JP2000195526A - Electrode for fuel cell - Google Patents

Electrode for fuel cell

Info

Publication number
JP2000195526A
JP2000195526A JP10371241A JP37124198A JP2000195526A JP 2000195526 A JP2000195526 A JP 2000195526A JP 10371241 A JP10371241 A JP 10371241A JP 37124198 A JP37124198 A JP 37124198A JP 2000195526 A JP2000195526 A JP 2000195526A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
flat plate
solid electrolyte
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10371241A
Other languages
Japanese (ja)
Inventor
Masanori Hashimoto
政憲 橋本
Kaneyoshi Komada
兼良 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Araco Co Ltd
Original Assignee
Araco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Araco Co Ltd filed Critical Araco Co Ltd
Priority to JP10371241A priority Critical patent/JP2000195526A/en
Publication of JP2000195526A publication Critical patent/JP2000195526A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell at a low cost by reducing the cost of an electrode plate that is a constituent component of the fuel cell. SOLUTION: An electrode plate is so formed as to be provided with a flat plate part 21a and a plurality of projecting parts 21b projecting from one side or both sides of the flat plate part 21a, and the flat plate part 21a and the respective projecting parts 21b are integrally molded by the use of a synthetic resin in which corrosion-resistant conductive fine powder is mixed. Since the electrode plate can be manufactured by using, as its materials, a corrosion- resistant synthetic resin such as polypropylene and conductive fine powder such as inexpensive carbon fine powder and by employing a common synthetic resin molding means, the cost can be reduced in terms of materials and a forming means as compared with a conventional electrode for the fuel cell so hat the fuel cell can be provided at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料ガスおよび酸
化剤ガスを反応ガスとする燃料電池の構成部品である燃
料電池用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode which is a component of a fuel cell using a fuel gas and an oxidizing gas as reaction gases.

【0002】[0002]

【従来の技術】燃料電池の一形式として、燃料ガスおよ
び酸化剤ガスを反応ガスとする燃料電池がある。当該形
式の燃料電池は、一般には、複数の固体電解質膜と、こ
れら各固体電解質膜間に配設されて固体電解質膜と交互
に位置する複数の板状の電極と、固体電解質膜の一側に
形成された第1の反応部と、固体電解質膜の他側に形成
された第2の反応部と、第1の反応部に燃料ガスを供給
する第1の供給流路と、第2の反応部に酸化剤ガスを供
給する第2の供給流路を備えた構成となっている。
2. Description of the Related Art As one type of fuel cell, there is a fuel cell using a fuel gas and an oxidizing gas as reaction gases. In general, a fuel cell of this type includes a plurality of solid electrolyte membranes, a plurality of plate-like electrodes disposed between the solid electrolyte membranes and alternately positioned with the solid electrolyte membranes, and one side of the solid electrolyte membrane. A first reaction section formed on the other side, a second reaction section formed on the other side of the solid electrolyte membrane, a first supply flow path for supplying a fuel gas to the first reaction section, and a second reaction section. The configuration includes a second supply flow path for supplying an oxidizing gas to the reaction section.

【0003】当該形式の燃料電池は、小型で電気的に高
性能であることから、専用の設置空間や搭載重量に大き
な制約がある車両、船舶、飛行機、人工衛生、宇宙船等
多くの分野で利用することが可能で、すでに一部の分野
で利用されている。
[0003] The fuel cell of this type is small in size and electrically high in performance, so that it is used in many fields such as vehicles, ships, airplanes, artificial hygiene, and spacecraft, which have great restrictions on a dedicated installation space and mounting weight. It can be used and has already been used in some fields.

【0004】[0004]

【発明が解決しようとする課題】ところで、当該形式の
燃料電池における電極は、各固体電解質膜の両側に反応
部を形成するとともに、両反応部にて電気化学反応によ
り発生する電気を導出すべく機能するもので、反応部に
おける反応ガスの流通性を良好にするとともに、反応ガ
スとの接触性を良好にするため、平板部と、同平板部の
一側から突出する複数(多数)の突起部を備えた構成と
なっている。また、かかる電極は、高い導電性を確保す
るために、かつ、反応部での酸化雰囲気に十分に耐える
ようにカーボンにて形成されている。
By the way, the electrodes in the fuel cell of this type form reaction parts on both sides of each solid electrolyte membrane, and derive electricity generated by an electrochemical reaction in both reaction parts. In order to improve the flowability of the reaction gas in the reaction section and to improve the contact property with the reaction gas, the plate section and a plurality of (many) projections projecting from one side of the plate section. It is configured to include a unit. Further, such an electrode is formed of carbon so as to ensure high conductivity and sufficiently withstand an oxidizing atmosphere in the reaction part.

【0005】当該電極を形成するには、具体的には、所
定の厚みのブロック状カーボンの一側または両側を機械
による削り加工により複数の突起部を削り出す手段が採
られており、高価なカーボン材料を使用することと、複
数の突起部の削り加工という面倒で時間を要する機械加
工とに起因して、電極のコストは1枚当たり数万円とい
う極めて高価な構成部品となり、この結果、燃料電池を
高価なものとしていて、十分な普及を妨げている。
[0005] In order to form the electrode, specifically, a means is used in which one or both sides of a block-like carbon having a predetermined thickness are machined to form a plurality of projections by machining, which is expensive. Due to the use of carbon material and the cumbersome and time-consuming machining of multiple projections, the cost of the electrodes is extremely high, tens of thousands of yen per piece, and as a result, Fuel cells are expensive and prevent their widespread use.

【0006】従って、本発明の目的は、この種形式の燃
料電池を構成する電極のコストを大幅に低減させること
により、従来のこの種の燃料電池に比較して廉価な燃料
電池を提供することにある。
Accordingly, it is an object of the present invention to provide a fuel cell which is inexpensive as compared with a conventional fuel cell of this type by drastically reducing the cost of the electrodes constituting this type of fuel cell. It is in.

【0007】[0007]

【課題を解決するための手段】本発明は燃料電池用電極
に関し、特に、複数の固体電解質膜間に配設されて同固
体電解質膜と交互に位置し、同固体電解質膜の一側に燃
料ガスが供給される第1の反応部を形成するとともに、
同固体電解質膜の他側に酸化剤ガスが供給される第2の
反応部を形成し、これら各固体電解質膜とともに前記燃
料ガスおよび前記酸化剤ガスを反応ガスとする燃料電池
を構成する板状の電極を適用対象とするものである。
The present invention relates to an electrode for a fuel cell, and more particularly to a fuel cell electrode, which is disposed between a plurality of solid electrolyte membranes and is alternately arranged with the solid electrolyte membrane, and a fuel electrolyte is provided on one side of the solid electrolyte membrane. Forming a first reaction section to which gas is supplied,
A second reaction section to which an oxidant gas is supplied is formed on the other side of the solid electrolyte membrane, and a plate-like component constituting a fuel cell using the fuel gas and the oxidant gas as a reaction gas together with each of the solid electrolyte membranes Are applied.

【0008】しかして、本発明に係る燃料電池用電極
は、平板部と同平板部の一側または両側から突出する複
数の突起部からなり、これら平板部と各突起部とが耐腐
食性の導電性微粉末が混在する合成樹脂材料にて一体的
に成形されていることを特徴とするものである。
Thus, the fuel cell electrode according to the present invention comprises a flat plate portion and a plurality of protrusions projecting from one or both sides of the flat plate portion. It is characterized by being integrally formed of a synthetic resin material mixed with conductive fine powder.

【0009】本発明に係る燃料電池用電極においては、
前記導電性微粉末はカーボン粉末であることが好まし
く、また、前記平板部および前記各突起部の表面の全て
または一部がカーボン製の被覆層にて被覆されているこ
とが好ましい。
In the fuel cell electrode according to the present invention,
The conductive fine powder is preferably carbon powder, and it is preferable that all or a part of the surface of the flat plate portion and each of the protrusions is covered with a carbon coating layer.

【0010】[0010]

【発明の作用・効果】本発明に係る燃料電池用電極にお
いては、平板部と同平板部から突出して同平板部の一側
または両側へ延びる複数の突起部からなることから、従
来の電極と同様に、各固体電解質膜の各側部に各反応部
を形成するとともに、各突起部が各反応部にて電気化学
反応により発生する電気を導出すべく機能する。また、
各突起部は、反応部における反応ガスの流通性を良好に
するとともに反応ガスとの接触性を良好にする。
The fuel cell electrode according to the present invention comprises a flat plate portion and a plurality of protrusions projecting from the flat plate portion and extending to one side or both sides of the flat plate portion. Similarly, each reaction portion is formed on each side of each solid electrolyte membrane, and each projection functions to extract electricity generated by an electrochemical reaction in each reaction portion. Also,
Each projection improves the flowability of the reaction gas in the reaction section and the contact property with the reaction gas.

【0011】しかして、当該電極においては、平板部お
よび各突起部が耐腐食性の導電性微粉末が混在する合成
樹脂材料にて一体的に成形されているものであり、反応
部での酸化雰囲気に十分に耐える高い耐腐食性を備えて
おり、また、ポリプロピレン等の耐腐食性の合成樹脂
と、カーボン粉末等の耐腐食性の導電性微粉末、等の安
価な材料を使用して、通常の合成樹脂の成形手段を採用
することにより形成することができるため、従来の燃料
電池用電極に比較して原材料の点からも形成手段の点か
らもコストの低減を図ることができ、これにより、この
種形式の燃料電池を廉価に提供することができる。
However, in the electrode, the flat plate portion and each projection portion are integrally formed of a synthetic resin material mixed with corrosion-resistant conductive fine powder, and the oxidation portion in the reaction portion is formed. It has high corrosion resistance enough to withstand the atmosphere, and uses inexpensive materials such as corrosion-resistant synthetic resin such as polypropylene and corrosion-resistant conductive fine powder such as carbon powder. Since it can be formed by adopting ordinary synthetic resin molding means, the cost can be reduced from the viewpoint of raw materials and the formation means as compared with the conventional fuel cell electrode. Accordingly, this type of fuel cell can be provided at low cost.

【0012】本発明に係る燃料電池用電極においては、
平板部および各突起部の表面の全てまたは一部をカーボ
ン製の被覆層にて被覆するように構成すれば、電極全体
の導電性が一層向上し、燃料電池からの発生電力をより
簡単にロスなく確実に導出することができる。
In the fuel cell electrode according to the present invention,
If all or part of the surface of the flat plate and each projection is covered with a carbon coating layer, the conductivity of the entire electrode is further improved, and the power generated from the fuel cell can be more easily lost. Can be reliably derived.

【0013】[0013]

【発明の実施の形態】以下、本発明を図面に基づいて説
明すると、図1には本発明の一例に係る電極である電極
板を構成部品とする燃料電池が模式的に示され、また、
図2には当該燃料電池を分解した状態で示されている。
当該燃料電池は、燃料ガスと酸化剤ガスを反応ガスとす
るもので、燃料ガスとしては水素、または加湿された水
素が採用され、かつ、酸化剤ガスとしては酸素、空気、
または加湿された酸素、空気等が採用されるもので、複
数枚の固体電解質膜10と複数枚の電極板20を交互に
重合して形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 schematically shows a fuel cell having an electrode plate as an electrode according to an example of the present invention as a component.
FIG. 2 shows the fuel cell in an exploded state.
The fuel cell uses a fuel gas and an oxidizing gas as reaction gases.Hydrogen or humidified hydrogen is employed as the fuel gas, and oxygen, air,
Alternatively, humidified oxygen, air, or the like is employed, and is formed by alternately polymerizing a plurality of solid electrolyte membranes 10 and a plurality of electrode plates 20.

【0014】固体電解質膜10は、図1〜図3に示すよ
うに、方形の膜本体11と、膜本体11の両面に貼着さ
れた触媒層12a,12bからなるもので、膜本体11
の図示上端縁部には燃料ガスの供給流路31を構成する
供給口13aが、その図示下端縁部には燃料ガスの排出
流路32を構成する排出口13bが形成されており、か
つ、膜本体11の図示に右側縁部には酸化剤ガスの供給
流路33を構成する供給口14aが、その図示左側縁部
には酸化剤ガスの排出流路33を構成する排出口14b
が形成されている。固体電解質膜10を構成する膜本体
11は、イオン交換樹脂製の薄膜であり、また、触媒層
12a,12bは、多孔質カーボンに触媒である白金を
担持したものである。
As shown in FIGS. 1 to 3, the solid electrolyte membrane 10 comprises a rectangular membrane main body 11, and catalyst layers 12a and 12b adhered to both sides of the membrane main body 11.
A supply port 13a forming a fuel gas supply flow path 31 is formed at an upper end of the drawing, and a discharge port 13b forming a fuel gas discharge flow path 32 is formed at a lower end of the drawing, and A supply port 14a forming a supply channel 33 for the oxidizing gas is provided on the right side edge portion of the membrane main body 11 in the drawing, and an outlet port 14b forming a discharge channel 33 for the oxidizing gas is provided on the left side edge portion in the drawing.
Are formed. The membrane body 11 constituting the solid electrolyte membrane 10 is a thin film made of an ion exchange resin, and the catalyst layers 12a and 12b are formed by supporting platinum as a catalyst on porous carbon.

【0015】電極板20は、図1、図2および図4に示
すように、方形の板状電極21をフレーム22にて挟持
してなるもので、フレーム22は上下および左右の4本
の枠体23〜26にて形成されている。図示上側枠体2
3には燃料ガスの供給流路31を構成する供給口23a
と流動路23bが、図示下側枠体24には燃料ガスの排
出流路32を構成する排出口24aと流動路24bを備
え、また、図示右側枠体25には酸化剤ガスの供給流路
33を構成する供給口25aと流動路25bが、図示左
側枠体26には酸化剤ガスの排出流路34を構成する排
出口26aと流動路26bが形成されている。
As shown in FIGS. 1, 2 and 4, the electrode plate 20 is formed by sandwiching a rectangular plate-like electrode 21 between frames 22. The frame 22 is composed of four vertical and horizontal frames. It is formed of bodies 23 to 26. Illustrated upper frame 2
3 has a supply port 23a forming a supply path 31 for the fuel gas.
And a flow path 23b, the lower frame 24 shown in the drawing has a discharge port 24a and a flow path 24b which constitute a fuel gas discharge flow path 32, and the right frame 25 in the drawing has an oxidant gas supply flow path. A supply port 25a and a flow path 25b constituting a flow path 33b are formed on the left frame 26 in the figure, and an outlet 26a and a flow path 26b forming a discharge flow path 34 for the oxidizing gas are formed on the left frame 26 in the figure.

【0016】なお、図4においては、同図(a)は電極
板20を分解した状態の斜視図を示し、かつ、同図
(b)は電極板20を組立てた状態の斜視図を示してお
り、フレーム22を構成する各枠体23〜26を板状電
極21の周縁部に、同図(a)の矢印で示す方向に組付
けることにより、電極板20は同図(b)に示すように
組立てられる。
FIG. 4A is a perspective view showing the electrode plate 20 in an exploded state, and FIG. 4B is a perspective view showing the electrode plate 20 in an assembled state. The electrode plate 20 is shown in FIG. 2B by assembling the frame bodies 23 to 26 constituting the frame 22 on the periphery of the plate electrode 21 in the direction indicated by the arrow in FIG. Assembled.

【0017】当該燃料電池においては、固体電解質10
と電極板20が交互に重合されて構成されていて、固体
電解質膜10の各表面側に第1,第2反応部R1,R2
が形成されている。第1反応部R1には燃料ガス供給路
31を通して燃料ガスが供給され、かつ、第2反応部R
2には酸化剤ガス供給路33を通して酸化剤ガスが供給
される。これら各反応部R1,R2に供給されたこれらの
反応ガスは、固体電解質膜10を挟んで化学反応を起こ
して電気を発生し、発生した電気は電極板20を介して
導出される。
In the fuel cell, the solid electrolyte 10
And the electrode plate 20 are alternately polymerized, and the first and second reaction sections R1 and R2 are provided on each surface side of the solid electrolyte membrane 10.
Are formed. Fuel gas is supplied to the first reaction section R1 through the fuel gas supply passage 31, and the second reaction section R
An oxidizing gas is supplied to 2 through an oxidizing gas supply path 33. The reaction gas supplied to each of the reaction sections R1 and R2 causes a chemical reaction across the solid electrolyte membrane 10 to generate electricity, and the generated electricity is led out through the electrode plate 20.

【0018】しかして、電極板20を構成する板状電極
21は、図4および図5に示すように、平板部21a
と、多数の突起部21bからなり、平板部21aおよび
全ての突起部21bは被覆層21cにて被覆されてい
る。各突起部21bは、平板部21aの両表面側に所定
長さ突出しているもので、平板部21aと各突起部21
bとは、カーボン微粉末等の耐腐食性の導電性微粉末を
混在させたポリピロピレン等の耐腐食性の合成樹脂にて
一体的に成形されている。また、被覆層21cは、カー
ボン材料等の耐腐食性の導電性材料にて形成されてい
る。
As shown in FIGS. 4 and 5, the plate electrode 21 constituting the electrode plate 20 has a flat plate portion 21a.
And a large number of protrusions 21b, and the flat plate portion 21a and all the protrusions 21b are covered with a cover layer 21c. Each of the protrusions 21b protrudes from both surface sides of the flat plate portion 21a by a predetermined length, and the flat plate portion 21a and each of the protrusion portions 21a.
b is integrally formed of a corrosion-resistant synthetic resin such as polypropylene containing a corrosion-resistant conductive fine powder such as carbon fine powder. The coating layer 21c is formed of a corrosion-resistant conductive material such as a carbon material.

【0019】当該燃料電池を構成する電極板20におい
ては、その板状電極21が平板部21aと、平板部21
から突出してその両側へ延びる多数の突起部21bから
なることから、従来の電極と同様に、各固体電解質膜1
0の各側部に各反応部R1,R2を形成するとともに、各
突起部21bが各反応部R1,R2にて電気化学反応によ
り発生する電気を導出すべく機能する。また、各突起部
21bは、反応部R1,R2における反応ガスの流通性を
良好にするとともに反応ガスとの接触性を良好にする。
In the electrode plate 20 constituting the fuel cell, the plate electrode 21 is composed of a flat plate portion 21a and a flat plate portion 21a.
And a large number of protrusions 21b protruding from both sides of the solid electrolyte membrane 1b.
Each of the reaction portions R1 and R2 is formed on each side of the 0, and each projection 21b functions to extract electricity generated by the electrochemical reaction in each of the reaction portions R1 and R2. In addition, each protrusion 21b improves the flowability of the reaction gas in the reaction sections R1 and R2 and also improves the contact with the reaction gas.

【0020】しかして、当該電極板20においては、板
状電極21の平板部21aおよび各突起部21bが耐腐
食性の導電性微粉末が混在する合成樹脂材料にて一体的
に成形されているものであり、反応部R1,R2での酸化
雰囲気に十分に耐える高い耐腐食性を備えており、ま
た、ポリプロピレン等の耐腐食性の合成樹脂と、カーボ
ン粉末等の耐腐食性の導電性微粉末、等の安価な材料を
使用して、通常の合成樹脂の成形手段を採用することに
より形成することができるため、従来の燃料電池用電極
に比較して原材料の点からも形成手段の点からもコスト
の低減を図ることができ、これにより、この種形式の燃
料電池を廉価に提供することができる。
In the electrode plate 20, the flat plate portion 21a and each protrusion 21b of the plate-like electrode 21 are integrally formed of a synthetic resin material mixed with corrosion-resistant conductive fine powder. It has high corrosion resistance enough to withstand the oxidizing atmosphere in the reaction sections R1 and R2. It also has a corrosion-resistant synthetic resin such as polypropylene and a corrosion-resistant conductive fine powder such as carbon powder. Since it can be formed by using an inexpensive material such as powder and the usual synthetic resin molding means, it can be formed from the viewpoint of raw materials as compared with conventional fuel cell electrodes. Therefore, the cost can be reduced, and this type of fuel cell can be provided at a low cost.

【0021】また、当該電極板20において、板状電極
21の平板部21aおよび各突起部21bの表面の全て
をカーボン製の被覆層21cにて被覆するように構成す
れば、電極板20全体の導電性が一層向上し、燃料電池
からの発生電力をより簡単にロスなく確実に導出するこ
とができる。
In the electrode plate 20, if the entire surface of the flat plate portion 21a of the plate-like electrode 21 and each of the protrusions 21b is covered with a carbon coating layer 21c, the entire electrode plate 20 can be formed. The conductivity is further improved, and the power generated from the fuel cell can be more easily derived without loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例に係る電極を構成部品とする燃料
電池を示す模式図である。
FIG. 1 is a schematic view showing a fuel cell including an electrode according to an example of the present invention as a component.

【図2】同燃料電池を分解した斜視図である。FIG. 2 is an exploded perspective view of the fuel cell.

【図3】同燃料電池を構成する固体電解質膜の斜視図で
ある。
FIG. 3 is a perspective view of a solid electrolyte membrane constituting the fuel cell.

【図4】同燃料電池を構成する電極板を分解した状態の
斜視図(a)、および同電極板を組立てた状態の斜視図
(b)である。
FIG. 4A is a perspective view of an exploded state of an electrode plate constituting the fuel cell, and FIG. 4B is a perspective view of an assembled state of the electrode plate.

【図5】同電極板を構成する板状電極の縦断側面図であ
る。
FIG. 5 is a vertical sectional side view of a plate-like electrode constituting the electrode plate.

【符号の説明】[Explanation of symbols]

10…固体電解質膜、11…膜本体、12a,12b…
触媒層、13a…燃料ガス供給口、13b…燃料ガス排
出口、14a…酸化剤ガス供給口、14b…酸化剤ガス
排出口、20…電極板、21…板状電極、21a…平板
部、21b…突起部、21c…被覆層、22…フレー
ム、23〜26…枠体、23a…燃料ガス供給口、23
b…流動路、24a…燃料ガス排出口、24b…流動
路、25a…酸化剤ガス供給口、25b…流動路、26
a…酸化剤ガス排出口、26b…流動路、31…燃料ガ
ス供給路、32…燃料ガス排出路、33…酸化剤ガス供
給路、34…酸化剤ガス排出路、R1,R2…反応部。
10: solid electrolyte membrane, 11: membrane main body, 12a, 12b ...
Catalyst layer, 13a: fuel gas supply port, 13b: fuel gas discharge port, 14a: oxidant gas supply port, 14b: oxidant gas discharge port, 20: electrode plate, 21: plate electrode, 21a: flat plate portion, 21b ... Projecting portion, 21c ... Coating layer, 22 ... Frame, 23-26 ... Frame, 23a ... Fuel gas supply port, 23
b: flow path, 24a: fuel gas outlet, 24b: flow path, 25a: oxidant gas supply port, 25b: flow path, 26
a: oxidant gas discharge port, 26b: flow path, 31: fuel gas supply path, 32: fuel gas discharge path, 33: oxidant gas supply path, 34: oxidant gas discharge path, R1, R2: reaction section.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の固体電解質膜間に配設されて同固体
電解質膜と交互に位置し、同固体電解質膜の一側に燃料
ガスが供給される第1の反応部を形成するとともに、同
固体電解質膜の他側に酸化剤ガスが供給される第2の反
応部を形成し、これら各固体電解質膜とともに前記燃料
ガスおよび前記酸化剤ガスを反応ガスとする燃料電池を
構成する板状の電極であり、当該電極は、平板部と同平
板部の一側または両側から突出する複数の突起部からな
り、これら平板部と各突起部とが耐腐食性の導電性微粉
末が混在する合成樹脂材料にて一体的に成形されている
ことを特徴とする燃料電池用電極。
1. A first reaction part, which is disposed between a plurality of solid electrolyte membranes and is alternately located with the solid electrolyte membranes, and forms a first reaction part to which fuel gas is supplied to one side of the solid electrolyte membranes, A second reaction section to which an oxidant gas is supplied is formed on the other side of the solid electrolyte membrane, and a plate-like component constituting a fuel cell using the fuel gas and the oxidant gas as a reaction gas together with each of the solid electrolyte membranes The electrode is composed of a flat plate portion and a plurality of protrusions protruding from one side or both sides of the flat plate portion, and the flat plate portion and each of the protrusions are mixed with corrosion-resistant conductive fine powder. An electrode for a fuel cell, which is integrally formed of a synthetic resin material.
【請求項2】請求項1に記載の燃料電池用電極におい
て、前記導電性微粉末はカーボン粉末であることを特徴
とする燃料電池。
2. The fuel cell electrode according to claim 1, wherein said conductive fine powder is carbon powder.
【請求項3】請求項1または2に記載の燃料電池用電極
において、前記平板部および前記各突起部の表面の全て
または一部がカーボン製の被覆層にて被覆されているこ
とを特徴とする燃料電池用電極。
3. The fuel cell electrode according to claim 1, wherein all or a part of the surface of the flat plate portion and each of the protrusions is coated with a coating layer made of carbon. For fuel cells.
JP10371241A 1998-12-25 1998-12-25 Electrode for fuel cell Pending JP2000195526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10371241A JP2000195526A (en) 1998-12-25 1998-12-25 Electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371241A JP2000195526A (en) 1998-12-25 1998-12-25 Electrode for fuel cell

Publications (1)

Publication Number Publication Date
JP2000195526A true JP2000195526A (en) 2000-07-14

Family

ID=18498376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371241A Pending JP2000195526A (en) 1998-12-25 1998-12-25 Electrode for fuel cell

Country Status (1)

Country Link
JP (1) JP2000195526A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017028A1 (en) * 2003-08-19 2005-02-24 Idemitsu Kosan Co., Ltd. Resin composition for fuel cell member
JP2008288220A (en) * 2001-11-20 2008-11-27 General Motors Corp <Gm> Low contact resistance pem fuel cell
US8088512B2 (en) 2001-07-27 2012-01-03 A123 Systems, Inc. Self organizing battery structure method
US8148009B2 (en) 2000-10-20 2012-04-03 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US8168326B2 (en) 2000-10-20 2012-05-01 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8481208B2 (en) 2002-07-26 2013-07-09 A123 Systems, LLC Bipolar articles and related methods
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709647B2 (en) 2000-10-20 2014-04-29 A123 Systems Llc Battery structures and related methods
US8580430B2 (en) 2000-10-20 2013-11-12 Massachusetts Institute Of Technology Battery structures, self-organizing structures, and related methods
US8241789B2 (en) 2000-10-20 2012-08-14 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US8277975B2 (en) 2000-10-20 2012-10-02 Massachusetts Intitute Of Technology Reticulated and controlled porosity battery structures
US8148009B2 (en) 2000-10-20 2012-04-03 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US8168326B2 (en) 2000-10-20 2012-05-01 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8206469B2 (en) 2000-10-20 2012-06-26 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8206468B2 (en) 2000-10-20 2012-06-26 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US8586238B2 (en) 2000-10-20 2013-11-19 Massachusetts Institute Of Technology Battery structures, self-organizing structures, and related methods
US8088512B2 (en) 2001-07-27 2012-01-03 A123 Systems, Inc. Self organizing battery structure method
JP2008288220A (en) * 2001-11-20 2008-11-27 General Motors Corp <Gm> Low contact resistance pem fuel cell
US7709116B2 (en) 2001-11-20 2010-05-04 Gm Global Technology Operations, Inc. Low contact resistance PEM fuel cell
US8481208B2 (en) 2002-07-26 2013-07-09 A123 Systems, LLC Bipolar articles and related methods
US7763369B2 (en) 2003-08-19 2010-07-27 Prime Polymer Co., Ltd. Resin composition for fuel cell member
CN100432136C (en) * 2003-08-19 2008-11-12 出光兴产株式会社 Resin composition for fuel cell member
WO2005017028A1 (en) * 2003-08-19 2005-02-24 Idemitsu Kosan Co., Ltd. Resin composition for fuel cell member
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10164242B2 (en) 2011-04-07 2018-12-25 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles

Similar Documents

Publication Publication Date Title
CA2408588C (en) Fuel cell assembly
KR100717985B1 (en) Fuel cell array apparatus
US6296962B1 (en) Design for solid oxide fuel cell stacks
US20050186459A1 (en) Fuel cell
JPH10510664A (en) Structure of electrolyte fuel cell
JPS6047702B2 (en) Fuel cell assembly and its manufacturing method
JP2000100457A (en) Fuel cell
JPH0536417A (en) Hollow thin plate type solid electrolytic fuel cell
JP2000195526A (en) Electrode for fuel cell
CA2542355C (en) One piece bipolar plate with spring seals
JP3826636B2 (en) Fuel cell
JPH0443566A (en) Solid electrolyte type fuel cell
US8298714B2 (en) Tunnel bridge with elastomeric seal for a fuel cell stack repeating unit
WO2006090464A1 (en) Solid polymer fuel cell and method for producing same
US7235323B2 (en) Fuel cell assembly and method for making the same
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP2000058100A (en) Electrode layered structure
JPH02281567A (en) Methanol fuel cell
JP4494830B2 (en) Fuel cell stack
JP3266927B2 (en) Solid oxide fuel cell
JP2002319411A (en) Gas diffusion electrode and fuel cell using the same
JPH1021944A (en) Solid polymer electrolyte fuel cell
JP4772064B2 (en) Fuel cell bipolar plate with multiple active regions separated by non-conductive frame header
JPH1173979A (en) Solid polymer electrolyte fuel cell
JP4083600B2 (en) Fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050324