JP2000195747A - Manufacture of plastic film capacitor - Google Patents

Manufacture of plastic film capacitor

Info

Publication number
JP2000195747A
JP2000195747A JP36917098A JP36917098A JP2000195747A JP 2000195747 A JP2000195747 A JP 2000195747A JP 36917098 A JP36917098 A JP 36917098A JP 36917098 A JP36917098 A JP 36917098A JP 2000195747 A JP2000195747 A JP 2000195747A
Authority
JP
Japan
Prior art keywords
capacitor
molding
pressure
plastic film
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36917098A
Other languages
Japanese (ja)
Inventor
Toru Uchida
徹 内田
Toru Oshima
透 大島
Kaoru Takebe
薫 建部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP36917098A priority Critical patent/JP2000195747A/en
Publication of JP2000195747A publication Critical patent/JP2000195747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease molding time by applying ultrasonic vibration, heat and pressure in flat-forming a capacitor element in which films or metallic foils are mutually superposed and wound or stacked in a cylindrical form. SOLUTION: A method of manufacturing a plastic film capacitor is to superpose two 5 μm-thick metallized polypropylene films having evaporated electrodes, and they are cylindrically wound for forming a capacitor element. Next, the capacitor element is subjected to an ultrasonic vibration (vibration frequency 25 kHz, tip amplitude 50 μm) from its upper side and a pressure of 25 kg/cm2 from its bottom side, for 10 seconds, for molding. Then, the capacitor element is heated at 100 deg.C from its upper and lower sides and pressed with a 15 kg/cm2 pressure from its lower side for 1 minute, by the heat conduction from outside, to manufacture a unit capacitor of 0.47 μF. By this way, the time required for the molding with the heat and the pressure can be decreased without degrading performance of the capacitor in molding the unit capacitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器等に用い
られるプラスチックフィルムコンデンサの製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a plastic film capacitor used for electronic equipment and the like.

【0002】[0002]

【従来の技術】従来のプラスチックフィルムコンデンサ
の製造方法について説明する。その一般的なコンデンサ
の製造方法は、図1に示すように、プラスチックフィル
ムと、蒸着金属電極を設けた金属化プラスチックフィル
ム1、2、または金属箔を交互に重ね合わせ、所定の静
電容量を得るように、必要数円筒状に巻きまたは必要数
積層したものに、補強層3を設けたコンデンサ4を、加
熱と加圧により、偏平状態に成型を行い、単位コンデン
サ5を得る。
2. Description of the Related Art A conventional method for manufacturing a plastic film capacitor will be described. As shown in FIG. 1, a general method of manufacturing a capacitor is to alternately superimpose a plastic film and metallized plastic films 1, 2 or metal foils provided with vapor-deposited metal electrodes to obtain a predetermined capacitance. In order to obtain the required number of capacitors, a capacitor 4 provided with a reinforcing layer 3 on a required number of cylindrically wound or laminated layers is molded into a flat state by heating and pressing to obtain a unit capacitor 5.

【0003】[0003]

【発明が解決しようとする課題】この従来のプラスチッ
クフィルムコンデンサの製造方法においては、コンデン
サを80〜150℃の加熱と、5〜50kg/cm2
加圧にて、5〜60分間要して成型していた為、成型に
要する時間が長いなどの問題があった。
In the conventional method for manufacturing a plastic film capacitor, the capacitor requires heating at 80 to 150 ° C. and pressurizing at 5 to 50 kg / cm 2 for 5 to 60 minutes. Since molding was performed, there was a problem that the time required for molding was long.

【0004】本発明はこのような課題を解決するもので
あり、コンデンサの成型に、最初に超音波振動と加圧に
よる成型を行う事で、次に行う加熱と加圧による成型の
時間を、従来技術による成型時間に比べ、大幅に短縮さ
せる事を目的とする。
[0004] The present invention is to solve such a problem, by first performing the molding by ultrasonic vibration and pressurization in the molding of the capacitor, to reduce the time of the subsequent molding by heating and pressurization. The purpose is to greatly reduce the molding time according to the prior art.

