JP2000198872A - Expanded polypropylene-based resin particle, and formed product thereof - Google Patents

Expanded polypropylene-based resin particle, and formed product thereof

Info

Publication number
JP2000198872A
JP2000198872A JP10341002A JP34100298A JP2000198872A JP 2000198872 A JP2000198872 A JP 2000198872A JP 10341002 A JP10341002 A JP 10341002A JP 34100298 A JP34100298 A JP 34100298A JP 2000198872 A JP2000198872 A JP 2000198872A
Authority
JP
Japan
Prior art keywords
particles
expanded
endothermic
foamed
polypropylene resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10341002A
Other languages
Japanese (ja)
Other versions
JP4157206B2 (en
Inventor
Kazuo Tsurugai
和男 鶴飼
Akinobu Taira
晃暢 平
Toru Yamaguchi
徹 山口
Toshio Tokoro
寿男 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10324571A external-priority patent/JP2000129028A/en
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP34100298A priority Critical patent/JP4157206B2/en
Publication of JP2000198872A publication Critical patent/JP2000198872A/en
Application granted granted Critical
Publication of JP4157206B2 publication Critical patent/JP4157206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain expanded polypropylene-based resin particles, produced at a higher productivity than that associated with the conventional method, which needs a high intraparticle pressure to improve fusibility of the particles to each other during the forming step and curing for extended periods to recover shrinkage of the formed product. SOLUTION: The expanded polypropylene-based resin particles are based on a propylene-based random copolymer or random block copolymer, and have a melt flow index of 0.5 to 6 g/10 min, Z-average molecular weight (as polystyrene) of 1.2×106 or more, melting point of 130 deg.C or higher, and a DSC curve (produced by differential scanning calorimetry, where 1 to 3 mg of expanded particles are heated at 10 deg.C/min from room temperature to 200 deg.C) with at least two endothermic peaks, one or more peaks appearing at higher temperature than the intrinsic peak having an endothermic energy of 1 to 20 J/g.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリオレフィン系樹
脂発泡粒子及びポリプロピレン系樹脂発泡粒子成形体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to expanded polyolefin resin particles and expanded polypropylene resin particles.

【0002】[0002]

【従来の技術】ポリプロピレン系樹脂発泡粒子を金型内
に充填し、スチーム等の熱媒体によって加熱して金型形
状通りの発泡成形体を得る型内発泡成形法は、緩衝性、
断熱性、機械的物性等の諸物性に優れ、しかも複雑な形
状の製品も比較的容易に得ることができ、この方法によ
って得られた型内発泡成形体は、断熱材や各種製品の緩
衝材、包装材等として広く利用されている。
2. Description of the Related Art An in-mold foam molding method in which foamed polypropylene resin particles are filled in a mold and heated by a heat medium such as steam to obtain a foamed molded article in the shape of the mold is used.
It has excellent physical properties such as heat insulation and mechanical properties, and products with complicated shapes can be obtained relatively easily. In-mold foamed products obtained by this method can be used as insulation materials and cushioning materials for various products. Widely used as packaging materials.

【0003】型内発泡成形法において用いるポリプロピ
レン系樹脂発泡粒子には、金型に充填してスチーム等で
加熱した際に、発泡粒子相互の融着性が優れるものであ
ること、得られた成形体を金型から取り出した後に、成
形体に生じた収縮の回復性に優れるものであること等の
物性が要求される。従来は、融着性、収縮回復性の良好
なものを得るために発泡粒子の二次発泡力を高るように
して成形している。そして、発泡粒子の二次発泡力を高
める方法として、型内成形用のポリプロピレン系樹脂発
泡粒子の基材樹脂として、溶融時の流動性が良好なメル
トフローインデックス(MFI)が7〜15g/10分
程度のものを用いることや、発泡粒子を成形する前に発
泡粒子を空気等で加圧処理して内圧を高めることが行わ
れている。
[0003] The expanded polypropylene resin particles used in the in-mold expansion molding method must have excellent fusion property between the expanded particles when filled in a mold and heated with steam or the like. Physical properties such as excellent recoverability of shrinkage generated in the molded article after removing the article from the mold are required. Conventionally, in order to obtain a material having good fusion-adhesiveness and shrinkage-recovery properties, molding is performed by increasing the secondary foaming force of the foamed particles. As a method of increasing the secondary foaming force of the foamed particles, as a base resin of the polypropylene-based resin foamed particles for in-mold molding, a melt flow index (MFI) having a good flowability at the time of melting is 7 to 15 g / 10. In order to increase the internal pressure, foamed particles are subjected to pressure treatment with air or the like before molding the expanded particles.

【0004】また、高発泡倍率の発泡粒子を成形に用い
る場合、高発泡倍率の発泡粒子は低発泡倍率のものより
もセル膜強度が弱く、得られた発泡成形体を金型から取
り出した後の収縮回復性が特に悪いため、型内発泡成形
前に発泡粒子に更に高い内圧を付与したり、金型から取
り出した後の発泡成形体の加熱養生を長く行う等の方法
が採用されていた。
When foamed particles having a high expansion ratio are used for molding, the foamed particles having a high expansion ratio have a lower cell membrane strength than those having a low expansion ratio, and the obtained foamed molded product is taken out from a mold. In particular, since the shrinkage recovery property is particularly poor, methods such as applying a higher internal pressure to the foamed particles before in-mold foam molding, or performing a long heat curing of the foamed molded article after being removed from the mold have been adopted. .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、発泡粒
子に高い内圧を付与すると、発泡粒子を加熱成形した後
に長時間の冷却が必要となり、成形体の熱成形サイクル
が長くなるとともに、発泡粒子に内圧を付与するための
時間や、得られた発泡成形体の収縮を回復するための養
生時間が長くかかり、この結果成形体の製造効率が低下
するという問題があった。
However, when a high internal pressure is applied to the foamed particles, it is necessary to cool the foamed particles for a long time after the foaming of the foamed particles, and the thermoforming cycle of the molded article is lengthened. And the curing time for restoring the shrinkage of the obtained foamed molded body takes a long time, and as a result, there is a problem that the production efficiency of the molded body is reduced.

【0006】本発明者等は上記課題を解決すべく鋭意研
究した結果、従来、発泡性が良くないとされていたMF
Iが低いプロピレン系樹脂の中から特にプロピレン系ラ
ンダム共重合体又はランダムブロック共重合体を基材樹
脂として用い、且つその樹脂から得られる発泡粒子のM
FI、Z平均分子量、融点及び示差走査熱量測定によっ
て得られるDSC曲線における吸熱エネルギーを特定の
値とすることにより、発泡粒子の二次発泡性が良好で粒
子相互の融着性に優れるとともに、熱成形サイクルの短
縮、養生時間の短縮を図ることができ、しかも得られた
発泡成形体の耐割れ性も向上することができることを見
出し本発明を完成するに至った。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that MF which has heretofore been considered to have poor foamability is not good.
Among propylene-based resins having a low I, a propylene-based random copolymer or a random block copolymer is used as a base resin, and M of expanded particles obtained from the resin is used.
By making the endothermic energy in the DSC curve obtained by FI, Z-average molecular weight, melting point and differential scanning calorimetry a specific value, the foamed particles have good secondary foamability and excellent fusion between particles, The present inventors have found that the molding cycle can be shortened and the curing time can be shortened, and furthermore, the crack resistance of the obtained foam molded article can be improved, and the present invention has been completed.

【0007】[0007]

【課題を解決するための手段】即ち本発明のポリプロピ
レン系樹脂発泡粒子は、プロピレン系ランダム共重合体
又はランダムブロック共重合体を基材樹脂とするポリプ
ロピレン系樹脂発泡粒子であって、該発泡粒子から求め
られるメルトフローインデックスが0.5〜6g/10
分、Z平均分子量(ポリスチレン換算)が1.2×10
6 以上、融点が130℃以上、示差走査熱量測定によっ
て求められるDSC曲線(但し、発泡粒子1〜3mgを
示差走査熱量計によって10℃/分の昇温速度で室温か
ら200℃まで昇温した時に得られるDSC曲線)に、
二つ以上の吸熱ピークが現れ、これらの吸熱ピークのう
ち固有ピークよりも高温側に現れる吸熱ピークの吸熱エ
ネルギーが1〜20J/gであることを特徴とする。本
発明のポリプロピレン系樹脂発泡粒子において、見かけ
の密度が0.015〜0.05g/cm3 のものにあっ
ては固有ピークよりも高温側に現れる吸熱ピークの吸熱
エネルギーが5〜18J/gであることが好ましい。
In other words, the expanded polypropylene resin particles of the present invention are expanded polypropylene resin particles comprising a propylene random copolymer or a random block copolymer as a base resin, wherein the expanded particles are Is from 0.5 to 6 g / 10.
Min, Z-average molecular weight (polystyrene equivalent) 1.2 × 10
DSC curve obtained by differential scanning calorimetry with a melting point of 6 or more and a melting point of 130 ° C. or more (however, when 1 to 3 mg of expanded particles are heated from room temperature to 200 ° C. at a heating rate of 10 ° C./min by a differential scanning calorimeter) The resulting DSC curve)
Two or more endothermic peaks appear, and among these endothermic peaks, the endothermic energy of the endothermic peak appearing on the higher temperature side than the intrinsic peak is 1 to 20 J / g. In the expanded polypropylene resin particles of the present invention, when the apparent density is 0.015 to 0.05 g / cm 3 , the endothermic energy of the endothermic peak appearing on the higher temperature side than the intrinsic peak is 5 to 18 J / g. Preferably, there is.

【0008】本発明のポリプロピレン系樹脂発泡粒子
は、無機ガス系発泡剤によって発泡された発泡粒子であ
ることが好ましい。
The expanded polypropylene resin particles of the present invention are preferably expanded particles expanded with an inorganic gas blowing agent.

【0009】また本発明のポリプロピレン系樹脂型内発
泡成形体は、プロピレン系ランダム共重合体又はランダ
ムブロック共重合体を基材樹脂とする多数のポリプロピ
レン系樹脂発泡粒子を、加熱成形により相互に融着させ
て得られるポリプロピレン系樹脂発泡粒子成形体であっ
て、該成形体から求められるメルトフローインデックス
が0.5〜6g/10分、Z平均分子量(ポリスチレン
換算)が1.2×106 以上、融点が130℃以上、示
差走査熱量測定によって求められるDSC曲線(但し、
発泡粒子成形体1〜3mgを示差走査熱量計によって1
0℃/分の昇温速度で室温から200℃まで昇温した時
に得られるDSC曲線)に、二つ以上の吸熱ピークが現
れ、これらの吸熱ピークのうち固有ピークよりも高温側
に現れる吸熱ピークの吸熱エネルギーが1〜20J/g
であることを特徴とする。
Further, the foamed molded article in the polypropylene resin mold of the present invention is obtained by melting a large number of foamed polypropylene resin particles having a propylene random copolymer or a random block copolymer as a base resin by heat molding. It is a molded article of expanded polypropylene resin particles obtained by adhering, having a melt flow index of 0.5 to 6 g / 10 min and a Z-average molecular weight (in terms of polystyrene) of 1.2 × 10 6 or more. , A DSC curve obtained by differential scanning calorimetry with a melting point of 130 ° C. or more (however,
1 to 3 mg of the foamed particle molded product was measured by a differential scanning calorimeter.
DSC curve obtained when the temperature is raised from room temperature to 200 ° C. at a heating rate of 0 ° C./min.), Two or more endothermic peaks appear, and among these endothermic peaks, an endothermic peak appearing on the higher temperature side than the intrinsic peak. Endothermic energy of 1-20 J / g
It is characterized by being.

【0010】[0010]

【発明の実施の形態】本発明において用いる発泡粒子の
基材樹脂であるプロピレン系ランダム共重合体、プロピ
レン系ランダムブロック共重合体のコモノマー成分とし
ては、エチレンや炭素数4〜8のα−オレフィンが挙げ
られる。基材樹脂の具体例としては、エチレン−プロピ
レンランダム共重合体、ブテン−プロピレンランダム共
重合体、エチレン−ブテン−プロピレンランダム共重合
体、エチレン−プロピレンランダムブロック共重合体等
が挙げられるが、エチレン−プロピレンランダム共重合
体、ブテン−プロピレンランダム共重合体、エチレン−
ブテン−プロピレンランダム共重合体が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As a comonomer component of a propylene-based random copolymer or a propylene-based random block copolymer which is a base resin of expanded particles used in the present invention, ethylene or an α-olefin having 4 to 8 carbon atoms is used. Is mentioned. Specific examples of the base resin include ethylene-propylene random copolymer, butene-propylene random copolymer, ethylene-butene-propylene random copolymer, ethylene-propylene random block copolymer, and the like. -Propylene random copolymer, butene-propylene random copolymer, ethylene-
Butene-propylene random copolymer is preferred.

【0011】上記プロピレン系ランダム共重合体又はプ
ロピレン系ランダムブロック共重合体は、プロピレン成
分含量が80モル%以上のものが好ましい。上記プロピ
レン系共重合体は、無架橋のものでも架橋したもでも良
いが、無架橋のものが好ましい。
The propylene random copolymer or propylene random block copolymer preferably has a propylene component content of 80 mol% or more. The propylene-based copolymer may be non-crosslinked or crosslinked, but is preferably non-crosslinked.

【0012】上記プロピレン系共重合体はMFIが6g
/10分以下であることが、該共重合体より得られる発
泡粒子のMFIを0.5〜6g/10分に調整する上で
好ましい。
The propylene copolymer has an MFI of 6 g.
/ 10 minutes or less is preferable in adjusting the MFI of the expanded particles obtained from the copolymer to 0.5 to 6 g / 10 minutes.

【0013】また上記プロピレン系共重合体は、Z平均
分子量(ポリスチレン換算)が1.5×106 以上であ
ることが、該共重合体より得られる発泡粒子のZ平均分
子量(ポリスチレン換算)を1.2×106 以上に調整
する上で好ましい。
The propylene copolymer has a Z-average molecular weight (in terms of polystyrene) of 1.5 × 10 6 or more, and the expanded particles obtained from the copolymer have a Z-average molecular weight (in terms of polystyrene). It is preferable in adjusting to 1.2 × 10 6 or more.

【0014】尚、本発明の発泡粒子の基材樹脂として、
上記プロピレン系共重合体に他の樹脂を混合して用いる
こともできる。上記プロピレン系共重合体と混合して用
いられる他の樹脂としては、例えば、上記した以外のポ
リプロピレン系樹脂、例えばプロピレン単独重合体、エ
チレン−プロピレンブロック共重合体、ブテン−プロピ
レンブロック共重合体等や、高密度ポリエチレン、中密
度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポ
リエチレ、直鎖状超低密度ポリエチレン等のポリエチレ
ン系樹脂、ポリブテン樹脂等が挙げられる。その他、エ
チレン−プロピレンラバーやスチレン−イソプレン−ス
チレン共重合体、スチレン−ブタジエン−スチレン共重
合体及びそれらの水素添加物等のエラストマーが挙げら
れる。これらの樹脂やエラストマーは、本発明の目的を
阻害しない範囲で基材樹脂中に混合することができる
が、前記したプロピレン系共重合体に対する配合割合
は、30重量%未満とすることが好ましい。
As the base resin of the expanded particles of the present invention,
Other resins can be mixed with the propylene-based copolymer and used. As other resins used by mixing with the propylene-based copolymer, for example, polypropylene resins other than those described above, for example, propylene homopolymer, ethylene-propylene block copolymer, butene-propylene block copolymer, and the like And polyethylene resins such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and linear ultra-low-density polyethylene, and polybutene resins. In addition, elastomers such as ethylene-propylene rubber, styrene-isoprene-styrene copolymer, styrene-butadiene-styrene copolymer, and hydrogenated products thereof may be mentioned. These resins and elastomers can be mixed with the base resin within a range not to impair the object of the present invention, but the blending ratio with respect to the propylene-based copolymer is preferably less than 30% by weight.

【0015】本発明の発泡粒子は、例えば上記基材樹脂
を押出機内で溶融した後、ストランド状に押し出して水
中で急冷し、切断する等の公知の方法で造粒した樹脂粒
子に発泡剤を含浸させて発泡することにより得られる。
樹脂粒子を造粒する際に、発泡助剤、顔料、充填材、安
定剤等の公知の添加剤を添加することができる。
The foamed particles of the present invention are prepared by, for example, melting the above-mentioned base resin in an extruder, extruding the resin into strands, rapidly cooling in water, and cutting the resin particles by a known method such as cutting. It is obtained by impregnating and foaming.
When granulating the resin particles, known additives such as a foaming aid, a pigment, a filler, and a stabilizer can be added.

【0016】樹脂粒子を発泡させるには、まず、樹脂粒
子を密閉容器内の分散媒中に分散させ、加圧、加熱、攪
拌しながら、樹脂粒子に発泡剤を含浸させる。次いで、
樹脂粒子の軟化点以上の温度に加熱した後、発泡剤を含
浸させた発泡性樹脂粒子と分散媒とを容器内より低圧の
雰囲気中に放出して発泡を行なう。
In order to foam the resin particles, first, the resin particles are dispersed in a dispersion medium in a closed container, and the resin particles are impregnated with a foaming agent while applying pressure, heating and stirring. Then
After heating to a temperature equal to or higher than the softening point of the resin particles, the foaming resin particles impregnated with the foaming agent and the dispersion medium are discharged from the container into a low-pressure atmosphere for foaming.

【0017】樹脂粒子を分散させるための分散媒として
は、水、アルコール類、グリコール類、グリセリン等
の、樹脂粒子を溶解しないものが使用可能であるが、通
常は水が用いられる。
As a dispersion medium for dispersing the resin particles, those which do not dissolve the resin particles, such as water, alcohols, glycols and glycerin, can be used, but water is usually used.

【0018】樹脂粒子や発泡剤等を分散媒に分散するに
当たって、分散時の加熱やその後の発泡工程における加
熱によって樹脂粒子相互が融着するのを防止するため
に、融着防止剤を分散媒に添加することができる。融着
防止剤としては、分散媒に溶解せず、加熱により溶融し
ないものであれば有機物質、無機物質を問わずいずれも
使用できるが、一般的には無機系の融着防止剤が使用さ
れる。無機系の融着防止剤としては、マイカ、カオリ
ン、酸化アルミニウム、酸化チタン、水酸化アルミニウ
ム等の粉末が好適である。融着防止剤は、平均粒径が
0.01〜100μmのものが用いられ、特に0.1〜
30μmのものが好ましい。
In dispersing the resin particles, the foaming agent, and the like in the dispersion medium, an anti-fusing agent is added to the dispersion medium in order to prevent the resin particles from fusing with each other by heating during the dispersion or heating in the subsequent foaming step. Can be added. As the anti-fusing agent, any organic or inorganic substance can be used as long as it does not dissolve in the dispersion medium and does not melt by heating.In general, an inorganic anti-fusing agent is used. You. As the inorganic anti-fusing agent, powders of mica, kaolin, aluminum oxide, titanium oxide, aluminum hydroxide and the like are suitable. As the anti-fusion agent, those having an average particle size of 0.01 to 100 μm are used, and in particular, 0.1 to 100 μm.
Those having a thickness of 30 μm are preferred.

【0019】融着防止剤を使用した場合、分散助剤とし
てドデシルベンゼンスルホン酸ナトリウム、アルキルス
ルホン酸ナトリウム、オレイン酸ナトリウム等のアニオ
ン系界面活性剤を併用することが好ましい。融着防止剤
は、樹脂粒子100重量部当たり0.01〜2重量部添
加し、分散助剤は樹脂粒子100重量部当たり0.00
1〜1重量部添加することが好ましい。
When an anti-fusing agent is used, it is preferable to use an anionic surfactant such as sodium dodecylbenzenesulfonate, sodium alkylsulfonate or sodium oleate as a dispersing aid. The anti-fusing agent is added in an amount of 0.01 to 2 parts by weight per 100 parts by weight of the resin particles.
It is preferable to add 1 to 1 part by weight.

【0020】樹脂粒子を発泡させるための発泡剤として
は、無機ガスや有機発泡剤を用いることができる。無機
ガスとしては、二酸化炭素、空気、窒素、ヘリウム、ア
ルゴン等が挙げられる。また、有機発泡剤としては、プ
ロパン、ブタン、ヘキサン等の脂肪族炭化水素類、シク
ロブタン、シクロヘキサン等の環式脂肪族炭化水素類、
クロロジフロロメタン、1−クロロ−1,1−ジフロロ
エタン、1,1−ジフロロエタン、1,1,1,2−テ
トラフロロエタン、メチルクロライド、エチルクロライ
ド、メチレンクロライド等のハロゲン化炭化水素類等が
挙げられる。
As a foaming agent for foaming the resin particles, an inorganic gas or an organic foaming agent can be used. Examples of the inorganic gas include carbon dioxide, air, nitrogen, helium, and argon. Further, as the organic foaming agent, propane, butane, aliphatic hydrocarbons such as hexane, cyclobutane, cycloaliphatic hydrocarbons such as cyclohexane,
Halogenated hydrocarbons such as chlorodifluoromethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1,1,1,2-tetrafluoroethane, methyl chloride, ethyl chloride, and methylene chloride; No.

【0021】上記発泡剤は、単独で用いても、或いは二
種以上を混合して用いてもよい。また、有機発泡剤と無
機ガスとを混合して用いることもできる。しかし、有機
発泡剤として使用されている化合物には、毒性や可燃性
などの危険性を有するものや、オゾン層破壊や環境汚染
等を引き起こすものが多く、またこれらの問題を生じに
くいものは高価で実用的でないため、これらを考慮すれ
ば無機ガスを用いるのが好ましい。
The above foaming agents may be used alone or in combination of two or more. Further, an organic foaming agent and an inorganic gas can be mixed and used. However, many of the compounds used as organic foaming agents have dangers such as toxicity and flammability, and also cause destruction of the ozone layer and environmental pollution, and those that are unlikely to cause these problems are expensive. Therefore, it is preferable to use an inorganic gas in consideration of these factors.

【0022】発泡剤の添加量は、目標とする発泡粒子の
発泡倍率に応じて適宜調整するが、基材樹脂の種類、発
泡剤の種類等の違いにより、発泡剤の添加量が同じであ
っても得られる発泡粒子の発泡倍率が同じになるとは限
らない。従って、基材樹脂の種類、発泡剤の種類、目標
とする発泡倍率等の違いを考慮せずに、発泡剤の好まし
い添加量を一律に規定することは困難であるが、一般的
には、発泡剤として無機ガスを用いる場合、密閉容器内
の平衡蒸気圧が5〜60kgf/cm2 G程度となるよ
うに添加することが好ましく、発泡剤として有機発泡剤
を用いる場合には樹脂粒子100重量部に対して5〜3
0重量部程度となるように添加することが好ましい。
The amount of the foaming agent to be added is appropriately adjusted according to the target expansion ratio of the foamed particles. However, the amount of the foaming agent to be added is the same depending on the type of the base resin and the type of the foaming agent. However, the expansion ratio of the obtained expanded particles is not always the same. Therefore, it is difficult to uniformly define the preferable amount of the foaming agent without considering the difference in the type of the base resin, the type of the foaming agent, the target expansion ratio, and the like. When an inorganic gas is used as the foaming agent, it is preferable to add the inorganic gas so that the equilibrium vapor pressure in the closed container is about 5 to 60 kgf / cm 2 G. When an organic foaming agent is used as the foaming agent, 100 wt. 5 to 3 parts
It is preferable to add so as to be about 0 parts by weight.

【0023】上記のようにして樹脂粒子に発泡剤を含浸
させた後、密閉容器の一端を開放して樹脂粒子と分散媒
とを容器内よりも低圧の雰囲気下、通常は大気圧下に放
出することによって、樹脂粒子を発泡せしめて発泡粒子
を得ることができる。上記基材樹脂の一連の発泡操作に
より樹脂粒子のMFIは高くなり、Z平均分子量は低く
なる。これらの変動は主に樹脂粒子を造粒する際に発生
すると考えられる。
After the resin particles are impregnated with the blowing agent as described above, one end of the closed container is opened to release the resin particles and the dispersion medium under an atmosphere at a lower pressure than the inside of the container, usually under atmospheric pressure. By doing so, the resin particles can be expanded to obtain expanded particles. The series of foaming operations of the base resin increase the MFI of the resin particles and decrease the Z-average molecular weight. It is considered that these fluctuations mainly occur when the resin particles are granulated.

【0024】本発明の発泡粒子から求められるMFIは
0.5〜6g/10分、Z平均分子量は1.2×106
以上である。MFIは基材樹脂から発泡粒子を得る一連
の発泡操作において、おおむね、基材樹脂のMFI(g
/10分)≒発泡粒子から求められるMFI−(0.1
〜3)g/10分の関係を有することが判っている。ま
たZ平均分子量(ポリスチレン換算)においても、一連
の発泡操作において、おおむね、基材樹脂のZ平均分子
量≒発泡粒子から求められるZ平均分子量+(1.0×
105 〜4.0×105 )の関係があることが経験的に
判っており、これらの経験則に基づいて基材樹脂を選択
することにより、おおよそ上記MFI及びZ平均分子量
を有する発泡粒子を得ることができる。
The MFI obtained from the expanded particles of the present invention is 0.5 to 6 g / 10 min, and the Z-average molecular weight is 1.2 × 10 6
That is all. In a series of foaming operations for obtaining foamed particles from a base resin, MFI is substantially the same as the MFI (g) of the base resin.
/ 10 min) ≒ MFI- (0.1 from foamed particles)
33) It is known to have a relationship of g / 10 minutes. Also in the Z-average molecular weight (in terms of polystyrene), in a series of foaming operations, the Z-average molecular weight of the base resin 樹脂 the Z-average molecular weight obtained from the expanded particles + (1.0 ×
It has been empirically found that there is a relationship of 10 5 to 4.0 × 10 5 ). By selecting a base resin based on these empirical rules, expanded particles having approximately the above MFI and Z average molecular weight can be obtained. Can be obtained.

