secondary recrystallization and having good magnetic properties by properly using primary and secondary inhibitors to evade slab superhigh temp. heating. SOLUTION: A slab contg. 0.025 to 0.10% C and 2.5 to 4.0% Si, furthermore contg. acid soluble Al, Mn, Cu, N and 0.008 to 0.05% Seq, where Seq=S+0.406 Se is reheated at 1050 to <1350 deg.C and is subjected to hot rolling to form into a hot rolled steel strip. This hot rolled steel strip is, if required, annealed and is subjected to cold rolling for one or >= two times including process annealing to control its sheet thickness into the final one, which is subjected to decarburizing annealing, after the decarburizing annealing, the average grain size of primarily recrystallized grains after the completion of the decarburizing annealing is controlled to 7 to <18 μm, till the start of secondary recrystallization in finish annealing, the steel sheet is subjected to nitriding treatment, is coated with a separation agent for annealing essentially consisting of MgO and is subjected to final finish annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主にトランス等の
鉄芯として使用される一方向性電磁鋼板の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet mainly used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板の製造において、スラ
ブを1350℃から最大では1450℃の超高温度に加
熱し、そしてスラブ全体を通して一様に加熱(均熱)す
るために十分な時間スラブをその温度に保持する方法が
広く知られている。これはMnS、AIN等を固溶させ
てインヒビターとして機能させるためのものであるが、
この方法では、スラブの超高温度での加熱が必要であ
り、実生産において様々な問題を内在している。例え
ば、スラブ表層が溶解し鉱滓となり加熱炉のメンテナ
ンスが大変である、所定熱延温度の確保が困難であ
る、熱延後の鋼帯に巨大なエッジクラックが発生し歩
留まりが低い等である。
BACKGROUND OF THE INVENTION In the production of grain-oriented electrical steel sheets, a slab is heated from 1350.degree. C. to an ultra-high temperature of 1450.degree. C. at the maximum, and for a period of time sufficient to uniformly heat (soak) the entire slab. A method for maintaining the temperature at that temperature is widely known. This is for dissolving MnS, AIN, etc. in solid solution to function as an inhibitor.
This method requires heating the slab at an extremely high temperature, and has various problems inherent in actual production. For example, the surface layer of the slab is melted and turned into slag, which makes maintenance of the heating furnace difficult, that it is difficult to maintain a predetermined hot rolling temperature, that a huge edge crack occurs in the steel strip after hot rolling and that the yield is low.

【0003】この超高温スラブ加熱を避けるための技術
が種々提案されているが、これらは2つに分類できる。
[0003] Various techniques have been proposed for avoiding this ultra-high-temperature slab heating, but these can be classified into two types.

【0004】先ず第一の技術は、特願昭57−1650
66号公報、特開平5−112827号公報、特開平9
−118964号公報などに開示されているように、A
INをインヒビターとして用い、スラブ加熱温度を12
80℃未満で行い、脱炭焼鈍後二次再結晶開始までに窒
化する方法の組み合わせである。このような方法におい
ては、例えば特開平2−182866に示されるように
脱炭焼鈍後の一次再結晶粒の平均粒径を一定範囲、通常
18〜35μmの範囲に制御することが、二次再結晶を
良好に行わせる上で非常に重要である。しかしながら、
このような範囲への調整方法として、主に脱炭焼鈍の温
度を調整しており、脱炭焼鈍後の酸化層の構成が工業生
産での不可避的変動に加えて変動せざるを得ない。ひい
ては、このために、MgOを主体として鋼板表面のSi
2 と反応させて形成される一次皮膜(フォルステライ
トを主成分しスピネルを含むグラス皮膜)形成に障害が
生じることがある。または、障害を生じなくするために
はMgOの成分規制の厳格化等、一次皮膜形成のための
諸条件の規制が厳しく求められる。また、脱炭酸化層の
成分構成が変化するため窒化条件も一定でなくなり、結
果として窒化量も変動し二次再結晶が不安定となること
がある。特に特開平9−118964号公報に開示され
た方法では、Mnを多量に添加することで鋼板の固有抵
抗を増加させ鉄損を向上するという効果を得ることを目
的としているが、かえって一次皮膜に欠陥が生じ易く工
業生産に適していない。
The first technique is disclosed in Japanese Patent Application No. 57-1650.
No. 66, Japanese Unexamined Patent Application Publication No. 5-112827, Japanese Unexamined Patent Application Publication No.
As disclosed in JP-A-118964 and the like,
IN was used as an inhibitor and the slab heating temperature was 12
This is a combination of methods in which the temperature is lower than 80 ° C. and nitriding is performed after decarburization annealing and before the start of secondary recrystallization. In such a method, for example, as shown in Japanese Patent Application Laid-Open No. 2-182866, controlling the average grain size of primary recrystallized grains after decarburizing annealing to a certain range, usually in the range of 18 to 35 μm, requires a secondary recrystallization. It is very important for good crystallization. However,
As a method of adjusting to such a range, the temperature of the decarburizing annealing is mainly adjusted, and the configuration of the oxide layer after the decarburizing annealing has to be changed in addition to the inevitable change in industrial production. Consequently, for this reason, the main component of MgO is Si
The formation of a primary film (a glass film containing forsterite as a main component and containing spinel) formed by reacting with O 2 may be hindered. Alternatively, in order to prevent the occurrence of an obstacle, it is required to strictly regulate the conditions for forming the primary film, such as strict regulation of the MgO component. In addition, the composition of the decarboxylation layer changes, so that the nitriding conditions are not constant. As a result, the amount of nitriding also varies, and secondary recrystallization may become unstable. In particular, the method disclosed in Japanese Patent Application Laid-Open No. Hei 9-118964 aims to obtain the effect of increasing the specific resistance of the steel sheet and improving the iron loss by adding a large amount of Mn. Defects easily occur and are not suitable for industrial production.

【0005】第二の技術は、特開平6−322443号
公報等に開示されているように、インヒビターとしてC
x S(x=1.8、又は2)を用い、スラブ加熱温度
をMnSの溶解温度以下Cux Sの溶解温度以上とする
ものである。この方法の特徴は、第一の方法における窒
化処理などの付加的な工程を不要とすることにあるが、
そもそも、Cux Sは二次再結晶を制御するためのイン
ヒビタ−としては公知であるが、集合組織が弱い最終冷
延率80%を超える高磁束密度一方向性電磁鋼板の製造
には適していない(鉄と鋼 p.2049,N0.1
5,Vol.70,N0.1984)。
[0005] The second technique is to use a C-type inhibitor as disclosed in Japanese Patent Application Laid-Open No. 6-322443.
u x S (x = 1.8, or 2) using the one in which the slab heating temperature is more than melting temperature of the melting temperature or less Cu x S of MnS. A feature of this method is that an additional step such as a nitriding treatment in the first method is not required.
In the first place, Cu x S is known as an inhibitor for controlling secondary recrystallization, but is suitable for producing a high magnetic flux density unidirectional electrical steel sheet having a weak texture exceeding a final cold rolling reduction of 80%. No (iron and steel p.2049, N0.1
5, Vol. 70, N 0.1984).

【0006】[0006]

【発明が解決しようとする課題】本発明は上記2つの技
術に関して双方の欠点を補い磁気特性が優れた一方向性
電磁鋼板の製造を安定かつ容易に実施しうることを目的
とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to stably and easily produce a grain-oriented electrical steel sheet having excellent magnetic properties by compensating for both of the above two techniques. .

【0007】[0007]

【課題を解決するための手段】本発明の要旨は以下のと
おりである。
The gist of the present invention is as follows.

【0008】(1)重量%で、C:0.025〜0.1
0%、Si:2.5〜4.0%、酸可溶性Al:0.0
10〜0.035%、N:0.0020〜0.010
%、S及びSeをSeq=S+0.406Seで0.0
08〜0.05%、Mn:0.02〜0.20%、残部
がFe及び不可避的不純物からなるスラブを1050℃
以上1350℃未満の温度で再加熱し、熱間圧延を施し
て熱延鋼帯とし、この熱延鋼帯を焼鈍しもしくは焼鈍せ
ず、引き続き1回もしくは中間焼鈍を挾む2回以上の冷
間圧延を行って最終板厚とし、脱炭焼鈍を行い、MgO
を主成分とする焼鈍分離剤を塗布して最終仕上げ焼鈍を
施す一方向性電磁鋼板の製造方法において、脱炭焼鈍
後、仕上焼鈍の二次再結晶開始までの間に鋼板に窒化処
理を施すことを特徴とする磁気特性に優れた一方向性電
磁鋼板の製造方法。
(1) By weight%, C: 0.025 to 0.1
0%, Si: 2.5 to 4.0%, acid-soluble Al: 0.0
10 to 0.035%, N: 0.0020 to 0.010
%, S and Se are 0.0 by Seq = S + 0.406Se.
08-0.05%, Mn: 0.02-0.20%, balance is 1050 ° C. slab consisting of Fe and unavoidable impurities
The steel sheet is reheated at a temperature of less than 1350 ° C., hot-rolled to form a hot-rolled steel strip, and the hot-rolled steel strip is not annealed or annealed, and is then cooled once or twice or more with intermediate annealing. Cold rolling to final thickness, decarburizing annealing, MgO
In a method for producing a grain-oriented electrical steel sheet in which an annealing separating agent containing as a main component is applied and a final finish annealing is performed, after the decarburizing annealing, the steel sheet is subjected to a nitriding treatment before the start of the secondary recrystallization of the finish annealing. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.

【0009】(2)前記脱炭焼鈍完了後の一次再結晶粒
の平均粒径を7μm 以上18μm 未満とすることを特徴
とする請求項1記載の磁気特性に優れた一方向性電磁鋼
板の製造方法。
(2) The production of a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the average grain size of the primary recrystallized grains after completion of the decarburizing annealing is set to 7 μm or more and less than 18 μm. Method.

【0010】(3)前記スラブの成分としてさらにC
u:0.01〜0.30%を含有することを特徴とする
請求項1又は2記載の磁気特性に優れた一方向性電磁鋼
板の製造方法。
(3) As a component of the slab, C is further added.
3. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein u: 0.01 to 0.30% is contained.

【0011】(4)前記脱炭焼鈍後で、ストリップ走行
状態下で水素、窒素、アンモニアの混合ガス中で窒化処
理を行い、鋼板の窒素増量を0.001〜0.020重
量%とすることを特徴とする請求項1〜3項のいずれか
の項に記載の磁気特性に優れた一方向性電磁鋼板の製造
方法。
(4) After the decarburizing annealing, a nitriding treatment is performed in a mixed gas of hydrogen, nitrogen and ammonia while the strip is running to increase the nitrogen content of the steel sheet to 0.001 to 0.020% by weight. The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 3, which is excellent in magnetic properties.

【0012】(5)前記脱炭焼鈍における昇温開始から
650〜950℃までの加熱速度を100℃/sec以
上とすることを特徴とする請求項1〜4項のいずれかの
項に記載の磁気特性に優れた一方向性電磁鋼板の製造方
法。
(5) The method according to any one of claims 1 to 4, wherein a heating rate from the start of temperature rise to 650 to 950 ° C in the decarburizing annealing is 100 ° C / sec or more. A method for producing unidirectional electrical steel sheets with excellent magnetic properties.

【0013】(6)前記熱間圧延における鋼帯の温度を
以下の範囲に調整することを特徴とする請求項1〜5項
のいずれかの項に記載の磁気特性に優れた一方向性電磁
鋼板の製造方法。
(6) The unidirectional electromagnetic member according to any one of claims 1 to 5, wherein the temperature of the steel strip in the hot rolling is adjusted to the following range. Steel plate manufacturing method.

【0014】850+2500×Seq+400×Mn
≦FOT(℃)≦1100+3000×Seq+800
×Mn≦1350℃ ただし、FOT:仕上げ入り口
温度(℃) 800+2500×Seq+400×Mn≦FT(℃)
≦1050+3000×Seq+800×Mn≦135
0℃ ただし、FT:仕上げ出口温度(℃) (7)前記熱延鋼帯の焼鈍条件の最高温度を950〜1
150℃、焼鈍時間を30秒以上600秒以下とするこ
とを特徴とする請求項1〜6項のいずれかの項に記載の
磁気特性に優れた一方向性電磁鋼板の製造方法。
850 + 2500 × Seq + 400 × Mn
≤ FOT (° C) ≤ 1100 + 3000 x Seq + 800
× Mn ≦ 1350 ° C., where FOT: Finishing entrance temperature (° C.) 800 + 2500 × Seq + 400 × Mn ≦ FT (° C.)
≦ 1050 + 3000 × Seq + 800 × Mn ≦ 135
0 ° C. However, FT: Finishing exit temperature (° C.) (7) The maximum temperature of the hot-rolled steel strip in the annealing condition was set to 950 to 1
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 6, wherein the annealing time is 150 ° C and the annealing time is 30 seconds or more and 600 seconds or less.

【0015】(8)前記スラブの成分として、更に、S
n、Sb、Pの少なくとも1種を0.02〜0.30%
含有することを特徴とする請求項1〜7項のいずれかの
項に記載の磁気特性に優れた一方向性電磁鋼板の製造方
法。
(8) As a component of the slab, S
0.02 to 0.30% of at least one of n, Sb, and P
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 7, characterized in that it is contained.

【0016】(9)前記スラブの成分として、更に、C
rを0.02〜0.30%含有することを特徴とする
(1)〜(8)のいずれかに記載の磁気特性に優れた一
方向性電磁鋼板の製造方法。
(9) As a component of the slab, further, C
r. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of (1) to (8), wherein r is contained in an amount of 0.02 to 0.30%.

【0017】(10)前記スラブの成分として、更に、
Ni:0. 03〜0. 30%含有することを特徴とする
(1)〜(9)のいずれかに記載の磁気特性に優れた一
方向性電磁鋼板の製造方法。
(10) As a component of the slab,
Ni: The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of (1) to (9), wherein the Ni content is 0.03 to 0.30%.

【0018】(11)前記スラブの成分として更に、M
o、Cdの少なくとも1種を0.008〜0.3%含有
することを特徴とする(1)〜(10)のいずれかの項
に記載の磁気特性に優れた一方向性電磁鋼板の製造方
法。
(11) As a component of the slab, M
Production of a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of (1) to (10), wherein at least one of o and Cd is contained in an amount of 0.008 to 0.3%. Method.

【0019】(12)前記冷間圧延における最終冷延率
を80〜92%とすることを特徴とする(1)〜(1
1)のいずれかに記載の磁気特性に優れた一方向性電磁
鋼板の製造方法。
(12) The final cold rolling rate in the cold rolling is set to 80 to 92% (1) to (1).
The method for producing a grain-oriented electrical steel sheet excellent in magnetic properties according to any one of 1) to 1).

【0020】(13)前記冷間圧延における最終冷間圧
延の少なくとも1パスにおいて、鋼帯を100〜300
℃の温度範囲に1分以上保つことを特徴とする(1)〜
(12)のいずれかに記載の磁気特性に優れた一方向性
電磁鋼板の製造方法。
(13) In at least one pass of the final cold rolling in the cold rolling, the steel strip is 100 to 300
(1) to characterized in that the temperature is maintained in a temperature range of ° C for 1 minute or more.
(12) The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any of (12).

【0021】[0021]

【発明の実施の形態】以下本発明について詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0022】本発明の最大の特徴は、MnSを二次再結
晶の主なインヒビターとしないことにより従来より低温
スラブ加熱を達成する一方向性電磁鋼板の製造方法にお
いて、一次再結晶粒径を制御する一次インヒビターとし
てMnS(又はMnSe)、Cux S(又はCuSe)
などを機能せしめ、二次再結晶を制御する二次インヒビ
ターとして、脱炭焼鈍後仕上焼鈍の二次再結晶開始まで
の間の窒化処理により形成される窒化物(AIN、Si
3 4 、Mn等の単独又は複合析出物)を機能せしめ、
この2つのインヒビターを効果的に機能させることで磁
気特性の良好な一方向性電磁鋼板を製造することにあ
る。即ち本発明の目的は、方向性電磁鋼板の製造に関し
て大きな役割を有するインヒビターの機能発揮段階を冶
金的に分離し、それぞれ異なる物質を用いてその機能を
行わしめることにある。
The most important feature of the present invention is that the primary recrystallization grain size is controlled in a method for producing a grain-oriented electrical steel sheet which achieves a lower temperature slab heating than before by not using MnS as a main inhibitor of secondary recrystallization. (Or MnSe), Cu x S (or CuSe) as primary inhibitors
As a secondary inhibitor for controlling secondary recrystallization, nitride (AIN, Si) formed by nitriding treatment after decarburization annealing until the start of secondary recrystallization in finish annealing
3 N 4 , Mn, etc., alone or in combination.
It is an object of the present invention to produce a grain-oriented electrical steel sheet having good magnetic properties by effectively operating these two inhibitors. That is, an object of the present invention is to separate metallurgically the stages of functioning of an inhibitor, which plays a large role in the production of grain-oriented electrical steel sheets, and to perform the functions using different substances.

【0023】方向性電磁鋼板の製造において一次再結晶
が行われる脱炭焼鈍の温度は、一般に930℃以下と低
いので、この段階では従来法の高温熱間圧延で形成させ
る強力なインヒビターは必要ない。本発明ではこの一次
インヒビターとして硫化物、セレン化物を用いるため、
一次再結晶粒の温度依存性が極めて小さく、一次再結晶
焼鈍(実際的には脱炭焼鈍)温度を大きく変える必要が
ない。この結果、一次酸化層の構成組成および引き続く
窒化処理における窒化量が著しく安定し、一次皮膜欠陥
が激減し、また二次再結晶の不均一性も解消して安定的
な工業生産が可能になる。
In the production of grain-oriented electrical steel sheets, the temperature of decarburization annealing at which primary recrystallization is performed is generally as low as 930 ° C. or less, so that a strong inhibitor formed by conventional high-temperature hot rolling is not required at this stage. . In the present invention, since sulfide and selenide are used as the primary inhibitor,
The temperature dependence of the primary recrystallized grains is extremely small, and there is no need to greatly change the primary recrystallization annealing (actually, decarburization annealing) temperature. As a result, the constituent composition of the primary oxide layer and the amount of nitridation in the subsequent nitriding treatment are remarkably stabilized, the primary film defects are drastically reduced, and the non-uniformity of the secondary recrystallization is eliminated, thereby enabling stable industrial production. .

【0024】一方、二次再結晶において磁気特性を良好
たらしめる先鋭化されたGoss方位を得るためには、
硫化物、セレン化物に加えて高温まで安定なインヒビタ
ーが必要であり、本発明ではこれを窒化処理によりAl
Nを形成させることで確保するのである。
On the other hand, in order to obtain a sharpened Goss orientation which improves magnetic properties in secondary recrystallization,
In addition to sulfides and selenides, inhibitors that are stable up to high temperatures are required.
It is ensured by forming N.

【0025】次に本発明におけるスラブの成分範囲の限
定理由について述べる。
Next, the reasons for limiting the component range of the slab in the present invention will be described.

【0026】Cは、0.025%より少ないと一次再結
晶集合組織が適切でなくなり、0.10%を超えると脱
炭が困難になり工業生産に適していない。
If the content of C is less than 0.025%, the primary recrystallization texture becomes inappropriate, and if it exceeds 0.10%, decarburization becomes difficult and it is not suitable for industrial production.

【0027】Siは、2.5%より少ないと良好な鉄損
が得られず、4.0%を超えると冷延が極めて困難とな
り工業生産に適していない。
If the content of Si is less than 2.5%, good iron loss cannot be obtained. If the content of Si exceeds 4.0%, cold rolling becomes extremely difficult and is not suitable for industrial production.

【0028】Mnは、0.02%より少ない熱延鋼帯で
は割れが発生しやすく、歩留まりが低下する。一方0.
20%を超えるとMnS、MnSeが多くなり、固溶の
程度が場所により不均一となり実工業生産では安定生産
に問題が生じる。
[0028] In a hot-rolled steel strip containing less than 0.02% of Mn, cracks are liable to occur and the yield is reduced. On the other hand, 0.
If it exceeds 20%, MnS and MnSe increase, the degree of solid solution becomes uneven depending on the location, and there is a problem in stable production in actual industrial production.

【0029】SおよびSeは、Mn、Cuと結合して主
に一次インヒビターを形成するが、Seq=S+0.4
06×Seが0.008%より少ないと、一次インヒビ
ター強度が弱すぎて一次再結晶を抑制できなくなる。こ
の結果脱炭焼鈍温度に対する一次再結晶粒径変動が大き
くなり、脱炭焼鈍の温度を成分に応じて変更させる必要
が生じる。一方、Seqが0.050%を超えると、イ
ンヒビター強度が強くなりすぎて一次再結晶が不十分と
なり、二次再結晶不良を生じる。
S and Se combine with Mn and Cu to form a primary inhibitor, but Seq = S + 0.4
If 06 × Se is less than 0.008%, the primary inhibitor strength is too weak to prevent primary recrystallization. As a result, the primary recrystallized grain size varies greatly with the decarburizing annealing temperature, and it is necessary to change the decarburizing annealing temperature according to the components. On the other hand, if the Seq exceeds 0.050%, the inhibitor strength becomes too strong, the primary recrystallization becomes insufficient, and poor secondary recrystallization occurs.

【0030】AlはNと結合してAlNを形成し、主に
二次インヒビターとして機能する。このAlNは、窒化
前に形成されるものと窒化後高温焼鈍時に形成されるも
のがあり、この両方のAlNの量確保のために0.01
0〜0.035%必要である。この範囲を外れると一次
再結晶粒径の制御が困難になり、安定な二次再結晶が行
われない。
Al combines with N to form AlN, and mainly functions as a secondary inhibitor. This AlN is formed before nitriding or during high-temperature annealing after nitriding.
0-0.035% is required. Outside this range, it is difficult to control the primary recrystallization particle size, and stable secondary recrystallization is not performed.

【0031】上述の如く本発明では主に硫化物、セレン
化物で一次再結晶粒を制御しているが、スラブに含まれ
るAlNも一次再結晶粒を制御するために必要なもので
あり、Nが0.0020未満では一次再結晶粒径の制御
が困難になる。一方Nが0.010%を超えると鋼板に
膨れ(ブリスター)を生じる表面欠陥となるため制限さ
れる。このためスラブに含まれるNだけでは二次再結晶
を制御するには足りないため、後で述べる窒化処理が必
要となるのである。
As described above, in the present invention, the primary recrystallized grains are controlled mainly by sulfides and selenides. However, AlN contained in the slab is also necessary for controlling the primary recrystallized grains. Is less than 0.0020, it becomes difficult to control the primary recrystallized grain size. On the other hand, if N exceeds 0.010%, it becomes a surface defect that causes swelling (blistering) of the steel sheet, which is limited. For this reason, only N contained in the slab is not enough to control the secondary recrystallization, and a nitriding treatment described later is required.

【0032】Cuは、スラブを1050℃以上で加熱す
る本発明の条件で熱延すると、SやSeとともに微細な
析出物を形成し、一次インヒビター効果を発揮する。ま
た、この析出物はAlNの分散をより均一にする析出核
ともなり二次インヒビターの役割も演じ、この効果が二
次再結晶を良好ならしめる。0.02%より少ないと上
記効果が減じ安定生産が難しくなり、0.3%を超える
と上記効果が飽和するとともに、熱延時に「カッパーヘ
ゲ」なる表面疵の原因になる。
When hot rolling is performed under the conditions of the present invention in which the slab is heated at 1050 ° C. or higher, Cu forms fine precipitates together with S and Se, and exhibits a primary inhibitory effect. The precipitate also serves as a precipitation nucleus for making the dispersion of AlN more uniform, and also plays a role of a secondary inhibitor, and this effect makes secondary recrystallization favorable. If the amount is less than 0.02%, the above effects are reduced and stable production becomes difficult. If the amount is more than 0.3%, the above effects are saturated, and a surface flaw such as "copper heap" occurs during hot rolling.

【0033】また、Sn、Sb、Pは一次再結晶集合組
織の改善に有効である。またCrはフォルステライト皮
膜(一次皮膜、グラス皮膜)形成に有効である。これら
の元素の含有量が前記範囲より少ないと改善効果が少な
く、また、前記範囲を超えると安定したフォルステライ
ト皮膜(一次皮膜、グラス皮膜)形成が困難となる。N
iは、一次、二次インヒビターとしての析出物の均一分
散に著しい効果があるので、Niを添加すると磁気特性
は更に良好且つ安定する。0.02%より少ないと効果
が無く、0.3%を超えると、脱炭焼鈍後の酸素の富化
し難くくになりフォルステライト皮膜形成が困難にな
る。
Further, Sn, Sb, and P are effective for improving the primary recrystallization texture. Cr is effective for forming a forsterite film (primary film, glass film). If the content of these elements is less than the above range, the effect of improvement is small, and if the content exceeds the above range, it becomes difficult to form a stable forsterite film (primary film, glass film). N
Since i has a remarkable effect on the uniform dispersion of precipitates as primary and secondary inhibitors, the magnetic properties are further improved and stabilized when Ni is added. If it is less than 0.02%, there is no effect, and if it exceeds 0.3%, it becomes difficult to enrich oxygen after decarburizing annealing, and it becomes difficult to form a forsterite film.

【0034】Mo、Cdは硫化物もしくはセレン化物を
形成しインヒビターの強化に資する。0.008%未満
では効果が無く、0.3%を超えると析出物が粗大化し
てインヒビターの機能を得られず、磁気特性が安定しな
い。
Mo and Cd form sulfides or selenides and contribute to strengthening of the inhibitor. If it is less than 0.008%, there is no effect, and if it exceeds 0.3%, the precipitates become coarse and the function of the inhibitor cannot be obtained, and the magnetic properties are not stable.

【0035】次に本発明における製造工程の限定理由に
ついて述べる。
Next, the reasons for limiting the manufacturing steps in the present invention will be described.

【0036】脱炭焼鈍完了後の一次再結晶粒の平均粒径
は、例えば特願平06−046161号公報では一次再
結晶粒の平均粒径を18〜35μmとしているが、本発
明では、一次再結晶粒の平均粒径を7μm以上18μm
未満とする必要がある。このことは磁気特性(特に鉄
損)を良好ならしめる本発明の非常に重要な点である。
即ち、一次再結晶粒径が小さいと、粒成長の観点から
も、一次再結晶の段階で二次再結晶の核となるGoss
方位粒の体積分率が多くなる(Materials ScienceForum
Vol.204-206,Part2:pp:631)。また、更に粒径が小さ
いためGoss核の数も相対的に多くなる。結果として
Goss核の絶対数は、一次再結晶粒の平均半径が18
〜35μmの場合より本発明の場合の方が約5倍程度多
くなるので、二次再結晶粒径もまた相対的に小さくな
り、この結果著しい鉄損の向上となる。
The average particle size of the primary recrystallized grains after the completion of the decarburizing annealing is, for example, disclosed in Japanese Patent Application No. 06-046161, where the average particle size of the primary recrystallized grains is 18 to 35 μm. Average grain size of recrystallized grains is 7 μm or more and 18 μm
Must be less than This is a very important point of the present invention for improving magnetic properties (especially iron loss).
In other words, when the primary recrystallization particle size is small, Goss, which is a nucleus of secondary recrystallization at the stage of primary recrystallization, is also considered from the viewpoint of grain growth.
The volume fraction of oriented grains increases (Materials ScienceForum
Vol.204-206, Part2: pp: 631). Further, the number of Goss nuclei is relatively large because the particle diameter is smaller. As a result, the absolute number of Goss nuclei indicates that the average radius of primary recrystallized grains is 18
Since the case of the present invention is about 5 times larger than the case of ~ 35 µm, the secondary recrystallized grain size is also relatively small, resulting in a remarkable improvement in iron loss.

【0037】また、一次再結晶粒の平均粒径が小さいこ
とは、二次再結晶の駆動力が大きくなるので、最終仕上
げ燒鈍の昇温段階の早い時期に(より低温で)二次再結
晶が開始することである。このことは、最終仕上げ燒鈍
がコイル状で行われている現状では最高温度までのコイ
ル各点での温度履歴がより均一となるので(コイル各点
での昇温速度が一定になる)、コイル部位の不均一性が
著しく減少して磁気特性が極めて安定する。
Also, the small average particle size of the primary recrystallized grains increases the driving force of the secondary recrystallization, so that the secondary recrystallization is performed earlier (at a lower temperature) in the final heating step. The crystallization is to start. This is because the temperature history at each point of the coil up to the maximum temperature becomes more uniform (the rate of temperature rise at each point of the coil becomes constant) in the current situation where the final finish annealing is performed in a coil shape. The non-uniformity of the coil portion is significantly reduced, and the magnetic characteristics are extremely stabilized.

【0038】脱炭焼鈍後二次再結晶開始前に鋼板に窒化
処理を施すことは本発明では必須である。その方法は、
高温焼鈍時の焼鈍分離剤に窒化物(CrN,MnN等)
を混合させる方法と、脱炭焼鈍後にストリップを走行さ
れた状態下でアンモニアを含んだ雰囲気で窒化させる方
法がある。どちらの方法を採用しても良いが、後者の方
が工業的に安定している。窒化量は0.001%未満で
は二次再結晶が不安定となり、0.020%を超えると
地鉄が露出した一次皮膜欠陥が多発する。望ましくは、
0.005〜0.010%である。
In the present invention, it is essential that the steel sheet is subjected to nitriding treatment after the decarburizing annealing and before the start of the secondary recrystallization. The method is
Nitride (CrN, MnN, etc.) as an annealing separator during high-temperature annealing
And a method of nitriding in an atmosphere containing ammonia while the strip is running after decarburizing annealing. Either method may be adopted, but the latter is more industrially stable. If the nitriding amount is less than 0.001%, the secondary recrystallization becomes unstable, and if the nitriding amount exceeds 0.020%, primary coating defects in which the base iron is exposed frequently occur. Preferably,
0.005 to 0.010%.

【0039】熱延に先立つスラブ加熱温度の条件は本発
明の重要な点である。スラブ加熱温度を1350℃を超
える超高温で加熱することは工業生産においては非常な
困難を伴う。一方、下限の1050℃未満では熱延が実
際的に困難であるばかりでなく、本発明のキーポイント
である一次インヒビターの生成が十分に行われず、脱炭
焼鈍温度に対する一次再結晶粒径の変動が大きくなる。
好ましくは、熱延が容易で熱延鋼帯の形状(クラウン)
が優れる1200〜1300℃が望ましい。
The condition of the slab heating temperature prior to hot rolling is an important point of the present invention. Heating the slab at a very high temperature exceeding 1350 ° C. is very difficult in industrial production. On the other hand, when the temperature is lower than the lower limit of 1050 ° C., not only is hot rolling practically difficult, but also the primary inhibitor, which is a key point of the present invention, is not sufficiently produced, and the fluctuation of the primary recrystallized grain size with respect to the decarburization annealing temperature. Becomes larger.
Preferably, the shape of the hot-rolled steel strip that is easy to hot-roll (crown)
1200-1300 degreeC which is excellent is desirable.

【0040】また、圧延温度は、 850+2500×Seq+400×Mn≦FOT(仕
上げ入り口温度)≦1100+3000×Seq+80
0×Mn≦1350℃ 800+2500×Seq+400×Mn≦FT(仕上
げ出口温度)≦1050+3000×Seq+800×
Mn≦1350℃ で規定される。この範囲より低いと硫化物、セレン化物
が過剰析出し、一次インヒビターとして機能しなくなる
ため、一次再結晶粒径の脱炭焼鈍温度依存性が大きくな
り、工業生産では制御が困難になる。一方この範囲より
高いと実際の工業生産ではMnS(MnSe)の固溶が
材料の部位よって変動するため、二次再結晶が部位によ
り変動し工業生産に適しない。
The rolling temperature is 850 + 2500 × Seq + 400 × Mn ≦ FOT (finish entrance temperature) ≦ 1100 + 3000 × Seq + 80
0 × Mn ≦ 1350 ° C. 800 + 2500 × Seq + 400 × Mn ≦ FT (finish outlet temperature) ≦ 1050 + 3000 × Seq + 800 ×
Mn ≦ 1350 ° C. If it is lower than this range, sulfides and selenides are excessively precipitated and do not function as primary inhibitors, so that the dependence of the primary recrystallized grain size on the decarburizing annealing temperature becomes large, making it difficult to control industrial production. On the other hand, if it is higher than this range, in actual industrial production, the solid solution of MnS (MnSe) varies depending on the location of the material, so secondary recrystallization varies depending on the location and is not suitable for industrial production.

【0041】本発明の方法では、第一に、公知の連続鋳
造法により初期の厚みが150mmから300mmの範
囲、好ましくは200mmから250mmの範囲のスラ
ブを製造する。この代わりに、スラブは初期の厚みが約
30mmから70mmの範囲のいわゆる薄いスラブであ
ってもよい。これらの場合は、熱延鋼帯を製造する際、
中間厚みに粗加工をする必要がないとの利点がある。ま
た鋼帯鋳造によりスラブ又は鋼帯を事前に製造しておけ
ば、一層薄い初期厚みのスラブ又は鋼帯を用いて本発明
方法により一方向性電磁鋼板を製造することもできる。
In the method of the present invention, first, a slab having an initial thickness in the range of 150 mm to 300 mm, preferably 200 mm to 250 mm is produced by a known continuous casting method. Alternatively, the slab may be a so-called thin slab having an initial thickness in the range of about 30 mm to 70 mm. In these cases, when producing hot rolled steel strip,
There is an advantage that it is not necessary to perform rough processing to an intermediate thickness. If a slab or a steel strip is manufactured in advance by steel strip casting, a unidirectional magnetic steel sheet can be manufactured by the method of the present invention using a slab or a steel strip having a smaller initial thickness.

【0042】また、工業生産上で熱延の加熱方法には通
常のガス加熱方法に加え、誘導加熱、直接通電加熱を用
いてもよいし、これらの特別な加熱方法のための形状を
確保するために、ブレイクダウンを鋳込みスラブを施し
ても何ら問題ない。また、加熱温度が高い1300℃以
上になる場合は、このブレイクダウンにより集合組織の
改善を施しC量を減じてもよい。これらは従来の公知技
術の範囲である。
In addition, in the industrial production, as a heating method of hot rolling, induction heating or direct current heating may be used in addition to a usual gas heating method, or a shape for these special heating methods is secured. Therefore, there is no problem even if the slab is cast by casting the breakdown. When the heating temperature is higher than 1300 ° C., the texture may be improved by this breakdown to reduce the C content. These are within the scope of the prior art.

【0043】冷間圧延における最終冷延率は80%未満
であると{110}<001>集合組織がブロードにな
り高磁束密度が得られず、92%を超えると{110}
<001>集合組織が極端に少なくなり二次再結晶が不
安定になる。
If the final cold rolling reduction in cold rolling is less than 80%, the {110} <001> texture becomes broad and a high magnetic flux density cannot be obtained, and if it exceeds 92%, {110}.
<001> The texture becomes extremely small, and secondary recrystallization becomes unstable.

【0044】熱延鋼帯の焼鈍は、主に熱延時に生じた鋼
帯内の組織・インヒビター分散の不均一性を除去するた
めに行われる。熱延鋼帯での焼鈍でも良いし、最終冷間
圧延前の焼鈍でも良い。すなわち、最終冷間圧延前に熱
延での履歴の均一化を行うために1回以上の連続焼鈍を
行うことが望ましい。
Annealing of the hot-rolled steel strip is mainly performed to remove the non-uniformity of the structure and the dispersion of the inhibitor in the steel strip generated at the time of hot rolling. Annealing in a hot-rolled steel strip or annealing before final cold rolling may be used. That is, it is desirable to perform one or more continuous annealings in order to equalize the history in hot rolling before the final cold rolling.

【0045】最終冷間圧延は常温で実施してもよいが、
少なくとも1パスを100〜300℃の温度範囲に1分
以上保つと一次再結晶集合組織が改善され磁気特性が極
めて良好になる。
The final cold rolling may be performed at room temperature,
If at least one pass is kept in a temperature range of 100 to 300 ° C. for 1 minute or more, the primary recrystallization texture is improved and the magnetic properties become extremely good.

【0046】脱炭燒鈍における室温から650〜950
℃までの加熱速度を100℃/sec以上とすると、一
次再結晶集合組織が改善され磁気特性が良好になる。加
熱速度を確保するためには種々な方法が考えられる。即
ち、抵抗加熱、誘導加熱、直接エネルギー付与加熱等が
ある。加熱速度を早くすると一次再結晶集合組織におい
てGoss方位が多くなり二次再結晶粒径が小さくなる
ことは特公平6−51887号公報等で公知である。特
公平6−51887号公報では、加熱速度を140℃/
sec以上としているが、本発明では、前記加熱速度が
100℃/secでも効果があり、望ましくは150℃
/sec以上である。脱炭焼鈍温度を650℃以上とし
たのはこれ以下では再結晶が完了せず効果が少ないため
であり、一方、前記温度を950℃までと規定したのは
方向性電磁鋼板の製造において脱炭焼鈍温度が950℃
を超えることは無いからである。
From room temperature to 650 to 950 in decarburizing annealing
When the heating rate up to 100 ° C. is 100 ° C./sec or more, the primary recrystallization texture is improved and the magnetic properties are improved. Various methods can be considered to secure the heating rate. That is, there are resistance heating, induction heating, direct energy application heating, and the like. It is known in Japanese Patent Publication No. 6-51887 and the like that increasing the heating rate increases the Goss orientation in the primary recrystallized texture and reduces the secondary recrystallized grain size. In Japanese Patent Publication No. 6-51887, a heating rate of 140 ° C. /
In the present invention, the effect is obtained even when the heating rate is 100 ° C./sec.
/ Sec or more. The reason why the decarburizing annealing temperature was set to 650 ° C. or higher was that recrystallization was not completed below this and the effect was small, whereas the above temperature was specified to 950 ° C. in the production of grain-oriented electrical steel sheets. Annealing temperature is 950 ℃
Is not exceeded.

【0047】[0047]

【実施例】<実施例1>表1に通常の方法で溶製した溶
鋼成分と製造条件および製品特性の結果を示す。連続焼
鈍は1100℃で150秒行って20℃/秒で冷却し
た。その後、850℃で90〜150秒間、H2 とN2
の混合雰囲気で、露点65℃で焼鈍した。この脱炭焼鈍
時に加熱速度を50℃/秒、110℃/秒、180℃/
秒と変化させた。その後、MgOを主成分とする焼鈍分
離剤の塗布前後に指定の方法で窒化し二次再結晶焼鈍を
施した。その二次再結晶焼鈍は、N2 =25%、H2
75%の雰囲気として10〜20℃/時間で1200℃
まで昇温した。その後、1200℃の温度で20時間以
上、H2 =100%で純化処理を行った。その後、通常
用いられる絶縁張力コーティングの塗布と平坦化処理を
行った。
EXAMPLES Example 1 Table 1 shows the molten steel components produced by the usual method, the production conditions and the results of the product characteristics. The continuous annealing was performed at 1100 ° C. for 150 seconds and cooled at 20 ° C./second. Then, H 2 and N 2 at 850 ° C. for 90 to 150 seconds.
In a mixed atmosphere of 65 ° C. and a dew point of 65 ° C. During the decarburization annealing, the heating rate was set to 50 ° C / sec, 110 ° C / sec, 180 ° C / sec.
Seconds. Thereafter, before and after the application of the annealing separator containing MgO as a main component, nitriding was performed by a specified method and subjected to secondary recrystallization annealing. In the secondary recrystallization annealing, N 2 = 25% and H 2 =
1200 ° C at 10-20 ° C / hour as 75% atmosphere
Temperature. Thereafter, a purification treatment was performed at a temperature of 1200 ° C. for 20 hours or more with H 2 = 100%. Thereafter, application of a commonly used insulating tension coating and flattening treatment were performed.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 <実施例2>図1は、以下に述べる成分組成を有する素
材を下記製造条件で製造した際の一次皮膜欠陥率を示す
ものである。C=0.045〜0.065%、Si=
3.00〜3.51%、Mn=0.05〜0.10%、
N=0.0060〜0.0087%、Cu=0.08〜
0.20%、Al=0.020〜0.030%、Seq
=0.006〜0.050%となるようにSとSeを選
んで溶製したスラブを1200〜1300℃で加熱し、
その後、板厚2.3mmの熱延鋼帯を得、980℃の温
度で120秒の熱延板焼鈍を施し、酸洗して板厚1.5
5mmに冷間圧延し、その後1100℃の温度で150
秒の焼鈍を行い、次いで板厚0.23mmに最終冷延を
した。この場合、最低2パスは180〜220℃に2分
間以上保持した。その後、一次再結晶平均粒径を13〜
15μmとするために、H2 =75%、N2 =25%、
露点62℃でSeq<0.008%の場合は、焼鈍温
度を820〜870℃で90秒間、Seq≧0.00
8%の場合は焼鈍温度を850℃で90秒間焼鈍し、そ
の後走行するストリップの状態でアンモニア雰囲気で
0.008〜0.012%窒化し、その後MgOを主体
とする焼鈍分離剤を塗布して高温焼鈍を施した。この高
温焼鈍は、1200℃までH2 =75%、N2 =25
%、昇温速度15℃/時間とした。その後、1200℃
の温度で25時間、H2 =100%で純化処理を行っ
た。その後、通常用いられる絶縁張力コーティングの塗
布と平坦化処理を行った。
[Table 2] Example 2 FIG. 1 shows the primary film defect rate when a material having the following component composition was manufactured under the following manufacturing conditions. C = 0.045-0.065%, Si =
3.0-3.51%, Mn = 0.05-0.10%,
N = 0.060-0.0087%, Cu = 0.08-
0.20%, Al = 0.020 to 0.030%, Seq
S and Se were selected and melted so as to be 0.006 to 0.050%, and the slab was heated at 1200 to 1300 ° C.
Thereafter, a hot-rolled steel strip having a sheet thickness of 2.3 mm was obtained, subjected to hot-rolled sheet annealing at a temperature of 980 ° C. for 120 seconds, and pickled to obtain a sheet thickness of 1.5 mm.
Cold-rolled to 5 mm, then 150 ° C at 1100 ° C
Second annealing was performed, followed by final cold rolling to a plate thickness of 0.23 mm. In this case, at least two passes were kept at 180 to 220 ° C. for 2 minutes or more. Then, the primary recrystallization average particle size is 13 ~
To make it 15 μm, H 2 = 75%, N 2 = 25%,
When Seq <0.008% at a dew point of 62 ° C., the annealing temperature is set at 820 to 870 ° C. for 90 seconds, and Seq ≧ 0.00.
In the case of 8%, annealing is performed at an annealing temperature of 850 ° C. for 90 seconds, and then, in the state of a running strip, 0.008 to 0.012% is nitrided in an ammonia atmosphere, and then an annealing separator mainly containing MgO is applied. High temperature annealing was performed. This high-temperature annealing is performed until H 2 = 75% and N 2 = 25 up to 1200 ° C.
%, And the heating rate was 15 ° C./hour. Then 1200 ° C
At 25 ° C. for 25 hours with H 2 = 100%. Thereafter, application of a commonly used insulating tension coating and flattening treatment were performed.

【0050】この図1から、Seq<0.008%の場
合は、一次再結晶平均粒径を揃えるために脱炭焼鈍温度
を変化させる必要があり、酸化層は一定でなく一次皮膜
欠陥率が変動するとともに絶対値も劣る。これに対し
て、Seq≧0.008%の場合は脱炭焼鈍温度は一定
で良く酸化層はほぼ一定となり、一次皮膜欠陥率は良好
で安定している。因みに、Seq≦0.050%の場合
は全て二次再結晶は良好であった。
FIG. 1 shows that when Seq <0.008%, it is necessary to change the decarburization annealing temperature in order to make the average primary recrystallized grain size uniform. It fluctuates and its absolute value is inferior. On the other hand, when Seq ≧ 0.008%, the decarburization annealing temperature is constant and the oxide layer is almost constant, and the primary film defect rate is good and stable. Incidentally, secondary recrystallization was good in all cases where Seq ≦ 0.050%.

【0051】<実施例3>図2および図3は、以下に述
べる成分組成を有する素材を下記製造条件で製造した際
の窒化の有無と磁気特性の関係を板厚0.23mm、板
厚0.27mmの場合のそれぞれについて示したもので
ある。C=0.045〜0.065%、Si=3.00
〜3.51%、Mn=0.05〜0.10%、N=0.
0060〜0.0087%、Cu=0.08〜0.20
%、Al=0.020〜0.030%、Seq=0.0
10〜0.025%となるようにSとSeを選んで溶製
したスラブを1200〜1300℃で加熱し、その後、
板厚2.3mmの熱延鋼帯を得て、最終冷延板厚が
0.23mmの場合は、980℃の温度で120秒の熱
延板焼鈍を施し、酸洗して板厚1.55mmに冷間圧延
し、その後1100℃の温度で150秒焼鈍を行い、次
いで板厚0.23mmに最終冷延をした。この場合、最
低2パスは180〜220℃に2分間以上保持した。そ
の後、H2 =75%、N2 =25%、露点62℃で、焼
鈍温度850℃で90秒間焼鈍した。最終冷延板厚が
0.27mmの場合は、1120℃の温度で120秒の
熱延板焼鈍を施し、酸洗して冷間圧延で板厚0.27m
mに最終冷延をした。この場合、最低2パスは180〜
220℃に2分間以上保持した。その後、H2 =75
%、N 2 =25%、露点62℃で、850℃で120秒
間焼鈍した。
<Embodiment 3> FIGS. 2 and 3 are described below.
When a material having the following composition is manufactured under the following manufacturing conditions
The relation between the presence or absence of nitriding and the magnetic properties
It is shown for each case of thickness 0.27mm
is there. C = 0.045-0.065%, Si = 3.00
-3.51%, Mn = 0.05-0.10%, N = 0.05%.
0060 to 0.0087%, Cu = 0.08 to 0.20
%, Al = 0.020 to 0.030%, Seq = 0.0
Melting by selecting S and Se so as to be 10 to 0.025%
Heated slab at 1200-1300 ° C.,
A hot-rolled steel strip with a thickness of 2.3 mm was obtained, and the final cold-rolled thickness was
In the case of 0.23mm, heat at 980 ° C for 120 seconds
Annealing of strip, pickling and cold rolling to 1.55mm thickness
And then annealed at a temperature of 1100 ° C. for 150 seconds.
Then, final cold rolling was performed to a plate thickness of 0.23 mm. In this case,
The low 2 passes were held at 180-220 ° C for more than 2 minutes. So
After HTwo= 75%, NTwo= 25%, dew point 62 ℃
Annealing was performed at an annealing temperature of 850 ° C. for 90 seconds. Final cold rolled sheet thickness
In the case of 0.27 mm, the temperature is 1120 ° C for 120 seconds.
Hot rolled sheet is annealed, pickled and cold rolled to a thickness of 0.27m
m was finally cold rolled. In this case, the minimum 2 passes are 180 ~
It was kept at 220 ° C. for more than 2 minutes. Then HTwo= 75
%, N Two= 25%, dew point 62 ° C, 850 ° C for 120 seconds
Annealed for a while.

【0052】板厚0.23mm、0.27mm材共に窒
化処理を施したものと(走行するストリップの状態でア
ンモニア雰囲気で0.005〜0.013%窒化)、窒
化しないものを製造し、その後MgOを主体とする焼鈍
分離剤を塗布して高温焼鈍を施した。この高温焼鈍は、
1200℃までH2 =75%、N2 =25%、H 2
=50%、N2 =50%、H2 =25%、N2 =75
%、H2 =10%、N2 =90%、昇温速度15℃/
時間とした。その後1200℃の温度で25時間、H2
=100%で純化処理を行った。その後、通常用いられ
る絶縁張力コーティングの塗布と平坦化処理を行った。
この結果を図2、図3に示す。これら図2、図3から分
るように前記高温焼鈍昇温時雰囲気〜のいずれの雰
囲気においても窒化処理したものは板厚0.23mm、
0.27mmのいずれの場合においても良好な磁気特性
を示しているのに対し、窒化処理しない場合には二次再
結晶しても磁気特性が劣っている。
The thickness of both 0.23 mm and 0.27 mm
(With the strip running)
0.005 to 0.013% nitriding in ammonia atmosphere)
Of non-equipment, then annealing mainly with MgO
A separating agent was applied and subjected to high-temperature annealing. This high-temperature annealing
H up to 1200 ° CTwo= 75%, NTwo= 25%, H Two
= 50%, NTwo= 50%, HTwo= 25%, NTwo= 75
%, HTwo= 10%, NTwo= 90%, heating rate 15 ° C /
Time. Then, at a temperature of 1200 ° C for 25 hoursTwo
= 100%. Then it is usually used
Insulation tension coating was applied and flattened.
The results are shown in FIGS. From FIGS. 2 and 3,
Any of the above atmospheres during the high temperature annealing
In the atmosphere, the one that has been nitrided has a plate thickness of 0.23 mm.
Good magnetic properties in any case of 0.27mm
In contrast, when nitriding is not performed,
Even if crystallized, the magnetic properties are inferior.

【0053】[0053]

【発明の効果】本発明の製造方法を適用することによ
り、一次皮膜欠陥が激減しまた二次再結晶の不均一性も
解消して安定的な工業生産が可能になり、また良好な磁
気特性も確保できる。
By applying the manufacturing method of the present invention, primary film defects are drastically reduced, and non-uniformity of secondary recrystallization is also eliminated, thereby enabling stable industrial production and good magnetic properties. Can also be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Seqと一次皮膜欠陥率の関係を示す図。FIG. 1 is a diagram showing a relationship between Seq and a primary film defect rate.

【図2】板厚0.23mmの場合の窒化の有無と磁性と
の関係を示す図。
FIG. 2 is a diagram showing the relationship between the presence or absence of nitriding and the magnetism when the plate thickness is 0.23 mm.

【図3】板厚0.27mmの場合の窒化の有無と磁性と
の関係を示す図。
FIG. 3 is a diagram showing the relationship between the presence or absence of nitriding and the magnetism when the plate thickness is 0.27 mm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 宣憲 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 福岡県北九州市戸畑区大字中原46番地の59 日鐵プラント設計株式会社内 (72)発明者 山崎 幸司 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 Fターム(参考) 4K033 AA02 CA01 CA04 CA07 CA09 DA01 FA01 FA12 HA01 HA03 HA05 JA05 MA01 MA02 MA03 RA04 TA01 5E041 AA02 AA19 BC01 CA02 HB05 HB07 HB11 NN01 NN06 NN17 NN18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Nobunori Fujii 1-1, Hibata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Katsuro Kuroki Tobata-ku, Kitakyushu-shi, Fukuoka Inside of Nippon Steel Plant Design Co., Ltd. at 46, Nakahara, (72) Koji Yamazaki Inventor F-term 4K033 AA02 CA01 in Yawata Works, 1-1 Nhatata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture CA04 CA07 CA09 DA01 FA01 FA12 HA01 HA03 HA05 JA05 MA01 MA02 MA03 RA04 TA01 5E041 AA02 AA19 BC01 CA02 HB05 HB07 HB11 NN01 NN06 NN17 NN18

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.025〜0.10%、 Si:2.5〜4.0%、 酸可溶性Al:0.010〜0.035%、 N:0.0020〜0.010%、 S及びSeをSeq=S+0.406Seで0.008
〜0.05%、 Mn:0.02〜0.20%、 残部がFe及び不可避的不純物からなるスラブを105
0℃以上1350℃未満の温度で再加熱し、熱間圧延を
施して熱延鋼帯とし、この熱延鋼帯を焼鈍しもしくは焼
鈍せず、引き続き1回もしくは中間焼鈍を挾む2回以上
の冷間圧延を行って最終板厚とし、脱炭焼鈍を行い、M
gOを主成分とする焼鈍分離剤を塗布して最終仕上げ焼
鈍を施す一方向性電磁鋼板の製造方法において、脱炭焼
鈍後、仕上焼鈍の二次再結晶開始までの間に鋼板に窒化
処理を施すことを特徴とする磁気特性に優れた一方向性
電磁鋼板の製造方法。
C: 0.025 to 0.10%, Si: 2.5 to 4.0%, acid-soluble Al: 0.010 to 0.035%, N: 0.0020 to 100% by weight. 0.010%, S and Se are 0.008 with Seq = S + 0.406Se
Slab composed of Fe and unavoidable impurities, with the balance being 105%.
It is reheated at a temperature of 0 ° C. or more and less than 1350 ° C., hot-rolled to form a hot-rolled steel strip, and this hot-rolled steel strip is not annealed or annealed, and is subsequently subjected to one or two or more intermediate annealings Cold-rolled to the final thickness, decarburized annealing,
In a method for producing a grain-oriented electrical steel sheet in which an annealing separator containing gO as a main component is applied and subjected to final finish annealing, after decarburization annealing, the steel sheet is subjected to nitriding treatment before the start of secondary recrystallization of finish annealing. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.
【請求項2】 前記脱炭焼鈍完了後の一次再結晶粒の平
均粒径を7μm 以上18μm 未満とすることを特徴とす
る請求項1記載の磁気特性に優れた一方向性電磁鋼板の
製造方法。
2. The method according to claim 1, wherein the average grain size of the primary recrystallized grains after completion of the decarburizing annealing is 7 μm or more and less than 18 μm. .
【請求項3】 前記スラブの成分としてさらにCu:
0.01〜0.30%を含有することを特徴とする請求
項1又は2記載の磁気特性に優れた一方向性電磁鋼板の
製造方法。
3. The composition of the slab further comprises Cu:
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1 or 2, which contains 0.01 to 0.30%.
【請求項4】 前記脱炭焼鈍後で、ストリップ走行状態
下で水素、窒素、アンモニアの混合ガス中で窒化処理を
行い、鋼板の窒素増量を0.001〜0.020重量%
とすることを特徴とする請求項1〜3項のいずれかの項
に記載の磁気特性に優れた一方向性電磁鋼板の製造方
法。
4. After the decarburizing annealing, a nitriding treatment is performed in a mixed gas of hydrogen, nitrogen and ammonia in a strip running state to increase the nitrogen content of the steel sheet by 0.001 to 0.020% by weight.
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 3, characterized in that:
【請求項5】 前記脱炭焼鈍における昇温開始から65
0〜950℃までの加熱速度を100℃/sec以上と
することを特徴とする請求項1〜4項のいずれかの項に
記載の磁気特性に優れた一方向性電磁鋼板の製造方法。
5. A method according to claim 1, wherein the temperature of the decarburizing annealing is 65 from the start of the temperature rise.
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 4, wherein a heating rate from 0 to 950 ° C is 100 ° C / sec or more.
【請求項6】 前記熱間圧延における鋼帯の温度を以下
の範囲に調整することを特徴とする請求項1〜5項のい
ずれかの項に記載の磁気特性に優れた一方向性電磁鋼板
の製造方法。 850+2500×Seq+400×Mn≦FOT
(℃)≦1100+3000×Seq+800×Mn≦
1350℃ ただし、FOT:仕上げ入り口温度
(℃) 800+2500×Seq+400×Mn≦FT(℃)
≦1050+3000×Seq+800×Mn≦135
0℃ ただし、FT:仕上げ出口温度(℃)
6. The magnetic steel sheet according to claim 1, wherein the temperature of the steel strip in the hot rolling is adjusted to the following range. Manufacturing method. 850 + 2500 × Seq + 400 × Mn ≦ FOT
(° C) ≦ 1100 + 3000 × Seq + 800 × Mn ≦
1350 ° C. However, FOT: Finish entrance temperature (° C.) 800 + 2500 × Seq + 400 × Mn ≦ FT (° C.)
≦ 1050 + 3000 × Seq + 800 × Mn ≦ 135
0 ° C, where FT: Finishing outlet temperature (° C)
【請求項7】 前記熱延鋼帯の焼鈍条件の最高温度を9
50〜1150℃、焼鈍時間を30秒以上600秒以下
とすることを特徴とする請求項1〜6項のいずれかの項
に記載の磁気特性に優れた一方向性電磁鋼板の製造方
法。
7. The maximum temperature of the hot-rolled steel strip in an annealing condition is 9
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 6, wherein the annealing time is 50 to 1150 ° C and the annealing time is 30 seconds or more and 600 seconds or less.
【請求項8】 前記スラブの成分として更に、Sn、S
b、Pの少なくとも1種を0.02〜0.30%含有す
ることを特徴とする請求項1〜7項のいずれかの項に記
載の磁気特性に優れた一方向性電磁鋼板の製造方法。
8. The slab component further comprises Sn, S
The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 7, wherein at least one of b and P is contained in an amount of 0.02 to 0.30%. .
【請求項9】 前記スラブの成分として、更に、Crを
0.02〜0.30%含有することを特徴とする請求項
1〜8項のいずれかの項に記載の磁気特性に優れた一方
向性電磁鋼板の製造方法。
9. The magnetic recording medium according to claim 1, wherein the slab further contains Cr in an amount of 0.02 to 0.30%. Manufacturing method of grain-oriented electrical steel sheet.
【請求項10】 前記スラブの成分として、更に、N
i:0. 03〜0. 30%含有することを特徴とする請
求項1〜9項のいずれかの項に記載の磁気特性に優れた
一方向性電磁鋼板の製造方法。
10. The slab component further comprises N
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 9, wherein i: 0.03 to 0.30% is contained.
【請求項11】 前記スラブの成分として更に、Mo、
Cdの少なくとも1種を0.008〜0.3%含有する
ことを特徴とする請求項1〜10項のいずれかの項に記
載の磁気特性に優れた一方向性電磁鋼板の製造方法。
11. The slab component further comprises Mo,
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 10, wherein at least one kind of Cd is contained in an amount of 0.008 to 0.3%.
【請求項12】 前記冷間圧延における最終冷延率を8
0〜92%とすることを特徴とする請求項1〜11項の
いずれかの項に記載の磁気特性に優れた一方向性電磁鋼
板の製造方法。
12. The final cold rolling reduction in said cold rolling is 8
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of claims 1 to 11, characterized in that the content is 0 to 92%.
【請求項13】 前記冷間圧延における最終冷間圧延の
少なくとも1パスにおいて、鋼帯を100〜300℃の
温度範囲に1分以上保つことを特徴とする請求項1〜1
2項のいずれかの項に記載の磁気特性に優れた一方向性
電磁鋼板の製造方法。
13. The steel strip is maintained in a temperature range of 100 to 300 ° C. for at least one minute in at least one pass of final cold rolling in the cold rolling.
3. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to any one of the above items 2.
JP07199799A 1998-03-30 1999-03-17 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JP3481491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07199799A JP3481491B2 (en) 1998-03-30 1999-03-17 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8400798 1998-03-30
JP10-84007 1998-10-28
JP10-307507 1998-10-28
JP30750798 1998-10-28
JP07199799A JP3481491B2 (en) 1998-03-30 1999-03-17 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2000199015A true JP2000199015A (en) 2000-07-18
JP3481491B2 JP3481491B2 (en) 2003-12-22

Family

ID=27300830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07199799A Expired - Lifetime JP3481491B2 (en) 1998-03-30 1999-03-17 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3481491B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213339A (en) * 2002-01-28 2003-07-30 Jfe Steel Kk Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2008001982A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008001978A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008261022A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp Grain oriented electrical decarburized annealed steel sheet, and method for producing the same
WO2010029921A1 (en) 2008-09-10 2010-03-18 新日本製鐵株式会社 Directional electromagnetic steel plate manufacturing method
WO2010116936A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
US7833360B2 (en) 2006-03-07 2010-11-16 Nippon Steel Corporation Method of producing grain-oriented electrical steel sheet very excellent in magnetic properties
JP2010280970A (en) * 2009-06-05 2010-12-16 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet with good magnetic flux density
US7857915B2 (en) 2005-06-10 2010-12-28 Nippon Steel Corporation Grain-oriented electrical steel sheet extremely excellent in magnetic properties and method of production of same
WO2011102456A1 (en) 2010-02-18 2011-08-25 新日本製鐵株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
KR101141279B1 (en) * 2004-12-28 2012-05-04 주식회사 포스코 method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
RU2450062C1 (en) * 2008-03-25 2012-05-10 Баошан Айрон Энд Стил Ко., Лтд METHOD TO MANUFACTURE ORIENTED Si STEEL WITH HIGH ELECTROMAGNETIC PROPERTIES
WO2013089297A1 (en) * 2011-12-16 2013-06-20 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
RU2503728C1 (en) * 2010-05-25 2014-01-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method of making sheet from electric steel with aligned grain structure
JP2014508858A (en) * 2011-12-19 2014-04-10 ポスコ Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
RU2515978C2 (en) * 2008-11-18 2014-05-20 Чентро Эвилуппо Материали С.П.А. Method to produce textured transformer sheet from thin slab
RU2516323C1 (en) * 2012-11-14 2014-05-20 Михаил Борисович Цырлин Method to produce highly permeable anisotropic electric steel
WO2019245044A1 (en) 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
WO2020130328A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Oriented electrical steel sheet and manufacturing method thereof
JP2020139174A (en) * 2019-02-26 2020-09-03 Jfeスチール株式会社 Method for producing grain oriented silicon steel sheet
JP7507157B2 (en) 2018-12-19 2024-06-27 ポスコ カンパニー リミテッド Grain-oriented electrical steel sheet and its manufacturing method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213339A (en) * 2002-01-28 2003-07-30 Jfe Steel Kk Method for producing grain oriented silicon steel sheet having excellent magnetic property
KR101141279B1 (en) * 2004-12-28 2012-05-04 주식회사 포스코 method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
US7857915B2 (en) 2005-06-10 2010-12-28 Nippon Steel Corporation Grain-oriented electrical steel sheet extremely excellent in magnetic properties and method of production of same
US7833360B2 (en) 2006-03-07 2010-11-16 Nippon Steel Corporation Method of producing grain-oriented electrical steel sheet very excellent in magnetic properties
JP2008001982A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008001978A (en) * 2006-05-24 2008-01-10 Nippon Steel Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP2008261022A (en) * 2007-04-13 2008-10-30 Nippon Steel Corp Grain oriented electrical decarburized annealed steel sheet, and method for producing the same
RU2450062C1 (en) * 2008-03-25 2012-05-10 Баошан Айрон Энд Стил Ко., Лтд METHOD TO MANUFACTURE ORIENTED Si STEEL WITH HIGH ELECTROMAGNETIC PROPERTIES
WO2010029921A1 (en) 2008-09-10 2010-03-18 新日本製鐵株式会社 Directional electromagnetic steel plate manufacturing method
US8303730B2 (en) 2008-09-10 2012-11-06 Nippon Steel Corporation Manufacturing method of grain-oriented electrical steel sheet
RU2515978C2 (en) * 2008-11-18 2014-05-20 Чентро Эвилуппо Материали С.П.А. Method to produce textured transformer sheet from thin slab
WO2010116936A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Method for treating steel for directional electromagnetic steel plate and method for producing directional electromagnetic steel plate
US8202374B2 (en) 2009-04-06 2012-06-19 Nippon Steel Corporation Method of treating steel for grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
JP2010280970A (en) * 2009-06-05 2010-12-16 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet with good magnetic flux density
WO2011102456A1 (en) 2010-02-18 2011-08-25 新日本製鐵株式会社 Manufacturing method for grain-oriented electromagnetic steel sheet
RU2503728C1 (en) * 2010-05-25 2014-01-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method of making sheet from electric steel with aligned grain structure
WO2013089297A1 (en) * 2011-12-16 2013-06-20 주식회사 포스코 Method for manufacturing grain-oriented electrical steel sheets having excellent magnetic properties
CN103429775A (en) * 2011-12-16 2013-12-04 Posco公司 Method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
US9663839B2 (en) 2011-12-16 2017-05-30 Posco Method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
JP2014508858A (en) * 2011-12-19 2014-04-10 ポスコ Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
RU2516323C1 (en) * 2012-11-14 2014-05-20 Михаил Борисович Цырлин Method to produce highly permeable anisotropic electric steel
KR20210010526A (en) 2018-06-21 2021-01-27 닛폰세이테츠 가부시키가이샤 Directional electromagnetic steel plate with excellent magnetic properties
WO2019245044A1 (en) 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
US11512360B2 (en) 2018-06-21 2022-11-29 Nippon Steel Corporation Grain-oriented electrical steel sheet with excellent magnetic characteristics
WO2020130328A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Oriented electrical steel sheet and manufacturing method thereof
KR20200076517A (en) * 2018-12-19 2020-06-29 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing therof
KR102164329B1 (en) * 2018-12-19 2020-10-12 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing therof
CN113242911A (en) * 2018-12-19 2021-08-10 Posco公司 Oriented electrical steel sheet and method for manufacturing the same
JP2022514794A (en) * 2018-12-19 2022-02-15 ポスコ Directional electrical steel sheet and its manufacturing method
JP7507157B2 (en) 2018-12-19 2024-06-27 ポスコ カンパニー リミテッド Grain-oriented electrical steel sheet and its manufacturing method
JP2020139174A (en) * 2019-02-26 2020-09-03 Jfeスチール株式会社 Method for producing grain oriented silicon steel sheet

Also Published As

Publication number Publication date
JP3481491B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
US5779819A (en) Grain oriented electrical steel having high volume resistivity
JP3481491B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
WO2007102282A1 (en) Process for producing grain-oriented magnetic steel sheet with excellent magnetic property
JPH06322443A (en) Production of grain-oriented magentic steel sheet reduced in iron loss
KR930001330B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
EP0947597B2 (en) Method of producing a grain-oriented electrical steel sheet excellent in magnetic characteristics
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPS5948934B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2620438B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
CN113825847B (en) Method for producing oriented electrical steel sheet
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPH08269552A (en) Production of grain oriented silicon steel sheet having ultrahigh magnetic flux density
JP2003003215A (en) Method for producing grain-oriented silicon steel sheet having high magnetic flux density
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2002348611A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2002030340A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
CN115747650B (en) Low-temperature high-magnetic-induction oriented silicon steel and method for improving magnetic property stability of low-temperature high-magnetic-induction oriented silicon steel
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term