【0005】[0005]

【課題を解決するための手段】この課題を解決するため
に、本発明の製造方法は、偏平に成型する際、最初に超
音波振動と加圧による成型を行い、次に加熱と加圧によ
る成型に分けて、成型を行う事を特徴としている。これ
によりプラスチックコンデンサは、成型する際、最初に
超音波振動と加圧による成型を1〜30秒間行い、次に
加熱と加圧による成型を10秒〜60分行うことにより
所定の成型性が得られ、従来に比べ成型に要する時間を
大幅に短縮させることが出来る。
Means for Solving the Problems In order to solve this problem, the manufacturing method of the present invention, when forming into a flat shape, first performs molding by ultrasonic vibration and pressurization, and then performs heating and pressurization. It is characterized by performing molding separately into molding. Thereby, when molding a plastic capacitor, first, molding by ultrasonic vibration and pressure is performed for 1 to 30 seconds, and then molding by heating and pressure is performed for 10 seconds to 60 minutes, thereby obtaining a predetermined moldability. Thus, the time required for molding can be greatly reduced as compared with the conventional case.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、プラスチックフィルムと、蒸着金属電極を設けた金
属化プラスチックフィルム、または金属箔とで構成され
るプラスチックフィルムコンデンサにおいて、前記フィ
ルムまたは金属箔を交互に重ね合わせ、円筒状に巻回ま
たは積層されたコンデンサ素子を、偏平に成型する際、
超音波振動と熱と圧力を用いた事を特徴とする、プラス
チックフィルムコンデンサの製造方法を示したものであ
り、超音波振動と加圧による成型を最初に追加する事
で、加熱と加圧による成型に要する時間を大幅に短縮し
て、所定の成型性が得られる作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention relates to a plastic film capacitor comprising a plastic film and a metallized plastic film provided with a vapor-deposited metal electrode, or a metal foil. When laminating metal foils alternately, and forming a cylindrically wound or laminated capacitor element flat,
This is a method of manufacturing a plastic film capacitor, characterized by using ultrasonic vibration, heat, and pressure. Molding by heating and pressing is performed by first adding molding by ultrasonic vibration and pressing. Has the effect of significantly shortening the time required for the molding and obtaining predetermined moldability.

【0007】請求項2に記載の発明は、前記単位コンデ
ンサを成型する工程において、最初に超音波振動と加圧
による成型を1秒〜30秒行い、次に熱と圧力による成
型を10秒〜60分の範囲で行う事を特徴とする請求項
1記載のプラスチックフィルムコンデンサの製造方法を
示したものである。最初に超音波振動をコンデンサ上部
に与え、下部より加圧し、1秒以上超音波振動を与える
事により、外部よりの熱伝導方式に比べて、はるかに急
速にコンデンサ素子全体を発熱させ、コンデンサ内部温
度が80〜150℃に上昇し、加圧とあいまって、重ね
合ったプラスチックフィルムと金属化フィルムが接着し
成型を成す。しかしながら、超音波振動による成型は、
短時間に急速に昇温させるため成型性にバラツキが発生
し易く、安定性を保つ為、次に80〜150℃の加熱、
5〜50kg/cm2の加圧で、外部よりの熱伝導によ
り、プラスチックフィルムと金属化フィルムを接着させ
て、所定の成型性が得られる作用を有する。
According to a second aspect of the present invention, in the step of molding the unit capacitor, molding by ultrasonic vibration and pressure is first performed for 1 to 30 seconds, and then molding by heat and pressure is performed for 10 to 30 seconds. A method for manufacturing a plastic film capacitor according to claim 1, wherein the method is performed in a range of 60 minutes. First, ultrasonic vibration is applied to the upper part of the capacitor, pressurized from the lower part, and ultrasonic vibration is applied for 1 second or more, so that the entire capacitor element generates heat much more quickly than the external heat conduction method, and the inside of the capacitor The temperature rises to 80-150 ° C and, in combination with the pressure, the superposed plastic film and metallized film adhere and form. However, molding by ultrasonic vibration,
Since the temperature is rapidly raised in a short time, the moldability tends to vary, and in order to maintain stability, heating at 80 to 150 ° C.
With a pressure of 5 to 50 kg / cm 2 , the plastic film and the metallized film are adhered by heat conduction from the outside, and have an effect of obtaining a predetermined moldability.

【0008】以下、本発明の実施の形態について図1を
用いて説明する。 (実施の形態)本発明の実施の形態におけるプラスチッ
クフィルムコンデンサの製造方法は、図1に示すよう
に、プラスチックフィルムと、蒸着金属電極を設けた金
属化プラスチックフィルム、または金属箔を交互に重ね
合わせ、所定の静電容量を得るように、必要数円筒状に
巻きまたは必要数積層したコンデンサ素子を、偏平に成
型する際、超音波振動と熱と圧力を用いて成型を行う。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. (Embodiment) As shown in FIG. 1, a method of manufacturing a plastic film capacitor according to an embodiment of the present invention is such that a plastic film and a metallized plastic film provided with vapor-deposited metal electrodes or a metal foil are alternately laminated. When the required number of cylindrically wound or laminated capacitor elements are flatly molded so as to obtain a predetermined capacitance, the molding is performed using ultrasonic vibration, heat and pressure.

【0009】[0009]

【実施例】次に本発明の具体例を説明する。Next, specific examples of the present invention will be described.

【0010】(実施例1)実施例1は本発明による成型
方法で、2枚の蒸着金属電極を設けた厚み5μmの金属
化ポリプロピレンフィルムを重ね合わせ、円筒状に巻回
しコンデンサ素子を得た。最初にコンデンサ上部より、
超音波振動(振動周波数25kHz、先端振幅50μ
m)を与え、下部より25kg/cm2にて加圧し、1
0秒間成型した。次にコンデンサ上下より100℃の加
熱、下部より15kg/cm2の加圧を与え、外部より
の熱伝導により1分間成型して、0.47μFの単位コ
ンデンサを得た。
Example 1 In Example 1, a metallized polypropylene film having a thickness of 5 μm provided with two vapor-deposited metal electrodes was superimposed by a molding method according to the present invention, and wound into a cylindrical shape to obtain a capacitor element. First, from the top of the capacitor,
Ultrasonic vibration (vibration frequency 25kHz, tip amplitude 50μ
m) and pressurized at 25 kg / cm 2 from below to
Molded for 0 seconds. Next, heating at 100 ° C. was applied from above and below the capacitor, and 15 kg / cm 2 was applied under pressure from the lower part, and the mixture was molded for 1 minute by heat conduction from the outside to obtain a 0.47 μF unit capacitor.

【0011】(比較例1)比較例1は超音波振動と加圧
による成型方法で、前記コンデンサ素子に、上部より超
音波振動(振動周波数25kHz、先端振幅50μm)
を与え、下部より25kg/cm2にて加圧し、10秒
間成型を行い、0.47μFの単位コンデンサを得た。
Comparative Example 1 Comparative Example 1 is a molding method using ultrasonic vibration and pressure. Ultrasonic vibration (vibration frequency 25 kHz, tip amplitude 50 μm) is applied to the capacitor element from above.
And pressurized from the bottom at 25 kg / cm 2 , and molded for 10 seconds to obtain a 0.47 μF unit capacitor.

【0012】(比較例2)比較例2は従来の加熱と加圧
による成型方法で、前記コンデンサ素子に、上下より1
00℃の加熱、下部より15kg/cm2の加圧を与
え、外部よりの熱伝導により5分間成型して、0.47
μFの単位コンデンサを得た。
Comparative Example 2 Comparative Example 2 is a conventional molding method using heat and pressure.
Heating at 00 ° C., applying a pressure of 15 kg / cm 2 from below, molding for 5 minutes by heat conduction from outside,
A unit capacitor of μF was obtained.

【0013】本実施例1と比較例1,2のコンデンサ素
子を、成型前後の静電容量変化率、直流絶縁破壊電圧試
験を実施し比較した。
The capacitor elements of Example 1 and Comparative Examples 1 and 2 were compared with each other by performing a capacitance change rate before and after molding and a DC breakdown voltage test.

【0014】図2はこのようにして出来た実施例1と比
較例1,2の成型前後の静電容量変化率の結果であり、
実施例1と比較例2のコンデンサ素子は、同等である
が、比較例1は低い。また、バラツキはいずれも同等で
ある。
FIG. 2 shows the results of the capacitance change rates before and after molding of Example 1 and Comparative Examples 1 and 2 thus obtained.
The capacitor elements of Example 1 and Comparative Example 2 are equivalent, but Comparative Example 1 is low. In addition, the variations are all the same.

【0015】図3はこのようにして出来た実施例1と比
較例1,2の直流絶縁破壊電圧試験の結果であり、実施
例1と比較例2のコンデンサ素子は、同等であるが、比
較例1は低い。また、バラツキは実施例1と比較例2
は、比較例1と比べて小さい。
FIG. 3 shows the results of the DC breakdown voltage tests of Example 1 and Comparative Examples 1 and 2 made in this manner. The capacitor elements of Example 1 and Comparative Example 2 are equivalent, Example 1 is low. In addition, the variation was in Example 1 and Comparative Example 2.
Is smaller than that of Comparative Example 1.

【0016】(実施例2)実施例2は本発明による成型
方法で、2枚の蒸着金属電極を設けた厚み12μmの金
属化ポリエステルフィルムを重ね合わせ、円筒状に巻回
しコンデンサ素子を得た。最初にコンデンサ上部より、
超音波振動(振動周波数25kHz、先端振幅50μ
m)を与え、下部より25kg/cm2にて加圧し、1
0秒間成型した。次にコンデンサ上下より115℃の加
熱、下部より15kg/cm2の加圧を与え、外部より
の熱伝導により1分間成型して、0.01μFの単位コ
ンデンサを得た。
Example 2 In Example 2, a metallized polyester film having a thickness of 12 μm provided with two vapor-deposited metal electrodes was superimposed by a molding method according to the present invention, and wound into a cylindrical shape to obtain a capacitor element. First, from the top of the capacitor,
Ultrasonic vibration (vibration frequency 25kHz, tip amplitude 50μ
m) and pressurized at 25 kg / cm 2 from below to
Molded for 0 seconds. Next, heating at 115 ° C. was applied from above and below the capacitor, and 15 kg / cm 2 was applied from below, and molding was performed for 1 minute by heat conduction from the outside to obtain a 0.01 μF unit capacitor.

【0017】(比較例3)比較例3は従来の成型方法
で、前記コンデンサ素子に、上下より115℃の加熱、
下部より15kg/cm2の加圧を与え、外部よりの熱
伝導により5分間成型して、0.01μFの単位コンデ
ンサを得た。
(Comparative Example 3) In Comparative Example 3, a conventional molding method was used.
A pressure of 15 kg / cm 2 was applied from the lower part, and the mixture was molded by heat conduction from the outside for 5 minutes to obtain a unit capacitor of 0.01 μF.

【0018】本実施例2と比較例3のコンデンサ素子
を、上記と同様な成型前後の静電容量変化率、直流絶縁
破壊電圧試験を実施し比較した。結果は上記実施例1と
比較例2の関係と同様に、測定値およびバラツキとも、
実施例2と比較例3のコンデンサ素子は同等であった。
The capacitor elements of Example 2 and Comparative Example 3 were subjected to the same capacitance change rate and DC insulation breakdown voltage test before and after molding as described above, and compared. The results are similar to the relationship between Example 1 and Comparative Example 2 above, with both the measured value and
The capacitor elements of Example 2 and Comparative Example 3 were equivalent.

【0019】[0019]

【発明の効果】以上のように本発明のプラスチックフィ
ルムコンデンサは、単位コンデンサを成型する際、最初
に超音波振動と加圧による成型を1〜30秒行い、次に
加熱と加圧による成型を10秒〜60分行うことにより
所定の成型性が得られる。このことにより、コンデンサ
の性能を悪化させることなく、加熱と加圧による成型に
要する時間を、従来に比べ大幅に短縮させることが出来
るものである。
As described above, in the plastic film capacitor of the present invention, when molding a unit capacitor, first, molding by ultrasonic vibration and pressure is performed for 1 to 30 seconds, and then molding by heating and pressure is performed. By carrying out for 10 seconds to 60 minutes, a predetermined moldability can be obtained. As a result, the time required for molding by heating and pressurizing can be significantly reduced as compared with the related art without deteriorating the performance of the capacitor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】成型前と後のコンデンサ素子の斜視図FIG. 1 is a perspective view of a capacitor element before and after molding.

【図2】実施例及び比較例の静電容量変化率の結果を示
す図
FIG. 2 is a diagram showing the results of the rate of change in capacitance in Examples and Comparative Examples.

【図3】実施例及び比較例の直流絶縁破壊試験の結果を
示す図
FIG. 3 is a diagram showing the results of a DC breakdown test of an example and a comparative example.

【符号の説明】[Explanation of symbols]

1 金属化プラスチックフィルム 2 金属化プラスチックフィルム 3 補強層 4 成型前コンデンサ 5 成型後コンデンサ DESCRIPTION OF SYMBOLS 1 Metallized plastic film 2 Metallized plastic film 3 Reinforcement layer 4 Capacitor before molding 5 Capacitor after molding

───────────────────────────────────────────────────── フロントページの続き (72)発明者 建部 薫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5E082 AB03 AB04 EE03 EE07 FG06 FG34 MM02 MM22 MM24 PP05 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kaoru Tatebe 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 5E082 AB03 AB04 EE03 EE07 FG06 FG34 MM02 MM22 MM24 PP05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プラスチックフィルムと、蒸着金属電極
を設けた金属化プラスチックフィルム、または金属箔と
で構成されるプラスチックフィルムコンデンサにおい
て、前記フィルムまたは金属箔を交互に重ね合わせたコ
ンデンサ素子を、偏平に成型する際、超音波振動と熱と
圧力を用いる事を特徴とする、プラスチックフィルムコ
ンデンサの製造方法。
1. A plastic film capacitor comprising a plastic film and a metallized plastic film provided with a vapor-deposited metal electrode or a metal foil, wherein a capacitor element obtained by alternately stacking the films or the metal foils is flattened. A method for producing a plastic film capacitor, characterized by using ultrasonic vibration, heat and pressure when molding.
【請求項2】 前記単位コンデンサを成型する工程にお
いて、最初に超音波振動と加圧による成型を1秒〜30
秒行い、次に熱と圧力による成型を10秒〜60分の範
囲で行う事を特徴とする請求項1記載のプラスチックフ
ィルムコンデンサの製造方法。
2. In the step of molding the unit capacitor, first, molding by ultrasonic vibration and pressure is performed for 1 second to 30 seconds.
2. The method for manufacturing a plastic film capacitor according to claim 1, wherein molding by heat and pressure is performed for 10 seconds to 60 minutes.
JP36917098A 1998-12-25 1998-12-25 Manufacture of plastic film capacitor Pending JP2000195747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36917098A JP2000195747A (en) 1998-12-25 1998-12-25 Manufacture of plastic film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36917098A JP2000195747A (en) 1998-12-25 1998-12-25 Manufacture of plastic film capacitor

Publications (1)

Publication Number Publication Date
JP2000195747A true JP2000195747A (en) 2000-07-14

Family

ID=18493747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36917098A Pending JP2000195747A (en) 1998-12-25 1998-12-25 Manufacture of plastic film capacitor

Country Status (1)

Country Link
JP (1) JP2000195747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022216509A3 (en) * 2021-04-07 2022-11-17 Kemet Electronics Corporation Overmolded film capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022216509A3 (en) * 2021-04-07 2022-11-17 Kemet Electronics Corporation Overmolded film capacitor

Similar Documents

Publication Publication Date Title
JP3470830B2 (en) Manufacturing method of multilayer capacitor
WO1991003064A1 (en) Laminated capacitor and method of producing the same
JP3466524B2 (en) Multilayer electronic component and manufacturing method thereof
JP2000195747A (en) Manufacture of plastic film capacitor
JPS6159522B2 (en)
JPH10308322A (en) Production of laminated electronic part
JP2993909B2 (en) Manufacturing method of capacitor
JP2002190428A (en) Capacitor element and its manufacturing method, and solid electrolytic capacitor provided with the same
JPH01175223A (en) Laminated solid electrolytic capacitor
JP2004281515A (en) Layered solid electrolytic capacitor
JP2009277866A (en) Film capacitor and method of manufacturing the same
JP3275683B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3538308B2 (en) Manufacturing method of multilayer ceramic electronic component
JPS6027175B2 (en) Capacitor manufacturing method
JPS582054Y2 (en) Crimping jig for manufacturing flat film capacitors or mica capacitors
JPH10261543A (en) Capacitor
JPS6029214B2 (en) Manufacturing method of multilayer capacitor
JPH07335490A (en) Variable capacitor
JPH03201421A (en) Laminated film capacitor
JPH03106008A (en) Manufacture of laminated capacitor
JP2842350B2 (en) Multilayer capacitors
JP2004235408A (en) Process for producing capacitor
JPH04280615A (en) Manufacture of laminated body
JP2536240Y2 (en) Composite capacitors
JPS6370412A (en) Manufacture of laminated paper-less electrolytic capacitor