【0025】尚、一連の発泡操作の条件、装置等の相違
により上記経験則が適用できない場合は、その場合に適
合する経験則を見出し、新たに見出した経験則に基づい
て基材樹脂を選択し、本発明で特定するMFI及びZ平
均分子量を満足する発泡粒子を得ることができる。本発
明発泡粒子において、MFIが6g/10分を超える場
合、発泡粒子の気泡が微細化したり、連続気泡構造とな
り易く、また発泡粒子のセル膜強度も弱くなるという問
題を生じる。一方、MFIが0.5g/10分未満であ
ると、後述の各条件を満たしていても、発泡粒子の二次
発泡性が低下し、良好な型内成形体を得ることができな
くなる。上記ポリプロピレン系共重合体のMFRは、好
ましくは2〜5.5g/10分である。またZ平均分子
量(ポリスチレン換算)が1.2×106 未満の場合に
は、樹脂剛性が低く、発泡粒子のセル膜強度が弱くな
る。上記Z平均分子量は好ましくは1.3×106
上、より好ましくは1.3×106 〜2.5×106
ある。また本発明の発泡粒子は、示差走査熱量測定によ
って求められるDSC曲線(但し、発泡粒子1〜3mg
を示差走査熱量計によって10℃/分の昇温速度で室温
から200℃まで昇温した時に得られるDSC曲線)
に、二つ以上の吸熱ピークが現れ、これら吸熱ピークの
うち固有ピークよりも高温側に現れる一つ以上の吸熱ピ
ーク(以下、単に高温ピークと言う。)の吸熱エネルギ
ーが1〜20J/gとなる結晶構造を有する。尚、高温
ピークの吸熱エネルギーは、固有ピークよりも高温側に
現れる1つ以上の吸熱ピーク全ての吸熱エネルギーの合
計を意味するものであり、固有ピークよりも高温側に現
れる個々の吸熱ピークにおいて常に本発明にて特定する
値を満足しなければならないことを意味するものではな
い。
If the above empirical rule cannot be applied due to differences in the conditions of a series of foaming operations, equipment, etc., an empirical rule suitable for that case is found, and a base resin is selected based on the newly found empirical rule. Then, expanded particles satisfying the MFI and the Z average molecular weight specified in the present invention can be obtained. In the foamed particles of the present invention, when the MFI exceeds 6 g / 10 minutes, there is a problem that the foamed particles are liable to become finer or have an open cell structure, and the cell membrane strength of the foamed particles is also reduced. On the other hand, if the MFI is less than 0.5 g / 10 minutes, the secondary expandability of the expanded particles is reduced even if the conditions described below are satisfied, and a good in-mold molded article cannot be obtained. The MFR of the polypropylene copolymer is preferably 2 to 5.5 g / 10 minutes. When the Z-average molecular weight (in terms of polystyrene) is less than 1.2 × 10 6 , the resin rigidity is low and the cell membrane strength of the expanded particles is low. The Z-average molecular weight is preferably at least 1.3 × 10 6 , more preferably from 1.3 × 10 6 to 2.5 × 10 6 . The expanded particles of the present invention have a DSC curve (provided that the expanded particles are 1 to 3 mg) obtained by differential scanning calorimetry.
Is a DSC curve obtained when the temperature is raised from room temperature to 200 ° C. by a differential scanning calorimeter at a rate of 10 ° C./min).
Two or more endothermic peaks, and among these endothermic peaks, the endothermic energy of one or more endothermic peaks (hereinafter simply referred to as a high-temperature peak) appearing on the higher temperature side than the intrinsic peak is 1 to 20 J / g. Having the following crystal structure. The endothermic energy of the high-temperature peak means the sum of the endothermic energies of all one or more endothermic peaks appearing on the higher temperature side than the intrinsic peak. It does not mean that the value specified in the present invention must be satisfied.

【0026】DSC曲線に二つ以上の吸熱ピークが現
れ、且つ高温ピークの吸熱エネルギーが1〜20J/g
である発泡粒子は、上記樹脂粒子を発泡させる際の発泡
(放出時の)温度、発泡前に密閉容器内で発泡粒子を発
泡温度より数℃低い温度に保持する際の温度、時間の条
件等を制御することにより得らる。発泡粒子の高温ピー
クの吸熱エネルギーが20J/gを超える場合、樹脂粒
子から発泡粒子を得る際に発泡性が低い。また成形時に
おける発泡粒子の二次発泡性が低く、発泡粒子の融着不
良を生じ、外観や物性の良好な成形体が得られない。ま
た高温ピークの吸熱エネルギーが1J/g未満の発泡粒
子は、連続気泡率が高くなり、発泡成形体の収縮回復不
良を生じたり、成形体の諸物性の低下をきたす虞れがあ
る。また、本発明の発泡粒子から求められる融点は13
0℃以上であることが必要である。融点が130℃未満
であるとポリプロピレン系樹脂の特性が発揮されにくく
なり、ポリエチレン系樹脂に近い性状を示すようにな
る。また融点は、発泡粒子の型内発泡成形性の面から、
好ましくは135〜155℃、更に好ましくは135〜
150℃である。尚、発泡粒子から求められる融点は、
後述する融点の測定方法を適用して求められる基材樹脂
の融点とほぼ同じであるため、発泡粒子から求められる
融点の調整は基材樹脂の融点を調整すれば良い。
Two or more endothermic peaks appear on the DSC curve, and the endothermic energy of the high-temperature peak is 1 to 20 J / g.
The foaming particles are the foaming temperature (at the time of foaming) at the time of foaming the above resin particles, the temperature at the time of keeping the foaming particles at a temperature several degrees lower than the foaming temperature in a closed container before foaming, time conditions, etc. By controlling. When the endothermic energy of the high-temperature peak of the foamed particles exceeds 20 J / g, the foamability is low when the foamed particles are obtained from the resin particles. Further, the secondary foamability of the foamed particles during molding is low, resulting in poor fusion of the foamed particles, and a molded article having good appearance and physical properties cannot be obtained. The expanded particles having an endothermic energy at a high temperature peak of less than 1 J / g have a high open cell ratio, and may cause poor recovery of shrinkage of a foamed molded article, or may deteriorate various physical properties of the molded article. The melting point of the expanded particles of the present invention is 13
The temperature must be 0 ° C. or higher. When the melting point is less than 130 ° C., the properties of the polypropylene resin are less likely to be exhibited, and properties similar to those of the polyethylene resin are exhibited. In addition, the melting point, from the viewpoint of in-mold foaming moldability of the expanded particles,
Preferably 135-155 ° C, more preferably 135-155 ° C
150 ° C. The melting point determined from the expanded particles is
Since the melting point of the base resin is substantially the same as the melting point of the base resin obtained by applying the method for measuring the melting point described below, the melting point of the base resin may be adjusted by adjusting the melting point of the expanded particles.

【0027】樹脂粒子を発泡させるために用いる発泡剤
として従来公知のものが使用できるが、無機ガス系発泡
剤を用いると高温ピークの吸熱エネルギーを1〜20J
/gに調整するための条件の制御が容易であり、この点
からも発泡剤としては無機ガス系が好ましい。尚、無機
ガス系発泡剤としては、二酸化炭素、窒素、空気、水か
ら選択される一種以上のもの、更にそれらにブタン等の
有機発泡剤を発泡剤全量に対して50重量%以下混合し
たものが含まれる。
As the foaming agent used for foaming the resin particles, conventionally known ones can be used. When an inorganic gas-based foaming agent is used, the endothermic energy at the high temperature peak is 1 to 20 J.
/ G is easy to control the conditions for adjusting to / g, and from this point as well, an inorganic gas-based blowing agent is preferable. As the inorganic gas-based blowing agent, one or more selected from carbon dioxide, nitrogen, air, and water, and those obtained by mixing an organic blowing agent such as butane with 50% by weight or less based on the total amount of the blowing agent. Is included.

【0028】無機ガス系発泡剤を使用する上記方法によ
れば、見かけの密度が0.02〜0.8g/cm3 の良
好な発泡粒子を得ることができるが、より低密度の発泡
粒子を得るには、上記のようにして得た発泡粒子(以
下、便宜的に一段発泡粒子と呼ぶ。)を再度発泡させる
方法(二段発泡法。二段発泡法によって得た発泡粒子を
二段発泡粒子と呼ぶ。)が採用される。二段発泡粒子
は、一段発泡粒子を密閉容器内に入れて無機ガス等によ
って加圧処理して発泡粒子内の圧力を常圧よりも高くし
た後、該発泡粒子をスチーム等で加熱して更に発泡させ
る等の方法により得ることができる。
According to the above method using an inorganic gas-based foaming agent, good foamed particles having an apparent density of 0.02 to 0.8 g / cm 3 can be obtained. In order to obtain the foamed particles obtained as described above (hereinafter referred to as one-stage foamed particles for convenience), the foamed particles are re-foamed (two-stage foaming method. Particles) are employed. The two-stage expanded particles are placed in a closed container with the first-stage expanded particles, pressurized with an inorganic gas or the like to increase the pressure in the expanded particles above normal pressure, and then heated with steam or the like to further heat the expanded particles. It can be obtained by a method such as foaming.

【0029】本発明の発泡粒子を得る方法としては、上
記した方法の他に、基材樹脂を発泡剤とともに押出機内
で溶融混練した後、ストランド状に押出発泡し、これを
切断して発泡粒子とする方法や、基材樹脂に発泡剤を含
浸させて発泡性樹脂粒子とした後、加熱して発泡させる
方法等、公知の方法を採用することができる。
As a method for obtaining the foamed particles of the present invention, in addition to the above-described method, a base resin is melt-kneaded together with a foaming agent in an extruder, extruded and foamed into strands, and cut to obtain foamed particles. Or a method of impregnating a base resin with a foaming agent to form foamable resin particles, followed by heating and foaming.

【0030】本発明の発泡粒子のうち、二段発泡法の操
作を一回以上行って得られた多段発泡粒子は、見かけの
密度が0.015〜0.05g/cm3 で、高温ピーク
の吸熱エネルギーが5〜18J/gのものが好ましい。
見かけの密度が0.015g/cm3 未満の場合は、連
続気泡率が高くなり易く、その場合、発泡粒子成形体の
収縮回復不良、寸法不良を生じ易い。一方、見かけの密
度が0.05g/cm3 を超える場合は一段発泡法によ
り発泡粒子を得る方が効率的である。また高温ピークの
吸熱エネルギーが5J/g未満の場合は連続気泡率が高
くなり、発泡粒子成形体の収縮回復不良を生じたり、成
形体の物性低下の虞れがある。一方、高温ピークの吸熱
エネルギーが18J/gを超える場合には、成形時にお
ける発泡粒子の二次発泡性が低く、発泡粒子の融着不良
を生じ良好な成形体が得られなくなる虞れがある。
Among the expanded particles of the present invention, the multi-stage expanded particles obtained by performing the operation of the two-stage expansion method at least once have an apparent density of 0.015 to 0.05 g / cm 3 and a high temperature peak. Those having an endothermic energy of 5 to 18 J / g are preferred.
When the apparent density is less than 0.015 g / cm 3 , the open cell ratio tends to be high, and in this case, the shrinkage recovery failure and the dimensional failure of the foamed particle molded article are likely to occur. On the other hand, when the apparent density exceeds 0.05 g / cm 3 , it is more efficient to obtain expanded particles by a one-stage expansion method. When the endothermic energy at the high-temperature peak is less than 5 J / g, the open cell ratio becomes high, and there is a possibility that the contraction recovery failure of the foamed particle molded article may occur or the physical properties of the molded article may be deteriorated. On the other hand, when the endothermic energy at the high temperature peak exceeds 18 J / g, the secondary foamability of the foamed particles during molding is low, and there is a possibility that a poor fusion of the foamed particles may occur and a good molded body may not be obtained. .

【0031】上記発泡粒子の見かけの密度は次のように
して求めることができる。即ち、見かけの密度を求めよ
うとする発泡粒子群から約5000個の発泡粒子をサン
プリングし(サンプルの発泡粒子群と呼ぶ。)、このサ
ンプルの発泡粒子群全体の重量:W(g)を測定した
後、メスシリンダー内のエタノール中に沈め、エタノー
ルの水位上昇分よりサンプルの発泡粒子群の体積:L
(cm3 )を測定し、サンプルの発泡粒子群の見かけの
密度を次式より求める。
The apparent density of the expanded particles can be determined as follows. That is, about 5,000 expanded particles are sampled from the expanded particle group for which the apparent density is to be obtained (referred to as a sample expanded particle group), and the weight of the entire expanded particle group of this sample: W (g) is measured. And then submerged in ethanol in a measuring cylinder.
(Cm 3 ) is measured, and the apparent density of the expanded particles of the sample is determined by the following equation.

【0032】[0032]

【数1】サンプルの発泡粒子群の見かけの密度(g/c
3 )=W÷L
## EQU1 ## Apparent density (g / c) of the foamed particle group of the sample
m 3 ) = W ÷ L

【0033】上記本発明の発泡粒子は、金型内に充填し
て水蒸気などで加熱することにより、発泡粒子が相互に
融着して所望の形状に形成された成形体を得ることがで
きる。また、発泡粒子の加熱成形は上記方法に限らず、
特開平9−104026号公報等に記載されるような無
端走行する上下のベルト間に発泡粒子を挟んで水蒸気な
どで加熱することにより発泡粒子を相互に融着させて成
形体を得る連続成形方法を採用することもできる。発泡
粒子を成形するに先立って、必要に応じて発泡粒子を空
気等で加圧して発泡粒子内の圧力を常圧よりも高くして
おいても良いが、特に発泡粒子として見かけの密度が
0.015〜0.05g/cm3 、高温ピークの吸熱エ
ネルギーが5〜12J/gのものを成形に用いる場合、
無加圧成形(発泡粒子を常圧より高圧な密閉容器等の加
圧系に保持し該粒子内の圧力を高める加圧処理をしてい
ない発泡粒子を金型内に充填して加熱成形して成形体を
得る成形)が可能であり、無加圧成形によっても二次発
泡性に優れ、粒子相互の融着性に優れた発泡成形体を得
ることができるため、無加圧成形用の発泡粒子として好
ましい。また、融点、MFI、Z平均分子量の条件を満
足する見かけの密度が0.015〜0.05g/c
3 、高温ピークの吸熱エネルギーが5〜12J/gの
上記発泡粒子から成形される、密度0.01〜0.03
g/cm3 、高温ピークの吸熱エネルギーが5〜12J
/gの発泡粒子成形体は、低密度のものにもかかわらず
寸法安定性、外観、耐割れ性に優れたものであるため特
に好ましい。
The foamed particles of the present invention are filled in a mold and heated with steam or the like, whereby the foamed particles are fused to each other to obtain a molded article having a desired shape. Further, the thermoforming of the expanded particles is not limited to the above method,
A continuous molding method as described in Japanese Patent Application Laid-Open No. 9-104026, in which foamed particles are sandwiched between upper and lower belts running endlessly and heated with steam or the like to fuse the foamed particles to each other to obtain a molded body. Can also be adopted. Prior to molding the foamed particles, if necessary, the foamed particles may be pressurized with air or the like so that the pressure inside the foamed particles may be higher than the normal pressure. .015~0.05g / cm 3, when the endothermic energy of the hot peak for molding those 5~12J / g,
Pressureless molding (The foamed particles are held in a pressurized system such as a closed container at a pressure higher than normal pressure, and the unpressurized foamed particles that increase the pressure inside the particles are filled in a mold and heated and molded. Molding to obtain a molded body by pressureless molding is possible, and a foamed molded body having excellent secondary foaming properties and excellent fusion property between particles can be obtained by non-pressure molding. Preferred as expanded particles. The apparent density satisfying the conditions of melting point, MFI and Z average molecular weight is 0.015 to 0.05 g / c.
m 3 , a density of 0.01 to 0.03, which is formed from the above expanded particles having a high temperature peak endothermic energy of 5 to 12 J / g.
g / cm 3 , endothermic energy at high temperature peak is 5-12 J
/ G of expanded particle molded article is particularly preferable because it has excellent dimensional stability, appearance, and crack resistance despite having a low density.

【0034】尚、発泡粒子成形体の密度は、発泡粒子成
形体からサンプルを切り出し(縦約5cm、横約5c
m、厚み約5cmのサンプルが好ましい。)、サンプル
の重量(g)をサンプルの外形寸法から求められる体積
(cm3 )で割ることにより求める。
The density of the expanded bead is determined by cutting a sample from the expanded bead (approximately 5 cm long and 5 cm wide).
m, a sample with a thickness of about 5 cm is preferred. ) And the weight (g) of the sample is divided by the volume (cm 3 ) obtained from the external dimensions of the sample.

【0035】また、発泡粒子を発泡粒子成形体に成形し
ても、融点、MFI及びZ平均分子量はほとんど変化し
ないため、発泡粒子と成形体の融点、MFI及びZ平均
分子量はほぼ同じ値を示す。以下、本明細書における融
点、発泡粒子及び発泡成形体のMFI、Z平均分子量及
び高温ピークの吸熱エネルギーの測定方法について説明
する。
Further, even when the expanded particles are molded into a foamed particle molded product, the melting point, MFI and Z-average molecular weight hardly change, so that the melting points, MFI and Z-average molecular weight of the expanded particles and the molded product show almost the same values. . Hereinafter, a method for measuring the melting point, the MFI, the Z-average molecular weight, and the endothermic energy of the high-temperature peak of the expanded particles and the expanded molded article in the present specification will be described.

【0036】発泡粒子及び発泡成形体の高温ピークの吸
熱エネルギーは、例えば図1に示すDSC曲線におい
て、固有ピークaよりも高温側に現れる高温ピークbの
面積に相当し、次のようにして求めることができる。ま
ず図1に示すようにDSC曲線上の80℃の点Iと、D
SC曲線上の融解終了温度を示す点IIとを結ぶ直線を引
く。次に固有ピークaと高温ピークb(固有ピークより
も高温側に現れる吸熱ピークの内、最も低温側に存在す
る吸熱ピーク)との間の谷部にあたるDSC曲線上の点
III を通りグラフ横軸の温度に対して垂直な直線と、点
I と点IIとを結んだ直線との交点を点IVとする。このよ
うにして求めた点IVと点IIとを結ぶ直線、点III と点IV
を結ぶ直線及び点III と点IIを結ぶDSC曲線によって
囲まれる部分(斜線部分)の面積が高温ピークの吸熱エ
ネルギーに相当する。上記高温ピークbは、上記のよう
にして第一回目のDSC曲線を求めた後、10℃/分で
室温まで降温し、再び10℃/分で200℃まで昇温し
て得た第二回目のDSC曲線には現れないが、固有ピー
クは、第一回目のDSC曲線にも第二回目のDSC曲線
にも現れる。尚、上記第二回目のDSC曲線の固有ピー
クの頂点が示すグラフ横軸上の温度を融点とする。
The endothermic energy of the high-temperature peak of the expanded particles and the expanded molded article corresponds to, for example, the area of the high-temperature peak b that appears on the higher temperature side than the intrinsic peak a in the DSC curve shown in FIG. be able to. First, as shown in FIG. 1, a point I on the DSC curve at 80 ° C.
A straight line is drawn connecting the point II indicating the melting end temperature on the SC curve. Next, a point on the DSC curve corresponding to a valley between the specific peak a and the high temperature peak b (the endothermic peak present on the lower temperature side among the endothermic peaks appearing on the higher temperature side than the specific peak).
A line passing through III and perpendicular to the temperature on the horizontal axis of the graph, and a point
The intersection of the straight line connecting I and point II is referred to as point IV. The straight line connecting points IV and II obtained in this way, points III and IV
And the area of the portion (hatched portion) surrounded by the DSC curve connecting points III and II corresponds to the endothermic energy of the high temperature peak. The high-temperature peak b was obtained by obtaining the first DSC curve as described above, then lowering the temperature to room temperature at 10 ° C./min, and then again raising the temperature to 200 ° C. at 10 ° C./min. , But the characteristic peak appears in both the first DSC curve and the second DSC curve. Note that the melting point is the temperature on the horizontal axis of the graph indicated by the top of the intrinsic peak of the second DSC curve.

【0037】また、発泡粒子及び発泡粒子成形体のMF
Iは、発泡粒子、発泡粒子成形体のそれぞれを、190
℃の加熱プレスにより剪断力が極力作用しないように脱
泡せしめて非発泡樹脂板を作成し、該樹脂板よりカッタ
ー刃等により測定用小片サンプルを切り出す。得られた
サンプルからJIS K7210(1995)表1:条
件14にて求める。
Further, the MF of the expanded particles and the expanded particles
I represents the expanded particles and the expanded particle molded body each of 190
A non-foamed resin plate is prepared by defoaming with a heating press at a temperature of 0 ° C. so as not to exert a shearing force as much as possible. It is determined from the obtained sample under JIS K7210 (1995) Table 1: Condition 14.

【0038】また、発泡粒子及び発泡粒子成形体のZ平
均分子量(ポリスチレン換算)は、下記条件にて求め
る。 平均分子量測定条件 測定装置:WATERS社製150C カラム :TSK−GELGMH6−HT(東ソー株式
会社製) 測定試料:0.4ml 溶媒 :オルトジクロルベンゼン(ODCB) 測定温度:135℃ 流動相 :ODCB 流動速度:1ml/min. 試料濃度:0.2%
The Z-average molecular weight (in terms of polystyrene) of the expanded particles and the expanded particle molded product is determined under the following conditions. Average molecular weight measurement conditions Measurement device: 150C manufactured by WATERS Column: TSK-GELGMH6-HT (manufactured by Tosoh Corporation) Measurement sample: 0.4 ml Solvent: ortho-dichlorobenzene (ODCB) Measurement temperature: 135 ° C. Fluid phase: ODCB flow rate : 1 ml / min. Sample concentration: 0.2%

【0039】[0039]

【実施例】次に、具体的実施例を挙げて本発明を詳細に
説明する。 実施例1〜9、比較例1〜5 まず、表1に示すプロピレン系共重合体を押出機内で溶
融した後、押出機からストランド状に押出し、このスト
ランドを冷却後切断して、重量約1.8mgの樹脂粒子
を作製した。
Next, the present invention will be described in detail with reference to specific examples. Examples 1 to 9 and Comparative Examples 1 to 5 First, a propylene-based copolymer shown in Table 1 was melted in an extruder, extruded from the extruder into strands, and the strands were cooled and cut to obtain a weight of about 1 0.8 mg of resin particles were produced.

【0040】[0040]

【表1】 [Table 1]

【0041】次いで400リットルのオートクレーブ内
に、上記樹脂粒子100kg、水230リットル、分散
剤(カオリン)400g、ドデシルベンゼンスルホン酸
ナトリウム20重量%水溶液(ネオゲンS−20)30
g、及び発泡剤として二酸化炭素を仕込み、表2に示す
一段保持温度で保持し、次いで二段保持温度に保持した
後、オートクレーブ内を二段保持温度に保持しながらオ
ートクレーブ内容物を大気圧下に放出した。尚、二酸化
炭素は放出時のオートクレーブ内圧力が表2に示す圧力
となるように供給し、オートクレーブ内容物を放出して
いる間も、同圧力が保持されるようにオートクレーブ内
に連続して供給した。得られた発泡粒子(一段発泡粒
子)の見かけの密度及び高温ピークの吸熱エネルギーを
表2に示す。次いで、一段発泡粒子を空気で加圧処理
し、表3に示す内圧を付与した後、同表に示す圧力のス
チームで加熱して再度発泡させ二段発泡粒子を得た。得
られた二段発泡粒子の性状を表3に示す。
Next, in a 400 liter autoclave, 100 kg of the above resin particles, 230 liters of water, 400 g of a dispersant (kaolin), 30% by weight aqueous solution of sodium dodecylbenzenesulfonate (Neogen S-20) 30
g, and carbon dioxide as a foaming agent, and kept at the one-stage holding temperature shown in Table 2 and then at the two-stage holding temperature. Then, while maintaining the inside of the autoclave at the two-stage holding temperature, the contents of the autoclave were reduced to atmospheric pressure. Released. Carbon dioxide was supplied so that the pressure in the autoclave at the time of discharge was as shown in Table 2, and continuously supplied into the autoclave so as to maintain the same pressure while discharging the contents of the autoclave. did. Table 2 shows the apparent density and endothermic energy of the high-temperature peak of the obtained expanded particles (one-stage expanded particles). Next, the one-stage expanded particles were subjected to a pressure treatment with air to give an internal pressure shown in Table 3, and then heated again with steam at the pressure shown in the same table to expand again to obtain two-stage expanded particles. Table 3 shows the properties of the obtained two-stage expanded particles.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】上記のようにして得た発泡粒子(二段発泡
粒子)を、23℃、大気圧下で24時間養生した後、実
施例1〜7及び比較例1〜5では空気で発泡粒子を加圧
処理して1.0kg/cm3 Gの粒子内圧を付与した
後、実施例8、9では発泡粒子を加圧処理せずに(粒子
内圧力は0kg/cm3 G)、平板成形用金型(250
mm×200mm×50mm)内に充填し、表4に示す
圧力のスチームで加熱して成形した。金型を型締めして
から発泡粒子を金型内に充填し、次いでスチームで加熱
した後、冷却して金型から成形体を取り出すまでの時間
を成形サイクルとして表4に示す。
After the foamed particles (two-stage foamed particles) obtained as described above were cured at 23 ° C. and atmospheric pressure for 24 hours, the foamed particles were air-treated in Examples 1 to 7 and Comparative Examples 1 to 5. After applying a pressure to give an internal pressure of 1.0 kg / cm 3 G, in Examples 8 and 9, the expanded particles were not subjected to a pressure treatment (intra-particle pressure was 0 kg / cm 3 G), and were used for flat plate forming. Mold (250
(mm × 200 mm × 50 mm), and molded by heating with steam at the pressure shown in Table 4. The molding cycle is shown in Table 4 as the molding cycle after filling the foamed particles into the mold, heating with steam, cooling, and taking out the molded body from the mold.

【0045】得られた成形体を大気圧下で60℃で8時
間養生した後、成形体の諸物性を測定した。結果を表4
にあわせて示す。尚、発泡粒子成形体の融点、MFI、
Z平均分子量及び高温ピークの吸熱エネルギーは、表3
の二段発泡粒子の示す値と同様であった。
After the obtained molded body was cured at 60 ° C. under atmospheric pressure for 8 hours, various physical properties of the molded body were measured. Table 4 shows the results
Shown along with. In addition, the melting point, MFI,
Table 3 shows the Z-average molecular weight and the endothermic energy of the high-temperature peak.
Of the two-stage expanded particles.

【0046】[0046]

【表4】 [Table 4]

【0047】※1 表面平滑性は、成形体表面を観察
し、 ○・・・・表面平滑で凹凸、しわが少ない。 ×・・・・表面平滑性に劣り、凹凸、しわが多い。 として評価した。
* 1 Surface smoothness was observed by observing the surface of the molded product. ×: Poor surface smoothness, many irregularities and wrinkles. Was evaluated.

【0048】※2 収縮回復性は、養生後の成形体縦、
横各々の中心線上の長さを測定し、金型寸法に対する収
縮率を求め、 ○・・・・縦、横の収縮率が5%以下である。 ×・・・・少なくとも縦、横どちらか一方の収縮率が5
%を超えている。 として評価した。
* 2 The shrinkage recovery properties are as follows:
The length on each center line in the horizontal direction was measured, and the shrinkage ratio with respect to the mold size was determined. ○: The vertical and horizontal shrinkage ratios were 5% or less. ×: At least one of the vertical and horizontal shrinkage ratios is 5
%. Was evaluated.

【0049】※3 融着性は、成形体を長さ150m
m、幅50mm、厚さ10mmに切り取った試験片を、
引張試験機によって500mm/分の速度で引っ張って
破断させ、その破断面を観察して、 ○・・・・破断面の60%以上が材料破壊している。 ×・・・・破断面の60%未満が材料破壊している。 として評価した。
* 3 For the fusing property, the molded body was 150 m long.
m, a width of 50 mm, a test piece cut to a thickness of 10 mm,
The sample was pulled by a tensile tester at a speed of 500 mm / min and was broken, and the fracture surface was observed. ○: 60% or more of the fracture surface was broken. C: Less than 60% of the fracture surface is broken. Was evaluated.

【0050】※4 引張強度、引張伸びは、JIS K
6767に準拠して測定した。
* 4 Tensile strength and tensile elongation are based on JIS K
Measured according to 6767.

【0051】[0051]

【発明の効果】以上説明したように、本発明のポリプロ
ピレン系樹脂発泡粒子は、従来発泡性が低いとされてい
た、低いMFIの基材樹脂を用いていながら、特定のプ
ロピレン系ランダム共重合体又はプロピレン系ランダム
ブロック共重合体を基材樹脂として用い、且つ融点、M
FI、Z平均分子量及び発泡粒子の示差走査熱量測定に
よって得られるDSC曲線における高温ピークの吸熱エ
ネルギーが特定の値を有する発泡粒子としたことによ
り、二次発泡性に優れ発泡粒子相互の融着性に優れた発
泡成形体を得ることができる。また本発明の発泡粒子
は、発泡粒子内の圧力を高く調整しなくても良好な成形
を可能とするものであり、そのことにより発泡粒子内の
圧力を高く調整したものに比べて金型に充填して加熱成
形した後の冷却時間が短くて済み、成形サイクルの短縮
化を図ることができるとともに、得られた発泡成形体の
収縮回復のための養生時間も短くて済むため、発泡成形
体の製造効率を著しく向上させることができる。
As described above, the expanded polypropylene resin particles of the present invention can be produced using a specific propylene random copolymer while using a low MFI base resin which has been conventionally considered to have low expandability. Or, a propylene-based random block copolymer is used as a base resin, and the melting point, M
FI and Z-average molecular weights and expanded particles having a specific value of endothermic energy at a high temperature peak in a DSC curve obtained by differential scanning calorimetry of the expanded particles have excellent secondary expandability, and the fusion property between expanded particles. Thus, a foamed molded article excellent in quality can be obtained. Further, the foamed particles of the present invention enable good molding without adjusting the pressure inside the foamed particles to a high level. Since the cooling time after filling and heat molding is short, the molding cycle can be shortened, and the curing time for recovering shrinkage of the obtained foam molded article can be shortened. Can be significantly improved in production efficiency.

【0052】また見かけの密度が0.015〜0.05
g/cm3 で、高温ピークの吸熱エネルギーが5〜12
J/gの発泡粒子は、無加圧成形によっても優れた発泡
粒子成形体を得ることができ、成形前の発泡粒子への加
圧処理工程が省略できるとともに、この無加圧成形によ
り、成形後の冷却時間や成形体の養生時間が更に短くて
済むという特有の効果を有し、成形体の製造効率を更に
向上させることができる。
The apparent density is 0.015 to 0.05.
g / cm 3 , and the endothermic energy of the high-temperature peak is 5 to 12
The J / g foamed particles can be used to obtain an excellent foamed particle molded article even without pressure molding, and can omit the pressure treatment step on the foamed particles before molding. This has a unique effect that the subsequent cooling time and curing time of the molded body can be further shortened, and the production efficiency of the molded body can be further improved.

【0053】更に、本発明の発泡粒子から得た成形体
は、発泡粒子相互間の融着性に優れ、耐割れ性に優れる
という利点を有する。
Further, the molded article obtained from the expanded particles of the present invention has the advantages of excellent fusion between expanded particles and excellent crack resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発泡粒子のDSC曲線の一例を示し、高温ピー
クの吸熱エネルギーの測定方法の説明図である。
FIG. 1 shows an example of a DSC curve of expanded particles, and is an explanatory diagram of a method of measuring endothermic energy at a high temperature peak.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 所 寿男 栃木県宇都宮市砥上町282−1 ブランシ ュール砥上103 Fターム(参考) 4F074 AA24A AA24C AA25A BA32 BA33 BA36 BA37 BA44 BA56 BA57 CA31 CC04Z CC32Z CC42 4F212 AA09 AA11A AA11C AA11F AA11H AA12 AB02 AB16 AG20 UA01 UC06 UG07 UG09 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshio 282-1 Togami-cho, Utsunomiya-shi, Tochigi 103F B-term AA11C AA11F AA11H AA12 AB02 AB16 AG20 UA01 UC06 UG07 UG09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 プロピレン系ランダム共重合体又はラン
ダムブロック共重合体を基材樹脂とするポリプロピレン
系樹脂発泡粒子であって、該発泡粒子から求められるメ
ルトフローインデックスが0.5〜6g/10分、Z平
均分子量(ポリスチレン換算)が1.2×106 以上、
融点が130℃以上、示差走査熱量測定によって求めら
れるDSC曲線(但し、発泡粒子1〜3mgを示差走査
熱量計によって10℃/分の昇温速度で室温から200
℃まで昇温した時に得られるDSC曲線)に、二つ以上
の吸熱ピークが現れ、これらの吸熱ピークのうち固有ピ
ークよりも高温側に現れる吸熱ピークの吸熱エネルギー
が1〜20J/gであることを特徴とするポリプロピレ
ン系樹脂発泡粒子。
An expanded polypropylene resin particle comprising a propylene random copolymer or a random block copolymer as a base resin, wherein a melt flow index determined from the expanded particle is 0.5 to 6 g / 10 min. , Z average molecular weight (polystyrene conversion) is 1.2 × 10 6 or more,
DSC curve obtained by differential scanning calorimetry with a melting point of 130 ° C. or more (provided that 1 to 3 mg of expanded particles are 200 ° C. at room temperature at a rate of 10 ° C./min by a differential scanning calorimeter).
At least two endothermic peaks appear in a DSC curve obtained when the temperature is raised to ℃, and the endothermic energy of the endothermic peak which appears on the higher temperature side than the intrinsic peak among these endothermic peaks is 1 to 20 J / g. Polypropylene resin foam particles characterized by the following.
【請求項2】 見かけの密度が0.015〜0.05g
/cm3 であり、且つ固有ピークよりも高温側に現れる
吸熱ピークの吸熱エネルギーが5〜18J/gであるこ
とを特徴とする請求項1記載のポリプロピレン系樹脂発
泡粒子。
2. An apparent density of 0.015 to 0.05 g
/ Cm 3 and and a foamed polypropylene resin particles according to claim 1, wherein the endothermic peak endothermic energy appearing at the high temperature side than the inherent peak is characterized by a 5~18J / g.
【請求項3】 無機ガス系発泡剤によって発泡された発
泡粒子である請求項1又は2に記載のポリプロピレン系
樹脂発泡粒子。
3. The expanded polypropylene resin particles according to claim 1, wherein the expanded polypropylene resin particles are expanded particles formed by an inorganic gas-based blowing agent.
【請求項4】 プロピレン系ランダム共重合体又はラン
ダムブロック共重合体を基材樹脂とする多数のポリプロ
ピレン系樹脂発泡粒子を、加熱成形により相互に融着さ
せて得られるポリプロピレン系樹脂発泡粒子成形体であ
って、該成形体から求められるメルトフローインデック
スが0.5〜6g/10分、Z平均分子量(ポリスチレ
ン換算)が1.2×106 以上、融点が130℃以上、
示差走査熱量測定によって求められるDSC曲線(但
し、発泡粒子成形体1〜3mgを示差走査熱量計によっ
て10℃/分の昇温速度で室温から200℃まで昇温し
た時に得られるDSC曲線)に、二つ以上の吸熱ピーク
が現れ、これらの吸熱ピークのうち固有ピークよりも高
温側に現れる吸熱ピークの吸熱エネルギーが1〜20J
/gであることを特徴とするポリプロピレン系樹脂発泡
粒子成形体。
4. A foamed polypropylene resin particle obtained by fusing a large number of foamed polypropylene resin particles each having a propylene random copolymer or a random block copolymer as a base resin by heat molding. A melt flow index determined from the molded body is 0.5 to 6 g / 10 min, a Z-average molecular weight (in terms of polystyrene) is 1.2 × 10 6 or more, and a melting point is 130 ° C. or more;
A DSC curve obtained by differential scanning calorimetry (however, a DSC curve obtained when 1 to 3 mg of the foamed particle molded article is heated from room temperature to 200 ° C. at a heating rate of 10 ° C./min by a differential scanning calorimeter) Two or more endothermic peaks appear, and among these endothermic peaks, the endothermic energy of the endothermic peak that appears on the higher temperature side than the intrinsic peak is 1 to 20 J.
/ G foamed polypropylene resin particles.
JP34100298A 1998-10-29 1998-11-13 Polypropylene resin foamed particles and molded polypropylene resin foam particles Expired - Fee Related JP4157206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34100298A JP4157206B2 (en) 1998-10-29 1998-11-13 Polypropylene resin foamed particles and molded polypropylene resin foam particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-324571 1998-10-29
JP10324571A JP2000129028A (en) 1998-10-29 1998-10-29 Polypropylene resin foamed particle and molded product thereof
JP34100298A JP4157206B2 (en) 1998-10-29 1998-11-13 Polypropylene resin foamed particles and molded polypropylene resin foam particles

Publications (2)

Publication Number Publication Date
JP2000198872A true JP2000198872A (en) 2000-07-18
JP4157206B2 JP4157206B2 (en) 2008-10-01

Family

ID=26571528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34100298A Expired - Fee Related JP4157206B2 (en) 1998-10-29 1998-11-13 Polypropylene resin foamed particles and molded polypropylene resin foam particles

Country Status (1)

Country Link
JP (1) JP4157206B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308668A (en) * 2007-05-15 2008-12-25 Kaneka Corp Production method for polypropylene resin pre-expanded particle
WO2009001626A1 (en) * 2007-06-22 2008-12-31 Jsp Corporation Polypropylene resin foam particle and molding thereof
JP2009108161A (en) * 2007-10-29 2009-05-21 Kaneka Corp Polypropylene resin expandable particle
JP2009256460A (en) * 2008-04-16 2009-11-05 Kaneka Corp Polypropylene-based resin pre-foamed pellets and polypropylene-based resin internal mold foamed molded article obtained from the polypropylene-based resin pre-foamed pellets
JP2009256411A (en) * 2008-04-14 2009-11-05 Kaneka Corp Method for producing polypropylene-based resin in-mold foam molded product
JP2009256410A (en) * 2008-04-14 2009-11-05 Kaneka Corp Method for producing polypropylene-based resin foam particle
JP2010013605A (en) * 2008-07-07 2010-01-21 Kaneka Corp Polypropylene-based resin expanded particle
JP2010043182A (en) * 2008-08-12 2010-02-25 Kaneka Corp Polypropylene-based resin foamed particle and in-mold expansion-molded body
JP2010106238A (en) * 2008-09-30 2010-05-13 Kaneka Corp Polyolefin resin multistage foamed particle having excellent mold fillability
JP2010173146A (en) * 2009-01-28 2010-08-12 Kaneka Corp Method for manufacturing polypropylene-based resin in-mold foam molded body
WO2012121163A1 (en) 2011-03-08 2012-09-13 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold foam molded body, and method for producing polyethylene resin foam particles
WO2014084165A1 (en) * 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
JP2014173012A (en) * 2013-03-08 2014-09-22 Jsp Corp Polypropylene-based resin foam particle and compact thereof
WO2023190441A1 (en) * 2022-03-29 2023-10-05 株式会社カネカ Polypropylene resin foam particles, polypropylene resin foam molded body, and method for manufacturing polypropylene resin foam particles

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308668A (en) * 2007-05-15 2008-12-25 Kaneka Corp Production method for polypropylene resin pre-expanded particle
JP5498162B2 (en) * 2007-06-22 2014-05-21 株式会社ジェイエスピー Polypropylene resin foamed particles and molded articles thereof
WO2009001626A1 (en) * 2007-06-22 2008-12-31 Jsp Corporation Polypropylene resin foam particle and molding thereof
US9023904B2 (en) 2007-06-22 2015-05-05 Jsp Corporation Polypropylene resin foam particle and molding thereof
JP2009108161A (en) * 2007-10-29 2009-05-21 Kaneka Corp Polypropylene resin expandable particle
JP2009256411A (en) * 2008-04-14 2009-11-05 Kaneka Corp Method for producing polypropylene-based resin in-mold foam molded product
JP2009256410A (en) * 2008-04-14 2009-11-05 Kaneka Corp Method for producing polypropylene-based resin foam particle
JP2009256460A (en) * 2008-04-16 2009-11-05 Kaneka Corp Polypropylene-based resin pre-foamed pellets and polypropylene-based resin internal mold foamed molded article obtained from the polypropylene-based resin pre-foamed pellets
JP2010013605A (en) * 2008-07-07 2010-01-21 Kaneka Corp Polypropylene-based resin expanded particle
JP2010043182A (en) * 2008-08-12 2010-02-25 Kaneka Corp Polypropylene-based resin foamed particle and in-mold expansion-molded body
JP2010106238A (en) * 2008-09-30 2010-05-13 Kaneka Corp Polyolefin resin multistage foamed particle having excellent mold fillability
JP2010173146A (en) * 2009-01-28 2010-08-12 Kaneka Corp Method for manufacturing polypropylene-based resin in-mold foam molded body
WO2012121163A1 (en) 2011-03-08 2012-09-13 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold foam molded body, and method for producing polyethylene resin foam particles
US9309384B2 (en) 2011-03-08 2016-04-12 Kaneka Corporation Polyethylene resin foamed particles, polyethylene resin in-mold foam molded article, and method for producing polyethylene resin foamed particles
WO2014084165A1 (en) * 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
US9493622B2 (en) 2012-11-27 2016-11-15 Kaneka Corporation Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
JPWO2014084165A1 (en) * 2012-11-27 2017-01-05 株式会社カネカ POLYPROPYLENE RESIN FOAM PARTICLE, POLYPROPYLENE RESIN IN-MOLD FOAM MOLDING AND METHOD FOR PRODUCING THEM
JP2014173012A (en) * 2013-03-08 2014-09-22 Jsp Corp Polypropylene-based resin foam particle and compact thereof
WO2023190441A1 (en) * 2022-03-29 2023-10-05 株式会社カネカ Polypropylene resin foam particles, polypropylene resin foam molded body, and method for manufacturing polypropylene resin foam particles

Also Published As

Publication number Publication date
JP4157206B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
KR102226807B1 (en) Expanded particles and their molded body
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
JP5375613B2 (en) Polypropylene resin pre-expanded particles and method for producing the same
JPH0739501B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles
EP1870434B1 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
JP3195674B2 (en) Method for producing non-crosslinked ethylene polymer expanded particles
CN109863196B (en) Foamed particle molded body and shoe sole member
JP2022127578A (en) Foamed particle and method for producing the same
JP3418081B2 (en) Expanded resin particles
JP2805286B2 (en) Polyolefin-based resin foam molded article having communicating voids and method for producing the same
JP2000129028A (en) Polypropylene resin foamed particle and molded product thereof
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP6961607B2 (en) Foamed particle molded product
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
WO2018052125A1 (en) Expanded beads and molded object thereof
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JP2018070735A (en) Foamed particle and method for producing foamed particle molding
JP5358106B2 (en) Polypropylene resin pre-expanded particles
JPH05163381A (en) Production of expanded polymer particle
JP5399126B2 (en) Method for producing polyolefin resin expanded particles and polyolefin resin expanded particles
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
JP7269220B2 (en) Expanded polypropylene resin particles and method for producing the same
JP5758586B2 (en) Polyethylene resin expanded particles and polyethylene resin in-mold expanded molding
JP2023048463A (en) Multilayer foam particle
JP2022167218A (en) Multilayer foamed particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060915

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees