JP2000199014A - Production of grain oriented silicon steel sheet - Google Patents

Production of grain oriented silicon steel sheet

Info

Publication number
JP2000199014A
JP2000199014A JP10373912A JP37391298A JP2000199014A JP 2000199014 A JP2000199014 A JP 2000199014A JP 10373912 A JP10373912 A JP 10373912A JP 37391298 A JP37391298 A JP 37391298A JP 2000199014 A JP2000199014 A JP 2000199014A
Authority
JP
Japan
Prior art keywords
temperature
rolled
hot
grain
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10373912A
Other languages
Japanese (ja)
Other versions
JP4206538B2 (en
Inventor
Tomomutsu Ono
智睦 小野
Tetsuo Toge
哲雄 峠
Atsushi Yamamoto
敦志 山本
Koichi Hirashima
浩一 平嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP37391298A priority Critical patent/JP4206538B2/en
Publication of JP2000199014A publication Critical patent/JP2000199014A/en
Application granted granted Critical
Publication of JP4206538B2 publication Critical patent/JP4206538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To control slab heating temp. to the low one equal to that for common steel and to stably produce a steel sheet uniform in magnetic properties in the longitudinal direction without executing a nitriding stage by controlling the temp. difference between the temp. of the top part in the longitudinal direction and the temp. of the tail part in hot rolling for a slab as to the temp. in which a grain oriented silicon slab having a specified compsn. contg. C, Si, Mn, Al and N is subjected to hot rolling. SOLUTION: As to the production of this steel sheet, a grain oriented silicon slab is heated at <=1280 deg.C, is subjected to hot rolling and finish rolling, is thereafter subjected to hot rolled sheet annealing, is then subjected to cold rolling to form into a cold rolled sheet of final sheet thickness, is subjected to decarburizing annealing in wet hydrogen, is coated with a separation agent for annealing and is subjected to finish annealing. The temp. difference in the hot rolling is controlled to 50 to 150 deg.C. The compsn. of the slab is composed of the one contg. 0.02 to 0.15% C, 2.0 to 4.5% Si, 0.03 to 2.5% Mn, 0.005 to 0.050% Al, 0.003 to 0.013% N, <=0.02% S and/or Se, each 0.003 to 0.3% Sb, Sn, Ge and Bi, 0.003 to 0.3% Cu, 0.003 to 0.6% Cr or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、方向性電磁鋼板に
係り、とくに長手方向に均質で、かつ良好な電磁特性を
有する方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet, and more particularly to a method for manufacturing a grain-oriented electrical steel sheet which is uniform in a longitudinal direction and has good electromagnetic properties.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主として変圧器の積
層鉄心または巻鉄心や、その他の電気機器の鉄心材料と
して使用されている。そのため、磁気特性として磁束密
度が高く、鉄損値が低いことが重要となる。磁気特性を
高めるためには、2次再結晶を利用して、磁化容易軸で
ある<001 >軸が圧延方向に高度に揃った、{110 }<
001 >方位(いわゆるゴス方位)の結晶方位を成長させ
ることが重要である。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as laminated iron cores or wound iron cores of transformers and iron core materials of other electric equipment. Therefore, it is important that the magnetic flux density is high and the iron loss value is low as the magnetic characteristics. In order to enhance the magnetic properties, the secondary recrystallization is used to make the <001> axis, which is the axis of easy magnetization highly aligned in the rolling direction, {110} <
It is important to grow a crystal orientation of 001> orientation (so-called Goss orientation).

【0003】このため、方向性電磁鋼板の一般的な製造
方法では、スラブを高温に加熱後、熱間圧延して熱延板
とし、ついでこの熱延板を1回または中間焼鈍を挟む2
回以上の冷間圧延によって最終板厚とし、脱炭焼鈍後、
焼鈍分離剤を塗布してから、2次再結晶および純化を目
的として最終仕上焼鈍を行うという、複雑な工程が採ら
れている。
For this reason, in a general method of manufacturing a grain-oriented electrical steel sheet, a slab is heated to a high temperature and then hot-rolled into a hot-rolled sheet, and then the hot-rolled sheet is subjected to one or intermediate annealing.
To the final thickness by cold rolling more than once, after decarburizing annealing,
A complicated process of applying an annealing separator and then performing a final finish annealing for the purpose of secondary recrystallization and purification is employed.

【0004】このような2次再結晶を効率よく促進させ
るためには、まずゴス方位以外の1次再結晶粒の成長を
抑制する、インヒビターと呼ばれる析出分散相を均一か
つ適正な大きさで鋼中に分散析出させることが重要とな
る。インヒビターの代表的なものとして、MnS 、MnSe、
AlN 、BN等が挙げられる。インヒビターを、均一かつ適
正な大きさに分散析出させるために、従来から熱間圧延
前のスラブ加熱時にインヒビターを一旦完全に固溶させ
たのち、熱間圧延時に析出させる方法が行われてきた。
In order to efficiently promote such secondary recrystallization, first, a precipitate-dispersed phase called an inhibitor, which suppresses the growth of primary recrystallized grains other than the Goss orientation, must be uniformly and appropriately sized. It is important to disperse and deposit in them. As typical inhibitors, MnS, MnSe,
AlN, BN and the like. Conventionally, in order to disperse and precipitate the inhibitor in a uniform and appropriate size, a method has been used in which an inhibitor is once completely dissolved in a slab before hot rolling and then precipitated during hot rolling.

【0005】一方、工場で製造される方向性電磁鋼板
は、磁気特性が優れているとともに、鋼板の長手方向に
おける磁気特性のばらつきが少なく、均質であることが
要求される。このような要求に対し、例えば、特公平6-
13734 号公報には、Mo、Sbを含みさらにS、Seのいずれ
か1種または2種を含有する珪素鋼スラブを、1250℃以
上の高温加熱を施す際に、スラブの長手方向に対し、10
〜100 ℃の範囲において、熱延時の被圧延材の先端側を
低く、後端側に向かって高くなる連続的な温度勾配を設
けるとともに、スラブ上、下面の相対する位置での温度
差を70℃以上に抑制する一方向性珪素鋼用スラブの加熱
方法が提案され、この方法によれば、コイル長手方向に
おける特性差の大幅な軽減が図れるとしている。
On the other hand, a grain-oriented electrical steel sheet manufactured in a factory is required to have excellent magnetic properties, to have a small variation in the magnetic properties in the longitudinal direction of the steel sheet, and to be uniform. In response to such a request, for example,
No. 13734 discloses that when a silicon steel slab containing Mo, Sb and further containing one or two of S and Se is subjected to high-temperature heating at 1250 ° C. or more, the silicon
In the range of 100100 ° C., a continuous temperature gradient is provided in which the front end side of the material to be rolled at the time of hot rolling is low and the rear end side is high, and the temperature difference between the upper and lower surfaces of the slab is 70 °. A method of heating a slab for unidirectional silicon steel, which is suppressed to at least ℃, has been proposed, and according to this method, it is stated that a characteristic difference in the longitudinal direction of the coil can be significantly reduced.

【0006】また、特開平4-301035号公報には、熱間圧
延工程における仕上圧延温度の調整を、熱間圧延仕上圧
延機前段までの冷却手段によって行う長手方向の磁気特
性が均一な方向性珪素鋼板の製造方法が提案されてい
る。この方法では、スラブの高温加熱を前提として、仕
上前段までの制御冷却により、固溶したインヒビター
の、コイル長手方向における均一析出により、磁気特性
の均一化を図ることを意図している。
Japanese Patent Application Laid-Open No. Hei 4-301035 discloses that the finish rolling temperature in the hot rolling step is adjusted by cooling means up to the front stage of the hot rolling finish rolling mill, and the magnetic properties in the longitudinal direction are uniform. A method for manufacturing a silicon steel sheet has been proposed. In this method, on the premise of high-temperature heating of the slab, it is intended to achieve uniform magnetic properties by uniformly cooling the solid solution inhibitor in the longitudinal direction of the coil by controlled cooling to the stage before finishing.

【0007】しかしながら、特公平6-13734 号公報、特
開平4-301035号公報に記載された技術では、鋼板長手方
向の特性は均一化するが、インヒビターを十分に固溶さ
せるためにスラブの高温加熱を必要としている。インヒ
ビターを十分に固溶させるためのスラブ加熱温度は、14
00℃程度であり、普通鋼の加熱温度にくらべ約200 ℃も
高い。このような高温加熱は、エネルギーコストが高い
うえ、表面欠陥が発生し易いという問題を有している。
さらに、最近では省エネルギーの観点からも方向性電磁
鋼板の製造においてスラブ加熱の低温化が指向されてい
る。
However, in the techniques described in Japanese Patent Publication No. Hei 6-13734 and Japanese Patent Laid-Open Publication No. Hei 4-301035, the characteristics in the longitudinal direction of the steel sheet are made uniform, but the high temperature of the slab is required to sufficiently dissolve the inhibitor. Requires heating. The slab heating temperature to sufficiently dissolve the inhibitor is 14
It is about 00 ° C, about 200 ° C higher than the heating temperature of ordinary steel. Such high-temperature heating has problems that energy costs are high and surface defects are easily generated.
Furthermore, recently, from the viewpoint of energy saving, the production of grain-oriented electrical steel sheets has been directed to lowering the temperature of slab heating.

【0008】例えば、特開昭57-207114 号公報には、ス
ラブ加熱温度の低温化と、素材の極低炭素化(C:0.00
2 〜0.010 %)とを組合せた電磁鋼板の製造方法が開示
されている。この技術は、スラブ加熱温度が低い場合に
は、凝固から熱延までの間にオーステナイト相を経由し
ない方がその後の2次再結晶に有利であるとの考えに基
づく技術である。しかし、このようにC量が極端に低い
と、2次再結晶が不安定となるという問題があった。
For example, Japanese Patent Application Laid-Open No. 57-207114 discloses that the slab heating temperature is lowered and the material is made extremely low carbon (C: 0.00
2 to 0.010%) is disclosed. This technique is based on the idea that, when the slab heating temperature is low, it is more advantageous not to pass through the austenite phase between solidification and hot rolling for subsequent secondary recrystallization. However, when the C content is extremely low, there is a problem that secondary recrystallization becomes unstable.

【0009】このような問題に対し、例えば、特開昭62
-40315号公報には、スラブ加熱時に固溶しえない量のA
l、Nを含有させ、途中工程での窒化によりインヒビタ
ーを適正状態に制御する方法が開示されている。また、
特開平8-32928 号公報には、脱炭焼鈍工程における均熱
前段での滞留時間をa、均熱後段での滞留時間をbとし
た場合、b≦a/3とするとともに、均熱後段での雰囲
気中のPH2O /PH2を0.02以下とすることにより、仕上
焼鈍時の窒化を促進し磁気特性を向上させる方法が開示
されている。
To solve such a problem, see, for example,
No. -40315 discloses that the amount of A that cannot be dissolved during slab heating
A method of containing l and N and controlling the inhibitor to an appropriate state by nitriding in an intermediate step is disclosed. Also,
Japanese Patent Application Laid-Open No. 8-32928 discloses that, in the decarburizing annealing step, when the residence time in the former stage of the soaking is a and the residence time in the latter stage of the heating is b, b ≦ a / 3, and A method is disclosed in which the P H2O / P H2 in the atmosphere is adjusted to 0.02 or less to promote nitriding during finish annealing to improve magnetic properties.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記し
た、特開昭57-207114 号公報、特開昭62-40315号公報、
特開平8-32928 号公報に記載された技術では、途中工程
で窒化を施す必要があり、新たな設備を必要としコスト
が増大するという問題に加えて、窒化の制御が困難であ
るという問題があった。また、これらの技術では、鋼板
長手方向の磁気特性が必ずしも安定して均質化できない
という問題もあった。
However, Japanese Patent Application Laid-Open Nos. 57-207114 and 62-40315 describe above.
In the technique described in Japanese Patent Application Laid-Open No. 8-32928, it is necessary to perform nitriding in an intermediate step, and in addition to the problem that new equipment is required and the cost is increased, there is a problem that it is difficult to control nitriding. there were. In addition, these techniques have a problem that the magnetic properties in the longitudinal direction of the steel sheet cannot always be stably homogenized.

【0011】本発明は、上記した従来技術の問題を解決
し、スラブ加熱温度が普通鋼並に低温とすることがで
き、しかも鋼板長手方向の磁気特性が均質な方向性電磁
鋼板を、途中工程での窒化を施さずに、工業的に安定し
て製造できる方向性電磁鋼板の製造方法を提供すること
を目的とする。
The present invention solves the above-mentioned problems of the prior art, and provides a directional magnetic steel sheet having a slab heating temperature as low as that of ordinary steel and having uniform magnetic properties in the longitudinal direction of the steel sheet. It is an object of the present invention to provide a method for producing a grain-oriented electrical steel sheet that can be industrially stably produced without performing nitriding at a temperature.

【0012】[0012]

【課題を解決するための手段】本発明者らは、スラブ加
熱温度を普通鋼並に低温としても、鋼板の磁気特性を高
く保持でき、しかも鋼板長手方向に均質とするために、
種々の要因について検討した。本発明者らは、熱延板焼
鈍以降の製造工程でインヒビターの抑制力を制御するこ
とにより、2次再結晶を好適なものとすることが可能で
あるはずであるが、実際問題として、熱延板焼鈍以降の
製造工程で鋼板長手方向の製造条件を動的に制御するこ
とは、とくに連続焼鈍炉では困難であることに想到し
た。
Means for Solving the Problems The inventors of the present invention have proposed a method for maintaining the magnetic properties of a steel sheet at a high level and making the slab heating temperature as low as that of ordinary steel.
Various factors were discussed. The present inventors should be able to make the secondary recrystallization suitable by controlling the inhibitory force of the inhibitor in the manufacturing process after the hot-rolled sheet annealing, but as a practical problem, It has been conceived that it is difficult to dynamically control the manufacturing conditions in the longitudinal direction of the steel sheet in the manufacturing process after the strip annealing, especially in a continuous annealing furnace.

【0013】そこで、鋼板長手方向に均質な磁気特性を
得るためには、熱間圧延の仕上圧延における鋼板長手方
向の温度分布が重要であることに注目した。従来の熱間
圧延では、仕上圧延機入側における板温度(FET)は
シートバーの先端部が高く、後端部ほど低いといった、
図2に示すような温度分布を示すのが通常である。この
ようなシートバーの長手方向の温度分布をさらに多数の
シートバーについて調査し、シートバー長手方向におけ
るFETの最高温度と最低温度との差、ΔFETを求
め、図3にその分布を示す。図3から、通常の熱間圧延
では、ΔFETは50〜90℃の範囲内となることがわか
る。
Therefore, in order to obtain uniform magnetic properties in the longitudinal direction of the steel sheet, it has been noted that the temperature distribution in the longitudinal direction of the steel sheet in the finish rolling of hot rolling is important. In conventional hot rolling, the sheet temperature (FET) at the entrance of the finishing mill is higher at the front end of the sheet bar and lower at the rear end.
Usually, a temperature distribution as shown in FIG. 2 is shown. Such a temperature distribution in the longitudinal direction of the sheet bar is investigated for a larger number of sheet bars, and the difference between the maximum temperature and the minimum temperature of the FET in the longitudinal direction of the sheet bar, ΔFET, is determined. FIG. 3 shows the distribution. From FIG. 3, it can be seen that ΔFET is in the range of 50 to 90 ° C. in normal hot rolling.

【0014】そこで、本発明者らは、このようなシート
バー長手方向の温度分布の存在は、仕上圧延中のインヒ
ビターの析出状態に大きく影響し、とくにスラブ低温加
熱の場合に磁気特性のばらつきを大きくするものと考
え、方向性電磁鋼板の鉄損W17 /50 とFETとの関係に
ついて調査した。その結果、スラブ低温加熱という条件
下において、鋼板の磁気特性が良好でしかも鋼板長手方
向で均質とするためには、AlおよびN含有量を適正範
囲内に調整すること、高温加熱材に比べSおよびSe含
有量を低減すること、さらに仕上圧延機入側の被圧延
材温度(FET)のばらつきを適正温度範囲内とするこ
と、を組合せることが重要であるという知見を得た。さ
らに、FETのばらつきの許容温度範囲は、通常の熱間
圧延操業では達成できないほどの狭い範囲であり、被圧
延材の長手方向でのFETを仕上圧延前に制御冷却等に
より、適正温度範囲内に調整するか、および/または、
スラブ加熱を調整してスラブ長手方向における最先端側
と最後端側の温度差を適正温度範囲内とすることが必要
であるという新規な知見を得た。
Therefore, the present inventors have found that the existence of such a temperature distribution in the longitudinal direction of the sheet bar greatly affects the precipitation state of the inhibitor during the finish rolling. considered to be large, it was investigated the relationship between the iron loss W 17/50 and the FET of grain-oriented electrical steel sheet. As a result, under the condition of slab low-temperature heating, in order to make the magnetic properties of the steel sheet good and uniform in the longitudinal direction of the steel sheet, it is necessary to adjust the Al and N contents within appropriate ranges, It has been found that it is important to combine the reduction of the Se content and the reduction of the temperature of the material to be rolled (FET) on the entrance side of the finishing mill within an appropriate temperature range. Further, the allowable temperature range of the variation of the FET is a narrow range that cannot be achieved by the ordinary hot rolling operation, and the FET in the longitudinal direction of the material to be rolled is controlled within the appropriate temperature range by controlled cooling before finish rolling. And / or
We have obtained a new finding that it is necessary to adjust the slab heating so that the temperature difference between the foremost side and the rearmost side in the longitudinal direction of the slab is within an appropriate temperature range.

【0015】まず、本発明者らが行った実験結果につい
て説明する。 C:0.04〜0.06%、Si:3.0 〜3.2 %、Mn:0.07〜0.09
%、Al:0.008 〜0.012 %、N:0.004 〜0.007 %、S
およびSeの合計が0.0050〜0.0080%、Sb:0.014 〜0.01
6 %の範囲で含有する方向性電磁鋼スラブ(N数=30)
を、1000〜1240℃に均一加熱したのち、熱間圧延により
2.2mm 厚の熱延板とした。ついで、これら熱延板に1000
℃×60sec の熱延板焼鈍を施し、酸洗および冷間圧延を
順次施して0.34mm厚の冷延板とした。これら冷延板を脱
脂したのち、均熱温度が700 〜950 ℃とする脱炭焼鈍を
行い、MgO を主体とする焼鈍分離剤を塗布して仕上焼鈍
を行った。このようにして得た製品板について、鉄損W
17/50 を測定した。なお、FETは鉄損測定用試験片の
採取箇所の値を用いた。
First, the results of experiments conducted by the present inventors will be described. C: 0.04 to 0.06%, Si: 3.0 to 3.2%, Mn: 0.07 to 0.09
%, Al: 0.008 to 0.012%, N: 0.004 to 0.007%, S
And the total of Se is 0.0050 to 0.0080%, Sb: 0.014 to 0.01
Grain-oriented electrical steel slab containing 6% (N number = 30)
Is uniformly heated to 1000 to 1240 ° C, and then hot-rolled.
It was a 2.2 mm thick hot rolled sheet. Next, 1000
A hot-rolled sheet was annealed at 60 ° C. × 60 sec, and pickling and cold rolling were successively performed to obtain a cold-rolled sheet having a thickness of 0.34 mm. After degreasing these cold-rolled sheets, decarburization annealing was performed at a soaking temperature of 700 to 950 ° C., and an annealing separator mainly composed of MgO was applied to perform finish annealing. The iron loss W
17/50 was measured. In addition, the value of the sampling point of the test piece for iron loss measurement was used for FET.

【0016】鉄損W17/50 とFETの関係を図1に示
す。低鉄損となるFETには1000℃を中心とした好適範
囲があり、この範囲は40℃という狭い範囲であり、この
好適範囲を両側に外れると鉄損はいずれも高くなり、磁
気特性は劣化する。FETが、好適範囲より高い温度側
となると、インヒビターであるAlN の抑制効果が大きす
ぎ、また、反対に低い温度側となると、AlNが粗大析出
するため、磁気特性が劣化するものと考えられる。
FIG. 1 shows the relationship between the iron loss W 17/50 and the FET. FETs with low iron loss have a preferred range centered at 1000 ° C, which is a narrow range of 40 ° C. Outside of this preferred range on both sides the iron loss increases and the magnetic properties deteriorate. I do. It is considered that when the temperature of the FET is higher than the preferable range, the inhibitory effect of the inhibitor AlN is too large, and when the temperature is lower, the AlN is coarsely deposited, so that the magnetic characteristics are degraded.

【0017】このように、スラブ加熱温度を低温とする
製造条件下においても、熱間圧延の仕上圧延機入側にお
いて、シートバー(被圧延材)のFETを好適範囲内に
調整することにより、良好な磁気特性と、鋼板長手方向
の磁気特性のばらつきが少ない方向性電磁鋼板を製造で
きるという知見を得た。本発明は、上記した知見に基づ
いて完成されたものである。
As described above, even under the manufacturing conditions in which the slab heating temperature is low, by adjusting the FET of the sheet bar (rolled material) within a suitable range on the entrance side to the finishing mill in hot rolling, It has been found that good magnetic properties and a grain-oriented electrical steel sheet with little variation in the magnetic properties in the longitudinal direction of the steel sheet can be manufactured. The present invention has been completed based on the above findings.

【0018】すなわち、本発明は、重量%で、C:0.02
〜0.15%、Si:2.0 〜4.5 %、Mn:0.03〜2.5 %、Al:
0.005 〜0.050 %、N:0.003 〜0.013 %を含み、さら
にSおよびSeのうちの1種または2種:0.02%以下、お
よびSb:0.003 〜0.3 %、Sn:0.003 〜0.3 %、Ge:0.
003 〜0.3 %、Bi:0.003 〜0.3 %のうちから選ばれた
1種または2種以上を含有し、あるいはさらにCu:0.00
3 〜0.3 %、Cr:0.003 〜0.6 %のうちの1種または2
種を含有し、残部Feおよび不可避的不純物からなる方向
性電磁鋼スラブを、1280℃以下の温度に加熱し、熱間粗
圧延および仕上圧延により熱延板としたのち、該熱延板
に熱延板焼鈍を施し、ついで冷間圧延により最終板厚の
冷延板とし、該冷延板に湿水素中で脱炭焼鈍を施し、つ
いでMgOを主体とする焼鈍分離剤を塗布し、仕上焼鈍を
行う方向性電磁鋼板の製造方法において、前記方向性電
磁鋼スラブを加熱するに際し、該方向性電磁鋼スラブの
温度を、スラブの熱間圧延での長手方向最先端部の温度
と最後端部の温度との差が50〜150 ℃の範囲となるよう
に調整することを特徴とする方向性電磁鋼板の製造方法
である。
That is, in the present invention, C: 0.02% by weight
0.15%, Si: 2.0-4.5%, Mn: 0.03-2.5%, Al:
0.005 to 0.050%, N: 0.003 to 0.013%, one or two of S and Se: 0.02% or less, and Sb: 0.003 to 0.3%, Sn: 0.003 to 0.3%, Ge: 0.
One or more selected from 003 to 0.3%, Bi: 0.003 to 0.3%, or Cu: 0.00
One or two of 3 to 0.3%, Cr: 0.003 to 0.6%
A grain-oriented electrical steel slab containing seeds and the balance of Fe and unavoidable impurities is heated to a temperature of 1280 ° C. or lower, and hot-rolled and finish-rolled to form a hot-rolled sheet. Rolled sheet annealing, then cold-rolled to make a cold-rolled sheet of the final thickness, decarburized annealing in wet hydrogen to the cold-rolled sheet, then apply an annealing separator mainly composed of MgO, finish annealing In the method for producing a grain-oriented electrical steel sheet, the heating of the grain-oriented electrical steel slab, the temperature of the grain-oriented electrical steel slab, the temperature in the longitudinal direction foremost part in hot rolling of the slab and the rearmost end The method for producing a grain-oriented electrical steel sheet is characterized in that the difference between the temperature and the temperature is adjusted to be in the range of 50 to 150 ° C.

【0019】また、本発明では、重量%で、C:0.02〜
0.15%、Si:2.0 〜4.5 %、Mn:0.03〜2.5 %、Al:0.
005 〜0.050 %、N:0.003 〜0.013 %を含み、さらに
SおよびSeのうちの1種または2種:0.02%以下、およ
びSb:0.003 〜0.3 %、Sn:0.003 〜0.3 %、Ge:0.00
3 〜0.3 %、Bi:0.003 〜0.3 %のうちから選ばれた1
種または2種以上を含有し、あるいはさらにCu:0.003
〜0.3 %、Cr:0.003〜0.6 %のうちの1種または2種
を含有し、残部Feおよび不可避的不純物からなる方向性
電磁鋼スラブを、1280℃以下の温度に加熱し、熱間粗圧
延および仕上圧延により熱延板とし、該熱延板に熱延板
焼鈍を施し、ついで冷間圧延により最終板厚の冷延板と
したのち、該冷延板に湿水素中で脱炭焼鈍を施し、つい
でMgO を主体とする焼鈍分離剤を塗布し、仕上焼鈍を行
う方向性電磁鋼板の製造方法において、前記仕上圧延を
施すに際し、仕上圧延機の入側における被圧延材の温度
を、長手方向における最高温度と最低温度との差が40℃
以内となるように、調整することを特徴とする方向性電
磁鋼板の製造方法である。
In the present invention, C: 0.02 to 100% by weight.
0.15%, Si: 2.0-4.5%, Mn: 0.03-2.5%, Al: 0.
005 to 0.050%, N: 0.003 to 0.013%, and one or two of S and Se: 0.02% or less, and Sb: 0.003 to 0.3%, Sn: 0.003 to 0.3%, Ge: 0.00
1 selected from 3 to 0.3%, Bi: 0.003 to 0.3%
Contains one or more species, or additionally Cu: 0.003
A directional electromagnetic steel slab containing at least one of 0.3% and Cr: 0.003 to 0.6%, and the balance being Fe and unavoidable impurities, is heated to a temperature of 1280 ° C or lower, and hot rough-rolled. And hot-rolled sheet by finish rolling, hot-rolled sheet annealing is performed on the hot-rolled sheet, and then cold-rolled into a cold-rolled sheet having a final thickness, and then the cold-rolled sheet is subjected to decarburizing annealing in wet hydrogen. In the method for producing a grain-oriented electrical steel sheet in which an annealing separator mainly composed of MgO 2 is applied and finish annealing is performed, the temperature of the material to be rolled on the entry side of the finish rolling mill is set at the time of performing the finish rolling. 40 ° C difference between maximum and minimum temperature in direction
A method for producing a grain-oriented electrical steel sheet, characterized in that the grain size is adjusted to be within the range.

【0020】また、本発明では、重量%で、C:0.02〜
0.15%、Si:2.0 〜4.5 %、Mn:0.03〜2.5 %、Al:0.
005 〜0.050 %、N:0.003 〜0.013 %を含み、さらに
SおよびSeのうちの1種または2種:0.02%以下、およ
びSb:0.003 〜0.3 %、Sn:0.003 〜0.3 %、Ge:0.00
3 〜0.3 %、Bi:0.003 〜0.3 %のうちから選ばれた1
種または2種以上を含有し、あるいはさらにCu:0.003
〜0.3 %、Cr:0.003〜0.6 %のうちの1種または2種
を含有し、残部Feおよび不可避的不純物からなる方向性
電磁鋼スラブを、1280℃以下の温度に加熱し、熱間粗圧
延および仕上圧延により熱延板とし、該熱延板に熱延板
焼鈍を施し、ついで冷間圧延により最終板厚の冷延板と
したのち、該冷延板に湿水素中で脱炭焼鈍を施し、つい
でMgO を主体とする焼鈍分離剤を塗布し、仕上焼鈍を行
う方向性電磁鋼板の製造方法において、前記方向性電磁
鋼スラブを加熱するに際し、該方向性電磁鋼スラブの温
度を、スラブの熱間圧延での長手方向最先端部の温度と
最後端部の温度との差が50〜150 ℃の範囲になるように
調整し、さらに、前記仕上圧延を施すに際し、仕上圧延
機の入側における被圧延材の温度が、長手方向における
最高温度と最低温度との差が40℃以内となるように調整
することを特徴とする方向性電磁鋼板の製造方法であ
る。
In the present invention, C: 0.02 to
0.15%, Si: 2.0-4.5%, Mn: 0.03-2.5%, Al: 0.
005 to 0.050%, N: 0.003 to 0.013%, and one or two of S and Se: 0.02% or less, and Sb: 0.003 to 0.3%, Sn: 0.003 to 0.3%, Ge: 0.00
1 selected from 3 to 0.3%, Bi: 0.003 to 0.3%
Contains one or more species, or additionally Cu: 0.003
A directional electromagnetic steel slab containing at least one of 0.3% and Cr: 0.003 to 0.6%, and the balance being Fe and unavoidable impurities, is heated to a temperature of 1280 ° C or lower, and hot rough-rolled. And hot-rolled sheet by finish rolling, hot-rolled sheet annealing is performed on the hot-rolled sheet, and then cold-rolled into a cold-rolled sheet having a final thickness, and then the cold-rolled sheet is subjected to decarburizing annealing in wet hydrogen. In the method for producing a grain-oriented electrical steel sheet, which is subjected to finish annealing after applying an annealing separator mainly composed of MgO 2, the temperature of the grain-oriented electrical steel slab is increased by heating the grain-oriented electrical steel slab. In the hot rolling, the difference between the temperature at the foremost end in the longitudinal direction and the temperature at the rearmost end is adjusted to be in the range of 50 to 150 ° C. The difference between the maximum and minimum temperatures in the longitudinal direction is 40 Is a manufacturing method of a grain-oriented electrical steel sheet, characterized in that adjusted to be within.

【0021】[0021]

【発明の実施の形態】以下に、本発明の方向性電磁鋼板
の製造方法の限定理由について説明する。まず、本発明
で使用する方向性電磁鋼スラブの成分組成範囲の限定理
由について述べる。 C:0.02〜0.15% Cは、熱間圧延組織を改善し2次再結晶を進行させるの
に有用であり、このため少なくとも0.02%以上の含有を
必要とする。Cが0.02%未満では、熱間圧延中のγ変態
量が少なく熱間圧延組織が不安定となりやすい。熱間圧
延組織が不均一となった部分では2次再結晶が不完全と
なり磁気特性が劣化する。また、Cが0.15%を超える
と、脱炭焼鈍に長時間を要し、生産性が低下する。この
ようなことから、Cは0.02〜0.15%の範囲に限定した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the method for manufacturing a grain-oriented electrical steel sheet according to the present invention will be described below. First, the reason for limiting the component composition range of the grain-oriented electrical steel slab used in the present invention will be described. C: 0.02 to 0.15% C is useful for improving the hot-rolled structure and for promoting secondary recrystallization, and therefore requires at least 0.02% or more of C. If C is less than 0.02%, the amount of γ transformation during hot rolling is small, and the hot-rolled structure tends to be unstable. In a portion where the hot-rolled structure is not uniform, the secondary recrystallization is incomplete and the magnetic properties are deteriorated. On the other hand, when C exceeds 0.15%, a long time is required for decarburization annealing, and the productivity is reduced. For this reason, C is limited to the range of 0.02 to 0.15%.

【0022】Si:2.0 〜4.5 % Siは、鋼の比抵抗を増加させ、鉄損を低減するのに有用
であり、このためには2.0 %以上の含有を必要とする。
しかし、4.5 %を超えると、加工性が劣化する。このた
め、Siは2.0 〜4.5 %の範囲に限定した。 Mn:0.03〜2.5 % Mnは、Se、Sと結合しMnSe、MnS を形成し、インヒビタ
ーとして作用するほか、熱間圧延時の脆化防止に寄与し
熱間加工性を向上させるとともに、Siと同様に鋼の比抵
抗を増加させる。このためには、0.03%以上の含有が必
要であるが、2.5 %を超える含有は、γ変態を誘起して
磁気特性を劣化させる。このようなことから、Mnは0.03
〜2.5 %の範囲に限定した。
Si: 2.0 to 4.5% Si is useful for increasing the specific resistance of steel and reducing iron loss, and therefore requires a content of 2.0% or more.
However, when the content exceeds 4.5%, workability is deteriorated. For this reason, Si is limited to the range of 2.0 to 4.5%. Mn: 0.03 to 2.5% Mn combines with Se and S to form MnSe and MnS and acts as an inhibitor. In addition to contributing to the prevention of embrittlement during hot rolling and improving hot workability, Mn is combined with Si. Similarly, it increases the specific resistance of the steel. For this purpose, a content of 0.03% or more is necessary, but a content of more than 2.5% induces γ transformation and deteriorates magnetic properties. Therefore, Mn is 0.03
Limited to ~ 2.5% range.

【0023】Al:0.005 〜0.050 % Alは、Nと結合しAlN を形成し、インヒビターとして作
用する。このためには、0.005 %以上の含有を必要とす
る。一方、0.050 %を超える含有は、本発明におけるよ
うなスラブ加熱温度が低温の場合には、AlN の固溶が困
難となり、熱間圧延中にAlN の粗大化が生じ、熱延板焼
鈍の昇温過程でのAlN の微細析出が阻害される。このた
め、Al含有量を低減しAlN の溶解度積を低下させる必要
がある。このようなことから、Alは0.005 〜0.050 %の
範囲に限定した。
Al: 0.005 to 0.050% Al combines with N to form AlN and acts as an inhibitor. For this purpose, a content of 0.005% or more is required. On the other hand, when the slab heating temperature is low as in the present invention, the content exceeding 0.050% makes it difficult to form a solid solution of AlN, and the AlN becomes coarse during hot rolling, and the annealing of the hot-rolled sheet increases. Fine precipitation of AlN during the heating process is inhibited. For this reason, it is necessary to reduce the Al content and the solubility product of AlN. For these reasons, Al was limited to the range of 0.005 to 0.050%.

【0024】N:0.003 〜0.013 % Nは、Alと同様、AlN の構成成分であり、インヒビター
として作用する。このためには、0.003 %以上の含有を
必要とする。一方、0.013 %を超える含有は、鋼中ガス
化し、製品表面にふくれなどの表面欠陥を発生しやす
い。このため、Nは0.003 〜0.013 %の範囲に限定し
た。
N: 0.003 to 0.013% N, like Al, is a component of AlN and acts as an inhibitor. For this purpose, a content of 0.003% or more is required. On the other hand, if the content exceeds 0.013%, gasification occurs in the steel, and surface defects such as blisters are easily generated on the product surface. For this reason, N is limited to the range of 0.003 to 0.013%.

【0025】SおよびSeのうちの1種または2種:0.02
%以下 S、Seは、MnS 、MnSeを作り、インヒビターとして作用
する。本発明におけるようなスラブ加熱温度が低温の場
合には、AlN の不均一析出核となるこれら硫化物、セレ
ン化物を減少させ、AlN を均一析出させるために、S、
Se含有量を低めに調整する必要がある。このようなこと
から、本発明では、SおよびSeのうちの1種または2種
を合計で0.02%以下に限定した。
One or two of S and Se: 0.02
% Or less S and Se form MnS and MnSe and act as inhibitors. When the slab heating temperature is low as in the present invention, these sulfides and selenides serving as heterogeneous precipitation nuclei of AlN are reduced, and S and S are deposited in order to uniformly precipitate AlN.
It is necessary to adjust the Se content lower. For this reason, in the present invention, one or two of S and Se are limited to 0.02% or less in total.

【0026】Sb:0.003 〜0.3 %、Sn:0.003 〜0.3
%、Ge:0.003 〜0.3 %、Bi:0.003〜0.3 %のうちか
ら選ばれた1種または2種以上 Sb、Sn、Ge、Biは、いずれも粒界偏析型元素であり、粒
界に偏析して2次再結晶を安定化する作用を有してお
り、Sb、Sn、Ge、Biの内から選ばれた1種または2種以
上を含有する。Sb、Sn、Ge、Biがいずれも0.003 %未満
では、粒界偏析量が少なく十分な2次再結晶を安定化効
果が期待できない。一方、Sb、Sn、Ge、Biがいずれも0.
3 %を超えると、粒界偏析量が多くなり、脱炭焼鈍時に
酸素量の低下、脱炭量の低下などを生じやすい。このた
め、Sb、Sn、Ge、Biは、いずれも0.003 〜0.3 %の範囲
とするのが好ましい。
Sb: 0.003 to 0.3%, Sn: 0.003 to 0.3%
%, Ge: 0.003 to 0.3%, Bi: 0.003 to 0.3% Sb, Sn, Ge, and Bi are all grain boundary segregation elements and segregate at the grain boundaries. And has the effect of stabilizing secondary recrystallization, and contains one or more selected from Sb, Sn, Ge, and Bi. If Sb, Sn, Ge, and Bi are all less than 0.003%, the effect of stabilizing a sufficient secondary recrystallization with a small amount of grain boundary segregation cannot be expected. On the other hand, Sb, Sn, Ge, and Bi are all 0.
If it exceeds 3%, the amount of grain boundary segregation increases, and the amount of oxygen and the amount of decarburization tend to decrease during decarburization annealing. For this reason, Sb, Sn, Ge, and Bi are all preferably in the range of 0.003 to 0.3%.

【0027】Cu:0.003 〜0.3 %、Cr:0.003 〜0.6 %
のうちから選ばれた1種または2種 Cu、Crは、脱炭焼鈍時に鋼板表面の酸化層を安定化する
作用を有しており、必要に応じ添加できる。このような
作用は、いずれも0.003 %以上の含有で認められるが、
Cuでは0.3 %を超える含有、Crでは0.6 %を超える含有
は鋼板表面の酸化層の安定性が低下する。このため、Cu
は0.003 〜0.3 %、Crは0.003 〜0.6 %の範囲とするの
が好ましい。
Cu: 0.003 to 0.3%, Cr: 0.003 to 0.6%
One or two selected from the above, Cu and Cr, have an action of stabilizing the oxide layer on the steel sheet surface during decarburization annealing, and can be added as necessary. All of these effects are observed at a content of 0.003% or more.
If the content of Cu exceeds 0.3% and the content of Cr exceeds 0.6%, the stability of the oxide layer on the steel sheet surface decreases. Therefore, Cu
Is preferably in the range of 0.003 to 0.3%, and Cr is preferably in the range of 0.003 to 0.6%.

【0028】本発明では、上記した成分以外の残部はFe
および不可避的不純物からなる。つぎに、本発明の製造
工程について説明する。上記した範囲の組成を有する溶
鋼を、通常公知の転炉等の溶製方法により溶製したの
ち、連続鋳造法により方向性電磁鋼スラブとしても、あ
るいは造塊法で鋼塊としたのち分塊圧延によりスラブと
してもよい。ついで、これら方向性電磁鋼スラブは、12
80℃以下の温度、好ましくは1250℃未満、に加熱され
る。
In the present invention, the balance other than the above components is Fe
And unavoidable impurities. Next, the manufacturing process of the present invention will be described. After smelting the molten steel having the composition in the above-mentioned range by a smelting method such as a commonly-known converter, it is also used as a directional electromagnetic steel slab by a continuous casting method, or as a steel ingot by an ingot-forming method, and then lumped. The slab may be formed by rolling. Next, these grain-oriented electrical steel slabs
Heated to a temperature below 80 ° C, preferably below 1250 ° C.

【0029】本発明では、方向性電磁鋼スラブを加熱す
るに際し、スラブの温度を、スラブの熱間圧延での長手
方向最先端部(LE部)と最後端部(TE部)の温度差
が50〜150 ℃の範囲になるように調整するのが好まし
い。本発明では、スラブの加熱は、最後端部(TE部)
が最も高い温度となるようにスラブ長手方向に温度勾配
を付与するのが望ましい。通常、熱間圧延では、仕上圧
延機入側でのシートバーの温度は、先端ほど高く後端ほ
ど低くなる傾向がある。このため、シートバーでの長手
方向での温度差を少なくする目的で、スラブにおける熱
間圧延での長手方向最先端部(LE部)から最後端部
(TE部)にわたり、連続的に温度勾配を付与する。温
度勾配の付与は、例えば、加熱炉の各ゾーンの温度制御
装置を利用して、各ゾーンの設定温度をLE部とTE部
の温度差が50〜150 ℃の範囲になるように調整すること
により達成できる。
In the present invention, when heating the grain-oriented electrical steel slab, the temperature of the slab is determined by the difference between the temperature at the foremost end (LE) and the end (TE) in the longitudinal direction in hot rolling of the slab. It is preferable to adjust the temperature to be in the range of 50 to 150 ° C. In the present invention, the heating of the slab is performed at the rear end (TE section).
Is preferably provided with a temperature gradient in the longitudinal direction of the slab such that the temperature of the slab becomes the highest. Normally, in hot rolling, the temperature of the sheet bar on the entrance side of the finishing mill tends to be higher at the front end and lower at the rear end. For this reason, in order to reduce the temperature difference in the longitudinal direction of the sheet bar, the temperature gradient is continuously changed from the foremost end (LE part) to the last end (TE part) in the longitudinal direction in hot rolling of the slab. Is given. The application of the temperature gradient is performed, for example, by using a temperature control device for each zone of the heating furnace and adjusting the set temperature of each zone so that the temperature difference between the LE and TE sections is in the range of 50 to 150 ° C. Can be achieved by

【0030】また、加熱炉出側で制御冷却を施して、上
記温度範囲となるように調整してももよい。加熱された
スラブのLE部とTE部の温度差が50℃未満では、LE
部とTE部のFET差を解消するには不十分であり、長
手方向で抑制力にばらつきが生じ、製品鋼板長手方向の
磁気特性ばらつきをもたらす。一方、加熱されたスラブ
のLE部とTE部の温度差が150 ℃を超えると、LE部
よりもTE部の温度が高くなりすぎ、やはり製品鋼板長
手方向の磁気特性ばらつきをもたらす。このため、スラ
ブのLE部とTE部の温度差は50〜 150℃の範囲に調整
するのが好ましい。なお、より好ましくは、スラブのL
E部とTE部の温度差は100 〜150 ℃の範囲である。
Alternatively, the temperature may be controlled so as to be in the above-mentioned temperature range by performing controlled cooling on the exit side of the heating furnace. If the temperature difference between the LE and TE parts of the heated slab is less than 50 ° C, the LE
It is not sufficient to eliminate the FET difference between the part and the TE part, and the suppression force varies in the longitudinal direction, resulting in variation in the magnetic properties in the longitudinal direction of the product steel sheet. On the other hand, if the temperature difference between the LE portion and the TE portion of the heated slab exceeds 150 ° C., the temperature of the TE portion becomes too high than that of the LE portion, which also causes variation in magnetic properties in the longitudinal direction of the product steel sheet. For this reason, it is preferable to adjust the temperature difference between the LE and TE portions of the slab to a range of 50 to 150 ° C. More preferably, the slab L
The temperature difference between the E section and the TE section is in the range of 100 to 150 ° C.

【0031】スラブは、所定の温度に加熱されたのち、
熱間粗圧延および仕上圧延を施され熱延板とされる。本
発明では、熱間粗圧延後のシートバーに制御冷却等を施
し、シートバー(被圧延材)の長手方向温度を調整した
のち仕上圧延を施す。仕上圧延機の入側における被圧延
材の温度(FET)は、長手方向における最高温度と最
低温度との差が40℃以内となるように調整されるのが好
ましい。
After the slab is heated to a predetermined temperature,
Hot rough rolling and finish rolling are performed to obtain a hot rolled sheet. In the present invention, after the hot rough rolling, the sheet bar is subjected to controlled cooling or the like, and after the longitudinal temperature of the sheet bar (rolled material) is adjusted, finish rolling is performed. It is preferable that the temperature (FET) of the material to be rolled on the entry side of the finishing mill is adjusted so that the difference between the maximum temperature and the minimum temperature in the longitudinal direction is within 40 ° C.

【0032】本発明では、FETの調整のみを実施して
もよく、またスラブ加熱条件の調整と組合せて実施して
もよい。FETの調整とスラブ加熱条件の調整とを組み
合わせるほうが、FETの調整が容易であり、FETの
長手方向でのばらつきも少なく、磁気特性の均一性とい
う観点からはより好ましい。被圧延材の長手方向におけ
る最高温度と最低温度との差が40℃を超えると、AlN の
析出状態が大きく変化し長手方向の磁気特性のばらつき
が顕著となる。このため、仕上圧延機入側における、被
圧延材の長手方向における最高温度と最低温度との差を
40℃以下とするのが好ましい。
In the present invention, only the adjustment of the FET may be performed, or may be performed in combination with the adjustment of the slab heating conditions. It is more preferable to combine the adjustment of the FET and the adjustment of the slab heating condition from the viewpoint of easy adjustment of the FET, less variation in the longitudinal direction of the FET, and uniform magnetic properties. If the difference between the maximum temperature and the minimum temperature in the longitudinal direction of the material to be rolled exceeds 40 ° C., the precipitation state of AlN changes greatly, and the variation in magnetic properties in the longitudinal direction becomes remarkable. For this reason, the difference between the maximum temperature and the minimum temperature in the longitudinal direction
The temperature is preferably set to 40 ° C. or lower.

【0033】ついで、熱延板は、インヒビター微細析出
のため熱延板焼鈍を施される。熱延板焼鈍は、 800〜11
00℃の範囲とするのが磁気特性の観点からは好ましい。
熱延板は、熱延板焼鈍を施されたのち、酸洗され、つい
で冷間圧延により最終板厚の冷延板とされる。冷間圧延
に使用される圧延機は、タンデム圧延機でもゼンジミア
圧延機でもよい。冷間圧延をタンデム圧延機で行う場合
には、望ましくは100 ℃以上の温度で圧延を行うのが好
ましい。もちろん、ゼンジミア圧延機で冷間圧延を行う
場合にも、温間圧延とするのが磁気特性の面から望まし
い。
Next, the hot rolled sheet is subjected to hot rolled sheet annealing for fine precipitation of the inhibitor. Hot rolled sheet annealing is 800 ~ 11
It is preferable that the temperature be in the range of 00 ° C. from the viewpoint of magnetic properties.
The hot-rolled sheet is annealed, pickled, and then cold-rolled into a cold-rolled sheet having a final thickness. The rolling mill used for the cold rolling may be a tandem rolling mill or a Sendzimir rolling mill. When the cold rolling is performed by a tandem rolling mill, it is preferable to perform the rolling at a temperature of 100 ° C. or more. Of course, even when cold rolling is performed by a Sendzimir rolling mill, warm rolling is desirable from the viewpoint of magnetic properties.

【0034】ついで、冷延板は、湿水素中で脱炭焼鈍を
施され、ついでMgO を主体とする焼鈍分離剤を塗布され
たのち、仕上焼鈍を施され、製品板とされる。なお、脱
炭焼鈍条件、仕上焼鈍条件は通常公知の条件として何ら
問題はない。
Next, the cold-rolled sheet is subjected to decarburizing annealing in wet hydrogen, then applied with an annealing separator mainly composed of MgO, and then subjected to finish annealing to obtain a product sheet. Note that the decarburizing annealing condition and the finish annealing condition do not have any problem as generally known conditions.

【0035】[0035]

【実施例】表1に示す組成の溶鋼を転炉で溶製し、連続
鋳造法で方向性電磁鋼スラブとした。ついで、これらス
ラブに、表2に示す、均一加熱、またはスラブ最先
端部を低く、最後端部を高くなる温度勾配を付与する加
熱、2種類の各条件で加熱し、熱間圧延を施し2.4 〜2.
6mm 厚の熱延板とした。なお、スラブ加熱における温度
勾配は、加熱炉の各ゾーンの制御装置を調整することに
より行った。また、1部のスラブについては、加熱炉出
側で制御冷却を行った。また、1部のシートバーについ
て、仕上圧延機入側で制御冷却を施し、被圧延材の長手
方向のFETを調整した。
EXAMPLES Molten steel having the composition shown in Table 1 was melted in a converter, and was made into a directional magnetic steel slab by a continuous casting method. Then, these slabs were heated uniformly under heating or under two kinds of conditions shown in Table 2 or heating to give a temperature gradient in which the leading end of the slab was low and the rear end was high. ~ 2.
A 6 mm thick hot rolled sheet was used. In addition, the temperature gradient in slab heating was performed by adjusting the control device of each zone of the heating furnace. In addition, for part of the slab, controlled cooling was performed on the exit side of the heating furnace. Further, for one part of the sheet bar, controlled cooling was performed on the entrance side of the finishing mill to adjust the FET in the longitudinal direction of the material to be rolled.

【0036】ついで、熱延板に1000℃×60sec の熱延板
焼鈍と、酸洗を施したのち、冷間圧延を施し、最終厚さ
0.34mmの冷延板とした。なお、冷間圧延は、2パス目以
降から最終圧延パス前までの板温度を210 ℃以上とした
状態で行った。ついで、冷延板を脱脂したのち、脱炭焼
鈍を行い、MgO を主体とする焼鈍分離剤を板表面に塗布
し、コイル状に巻き取り、仕上焼鈍を行った。仕上焼鈍
は、室温〜850 ℃の範囲を窒素ガス雰囲気とし、850 〜
1150℃の範囲を25vol %N2-75vol%H2混合ガス雰囲気と
して、500 〜1180℃の温度範囲を25℃/hで昇温し、1180
℃で5h 保持する条件とした。
Next, the hot-rolled sheet is subjected to hot-rolled sheet annealing at 1000 ° C. × 60 sec, pickling, cold rolling, and final thickness.
A 0.34 mm cold rolled sheet was used. The cold rolling was performed in a state where the plate temperature from the second pass and before the final rolling pass was 210 ° C. or higher. Next, after the cold-rolled sheet was degreased, decarburization annealing was performed, an annealing separator mainly composed of MgO was applied to the sheet surface, wound up in a coil shape, and subjected to finish annealing. The finish annealing is performed at a temperature in the range of room temperature to 850 ° C in a nitrogen gas atmosphere.
The temperature range of 1150 ° C is 25 vol% N 2 -75 vol% H 2 mixed gas atmosphere, and the temperature range of 500 to 1180 ° C. is raised at 25 ° C./h to 1180 ° C.
C. for 5 hours.

【0037】得られた鋼板の磁気特性(鉄損:
17/50 )を表2に示す。なお、鉄損は同一コイル内の
最大値、およびばらつきを求めた。
The magnetic properties (iron loss:
W 17/50 ) are shown in Table 2. In addition, the iron loss calculated | required the maximum value and the dispersion | variation in the same coil.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】本発明例は、鉄損:W17/50 が1.11〜1.20
W/kg と優れた磁気特性を示し、さらにコイル内のばら
つきも0.01〜0.05の範囲で、長手方向での鉄損ばらつき
の少ない鋼板となっている。一方、本発明の範囲を外れ
る比較例では、成分が本発明の範囲を外れる場合には、
磁性が大幅に劣化し、成分が本発明の範囲内でも、長手
方向の温度差制御が本発明の範囲を外れる場合には、鉄
損:W17/50 が1.17〜1.33 W/kg と高く、しかもコイル
内のばらつきも0.10〜0.23と大きい。なお、スラブの最
先端部と最後端部の温度差を50〜150 ℃に調整し、かつ
仕上圧延機入側温度を40℃以下とすることにより、コイ
ル内の鉄損のばらつきはより少なくなる。
In the examples of the present invention, iron loss: W 17/50 is 1.11 to 1.20.
It shows excellent magnetic properties of W / kg, and the variation in the coil is in the range of 0.01 to 0.05, and the steel loss is small in the longitudinal direction. On the other hand, in Comparative Examples outside the scope of the present invention, when the component is outside the scope of the present invention,
If the magnetism is significantly deteriorated and the components are within the range of the present invention, but the temperature difference control in the longitudinal direction is out of the range of the present invention, the iron loss: W 17/50 is as high as 1.17 to 1.33 W / kg, Moreover, the variation in the coil is as large as 0.10 to 0.23. In addition, by adjusting the temperature difference between the foremost part and the last part of the slab to 50 to 150 ° C and keeping the temperature on the finishing mill entry side to 40 ° C or less, the variation in iron loss in the coil is reduced. .

【0042】[0042]

【発明の効果】本発明によれば、スラブ加熱温度が普通
鋼並に低温としても鋼板長手方向の磁気特性が均質な方
向性電磁鋼板を工業的に安定して製造でき、産業上格段
の効果を奏する。
According to the present invention, even when the slab heating temperature is as low as that of ordinary steel, a grain-oriented electrical steel sheet having a uniform magnetic property in the longitudinal direction of the steel sheet can be manufactured in an industrially stable manner. To play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上圧延機入側温度と鉄損の関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the temperature at the entrance of a finishing mill and iron loss.

【図2】熱延コイル長手方向における仕上圧延機入側温
度の変化の1例を示すグラフである。
FIG. 2 is a graph showing an example of a change in the temperature on the entrance side of a finishing mill in the longitudinal direction of a hot-rolled coil.

【図3】従来の熱間圧延コイルの長手方向における仕上
圧延機入側温度(FET)の最高温度と最低温度の差の
ばらつきを示すグラフである。
FIG. 3 is a graph showing a variation in a difference between a maximum temperature and a minimum temperature of a finishing rolling mill entrance side temperature (FET) in a longitudinal direction of a conventional hot-rolled coil.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 敦志 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 平嶋 浩一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA02 BA01 CA01 CA02 CA03 CA07 CA09 FA01 FA04 FA12 JA04 LA01 5E041 AA02 AA11 AA19 BC01 CA02 CA04 HB05 HB07 HB11 NN01 NN18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsushi Yamamoto 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. Chome (without address) Mizushima Works, Kawasaki Steel F-term (reference) 4K033 AA02 BA01 CA01 CA02 CA03 CA07 CA09 FA01 FA04 FA12 JA04 LA01 5E041 AA02 AA11 AA19 BC01 CA02 CA04 HB05 HB07 HB11 NN01 NN18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.02〜0.15%、 Si:2.0 〜4.5 %、 Mn:0.03〜2.5 %、 Al:0.005 〜0.050 %、 N:0.003 〜0.013 % を含み、さらにSおよびSeのうちの1種または2種:0.
02%以下、およびSb:0.003 〜0.3 %、Sn:0.003 〜0.
3 %、Ge:0.003 〜0.3 %、Bi:0.003〜0.3 %のうち
から選ばれた1種または2種以上を含有し、あるいはさ
らにCu:0.003 〜0.3 %、Cr:0.003 〜0.6 %のうちの
1種または2種を含有し、残部Feおよび不可避的不純物
からなる方向性電磁鋼スラブを、1280℃以下の温度に加
熱し、熱間粗圧延および仕上圧延により熱延板とし、該
熱延板に熱延板焼鈍を施し、ついで冷間圧延により最終
板厚の冷延板としたのち、該冷延板に湿水素中で脱炭焼
鈍を施し、ついでMgO を主体とする焼鈍分離剤を塗布
し、仕上焼鈍を行う方向性電磁鋼板の製造方法におい
て、前記方向性電磁鋼スラブを加熱するに際し、該方向
性電磁鋼スラブの温度を、スラブの熱間圧延での長手方
向最先端部の温度と最後端部の温度との差が50〜150℃
の範囲となるように調整することを特徴とする方向性電
磁鋼板の製造方法。
C. 0.02 to 0.15%, Si: 2.0 to 4.5%, Mn: 0.03 to 2.5%, Al: 0.005 to 0.050%, N: 0.003 to 0.013% by weight, and further contains S and Se. One or two of the following: 0.
02% or less, Sb: 0.003 to 0.3%, Sn: 0.003 to 0.
3%, Ge: 0.003 to 0.3%, Bi: One or more selected from 0.003 to 0.3%, or Cu: 0.003 to 0.3%, Cr: 0.003 to 0.6% A directional electromagnetic steel slab containing one or two kinds, the balance being Fe and unavoidable impurities, is heated to a temperature of 1280 ° C. or lower, and is hot-rolled by hot rough rolling and finish rolling. Hot rolled sheet, cold rolled to obtain a cold rolled sheet having the final thickness, then decarburizing annealing in wet hydrogen, and then applying an annealing separator mainly composed of MgO. Then, in the method for producing a grain-oriented electrical steel sheet to be subjected to finish annealing, when heating the grain-oriented electrical steel slab, the temperature of the grain-oriented electrical steel slab, the temperature of the longitudinally leading end in hot rolling of the slab And the temperature at the rear end is 50-150 ℃
A method for producing a grain-oriented electrical steel sheet, wherein the method is adjusted to fall within the range of.
【請求項2】 重量%で、 C:0.02〜0.15%、 Si:2.0 〜4.5 %、 Mn:0.03〜2.5 %、 Al:0.005 〜0.050 %、 N:0.003 〜0.013 % を含み、さらにSおよびSeのうちの1種または2種:0.
02%以下、およびSb:0.003 〜0.3 %、Sn:0.003 〜0.
3 %、Ge:0.003 〜0.3 %、Bi:0.003〜0.3 %のうち
から選ばれた1種または2種以上を含有し、あるいはさ
らにCu:0.003 〜0.3 %、Cr:0.003 〜0.6 %のうちの
1種または2種を含有し、残部Feおよび不可避的不純物
からなる方向性電磁鋼スラブを、1280℃以下の温度に加
熱し、熱間粗圧延および仕上圧延により熱延板としたの
ち、該熱延板に熱延板焼鈍を施し、ついで冷間圧延によ
り最終板厚の冷延板とし、該冷延板に湿水素中で脱炭焼
鈍を施し、ついでMgO を主体とする焼鈍分離剤を塗布
し、仕上焼鈍を行う方向性電磁鋼板の製造方法におい
て、前記仕上圧延を施すに際し、仕上圧延機の入側にお
ける被圧延材の温度を、長手方向における最高温度と最
低温度との差が40℃以内となるように、調整することを
特徴とする方向性電磁鋼板の製造方法。
2. In% by weight, C: 0.02 to 0.15%, Si: 2.0 to 4.5%, Mn: 0.03 to 2.5%, Al: 0.005 to 0.050%, N: 0.003 to 0.013%, and further contains S and Se. One or two of the following: 0.
02% or less, Sb: 0.003 to 0.3%, Sn: 0.003 to 0.
3%, Ge: 0.003 to 0.3%, Bi: One or more selected from 0.003 to 0.3%, or Cu: 0.003 to 0.3%, Cr: 0.003 to 0.6% A grain-oriented electrical steel slab containing one or two kinds, the balance being Fe and unavoidable impurities, is heated to a temperature of 1280 ° C. or lower, and is hot-rolled by hot rough rolling and finish rolling. The rolled sheet is subjected to hot-rolled sheet annealing, and then cold-rolled into a cold-rolled sheet having a final thickness, and the cold-rolled sheet is subjected to decarburization annealing in wet hydrogen, and then coated with an annealing separator mainly composed of MgO. Then, in the method for manufacturing a grain-oriented electrical steel sheet to be subjected to finish annealing, when performing the finish rolling, the temperature of the material to be rolled on the entry side of the finish rolling mill, the difference between the maximum temperature and the minimum temperature in the longitudinal direction is 40 ° C. A method for producing a grain-oriented electrical steel sheet, wherein the grain size is adjusted to be within the range.
【請求項3】 重量%で、 C:0.02〜0.15%、 Si:2.0 〜4.5 %、 Mn:0.03〜2.5 %、 Al:0.005 〜0.050 %、 N:0.003 〜0.013 % を含み、さらにSおよびSeのうちの1種または2種:0.
02%以下、およびSb:0.003 〜0.3 %、Sn:0.003 〜0.
3 %、Ge:0.003 〜0.3 %、Bi:0.003〜0.3 %のうち
から選ばれた1種または2種以上を含有し、あるいはさ
らにCu:0.003 〜0.3 %、Cr:0.003 〜0.6 %のうちの
1種または2種を含有し、残部Feおよび不可避的不純物
からなる方向性電磁鋼スラブを、1280℃以下の温度に加
熱し、熱間粗圧延および仕上圧延により熱延板とし、該
熱延板に熱延板焼鈍を施し、ついで冷間圧延により最終
板厚の冷延板とし、該冷延板に湿水素中で脱炭焼鈍を施
し、ついでMgO を主体とする焼鈍分離剤を塗布し、仕上
焼鈍を行う方向性電磁鋼板の製造方法において、前記方
向性電磁鋼スラブを加熱するに際し、該方向性電磁鋼ス
ラブの温度を、スラブの熱間圧延での長手方向最先端部
の温度と最後端部の温度との差が50〜150℃の範囲にな
るように調整し、さらに、前記仕上圧延を施すに際し、
仕上圧延機の入側における被圧延材の温度が、長手方向
における最高温度と最低温度との差が40℃以内となるよ
うに調整することを特徴とする方向性電磁鋼板の製造方
法。
3. In% by weight, C: 0.02 to 0.15%, Si: 2.0 to 4.5%, Mn: 0.03 to 2.5%, Al: 0.005 to 0.050%, N: 0.003 to 0.013%, and further contains S and Se. One or two of the following: 0.
02% or less, Sb: 0.003 to 0.3%, Sn: 0.003 to 0.
3%, Ge: 0.003 to 0.3%, Bi: One or more selected from 0.003 to 0.3%, or Cu: 0.003 to 0.3%, Cr: 0.003 to 0.6% A directional electromagnetic steel slab containing one or two kinds, the balance being Fe and unavoidable impurities, is heated to a temperature of 1280 ° C. or lower, and is hot-rolled by hot rough rolling and finish rolling. Is subjected to hot-rolled sheet annealing, and then cold-rolled into a cold-rolled sheet having a final thickness, decarburization annealing is performed on the cold-rolled sheet in wet hydrogen, and then an annealing separator mainly containing MgO is applied. In the method for producing a grain-oriented electrical steel sheet to be subjected to finish annealing, in heating the grain-oriented electrical steel slab, the temperature of the grain-oriented electrical steel slab is set to the temperature at the forefront in the longitudinal direction in hot rolling of the slab and the last. The temperature was adjusted so that the difference from the temperature at the end was in the range of 50 to 150 ° C. In doing so,
A method for producing a grain-oriented electrical steel sheet, wherein the temperature of a material to be rolled on the entry side of a finishing mill is adjusted so that a difference between a maximum temperature and a minimum temperature in a longitudinal direction is within 40 ° C.
JP37391298A 1998-12-28 1998-12-28 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4206538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37391298A JP4206538B2 (en) 1998-12-28 1998-12-28 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37391298A JP4206538B2 (en) 1998-12-28 1998-12-28 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2000199014A true JP2000199014A (en) 2000-07-18
JP4206538B2 JP4206538B2 (en) 2009-01-14

Family

ID=18502962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37391298A Expired - Fee Related JP4206538B2 (en) 1998-12-28 1998-12-28 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4206538B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009244A (en) * 2016-07-01 2018-01-18 Jfeスチール株式会社 Method for producing grain oriented silicon steel sheet
CN110318005A (en) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 A kind of high magnetic induction grain-oriented silicon steel and its manufacturing method
CN110791635A (en) * 2019-09-30 2020-02-14 鞍钢股份有限公司 Method for preparing high-magnetic-induction oriented silicon steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009244A (en) * 2016-07-01 2018-01-18 Jfeスチール株式会社 Method for producing grain oriented silicon steel sheet
CN110318005A (en) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 A kind of high magnetic induction grain-oriented silicon steel and its manufacturing method
CN110318005B (en) * 2018-03-30 2021-12-17 宝山钢铁股份有限公司 High magnetic induction oriented silicon steel and manufacturing method thereof
CN110791635A (en) * 2019-09-30 2020-02-14 鞍钢股份有限公司 Method for preparing high-magnetic-induction oriented silicon steel

Also Published As

Publication number Publication date
JP4206538B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
KR101149792B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, and Method for manufacturing the same
JP5782527B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP4203238B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP7507157B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
US20230235434A1 (en) Oriented electrical steel sheet and method for preparing same
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
WO1991016462A1 (en) Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
JP3846064B2 (en) Oriented electrical steel sheet
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
US5261971A (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JP4206538B2 (en) Method for producing grain-oriented electrical steel sheet
KR101263795B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, Method for manufacturing the same, and a slab using therefor
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
KR102319831B1 (en) Method of grain oriented electrical steel sheet
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
KR101318275B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
JP7221480B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP6228956B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees