JP2000195508A - Chemical formation method and device for storage battery - Google Patents

Chemical formation method and device for storage battery

Info

Publication number
JP2000195508A
JP2000195508A JP10367086A JP36708698A JP2000195508A JP 2000195508 A JP2000195508 A JP 2000195508A JP 10367086 A JP10367086 A JP 10367086A JP 36708698 A JP36708698 A JP 36708698A JP 2000195508 A JP2000195508 A JP 2000195508A
Authority
JP
Japan
Prior art keywords
cooling water
temperature
storage battery
tank
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10367086A
Other languages
Japanese (ja)
Inventor
Takehiro Sasaki
健浩 佐々木
Masayuki Ide
雅之 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10367086A priority Critical patent/JP2000195508A/en
Publication of JP2000195508A publication Critical patent/JP2000195508A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a storage battery having stable characteristics by reducing variations in temperatures of the storage battery subject to chemical formation treatment. SOLUTION: During chemical formation of a storage battery 1 performed in a chemical formation bath 2, cooling water 5 therein is circulated by a cooling water circulation means 6 and is checked for its temperature by a temperature sensor 7. When the measured temperature is a set temperature or over, cooling water of a constant temperature maintained by a temperature controller 3 is newly supplied to the chemical formation bath 2 by a cooling water supply means 4, resulting in prevention of temperature increases and generation of the variations in the temperature of the storage battery subject to chemical formation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蓄電池の化成方法お
よびその化成装置に関するものである。
The present invention relates to a method and an apparatus for forming a storage battery.

【0002】[0002]

【従来の技術】従来から鉛等の蓄電池の化成は水冷条件
下で行われるのが一般的である。例えば化成槽に蓄電池
を配置し、この化成槽に冷却水を常時供給することによ
り行われていた。
2. Description of the Related Art Conventionally, formation of storage batteries such as lead is generally performed under water cooling conditions. For example, a storage battery is disposed in a chemical conversion tank, and cooling water is constantly supplied to the chemical conversion tank.

【0003】しかしながら、このような方法では化成槽
に配置する蓄電池の種類,数または配置状態によって冷
却状態のばらつきが発生する場合があった。このような
化成槽内のばらつきの他に時刻や季節変化による外気温
度変動が冷却水温度に影響して蓄電池の冷却状態がばら
つくことになっていた。そして、この蓄電池の冷却状態
のばらつきは化成後の蓄電池性能をばらつかせる一要因
となっていた。
However, in such a method, there are cases where the cooling state varies depending on the type, number, or arrangement of the storage batteries arranged in the formation tank. In addition to such variations in the formation tank, fluctuations in the outside air temperature due to time and seasonal changes affect the cooling water temperature, and the cooling state of the storage battery varies. The variation in the cooling state of the storage battery has been a factor that causes the performance of the storage battery to vary after formation.

【0004】鉛蓄電池は所定の電流で充電することによ
って、化成反応が起こり、未化成活物質が正極では二酸
化鉛、負極では鉛になる化成反応が進行する。この化成
反応中の鉛蓄電池の冷却状態がばらつくと各鉛蓄電池の
化成反応が均一に進行せず、鉛蓄電池の容量特性に悪影
響を及ぼすことがある。また、化成反応中の鉛蓄電池の
発熱により、鉛蓄電池内部の電解液中の水分が鉛蓄電池
外部に散逸することが一般的に知られており、この水分
の散逸を見込んで化成条件の設定を行っている。しかし
ながら、鉛蓄電池の冷却状態のばらつきにより水分の散
逸量が一定とならないために鉛蓄電池セル内の電解液量
や比重が一定とならず、鉛蓄電池の性能をばらつかせる
要因になっていた。
[0004] When a lead storage battery is charged with a predetermined current, a chemical conversion reaction occurs, and a chemical conversion reaction in which an unformed active material becomes lead dioxide at the positive electrode and becomes lead at the negative electrode proceeds. If the cooling state of the lead storage battery during the formation reaction varies, the formation reaction of each lead storage battery does not proceed uniformly, which may adversely affect the capacity characteristics of the lead storage battery. In addition, it is generally known that the heat generated by the lead storage battery during the formation reaction causes the water in the electrolyte inside the lead storage battery to dissipate to the outside of the lead storage battery. Is going. However, since the amount of water dissipated is not constant due to variations in the cooling state of the lead-acid battery, the amount of electrolyte and the specific gravity in the lead-acid battery cell are not constant, which is a factor that causes the performance of the lead-acid battery to fluctuate.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記した従来
の課題を解決するもので、化成時における蓄電池の冷却
状態のばらつきを抑制することにより蓄電池の性能ばら
つきを簡便に抑制しようとするものである。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned conventional problems, and is intended to easily suppress the variation in the performance of the storage battery by suppressing the variation in the cooling state of the storage battery during formation. is there.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は化成槽に収納した蓄電池を水冷により冷却
する化成方法において、温度制御された冷却水を前記化
成槽に供給し、前記化成槽中の冷却水を循環させるとと
もに、前記化成槽中の冷却水温を検知して第1の設定水
温以上となった場合に前記化成槽中の冷却水より低温の
冷却水を前記化成槽に供給し、前記化成槽中の冷却水温
が第1の設定水温より低い第2の設定水温以下となった
場合に前記化成槽への冷却水の供給を停止することとし
たものである。そしてこのような蓄電池の化成装置にお
いて、蓄電池を収納する化成槽と、前記化成槽に冷却水
を供給する冷却水供給手段と、前記化成槽内の冷却水を
循環させる冷却水循環手段を備え、前記冷却水供給手段
は供給する冷却水温を制御する温度制御手段と、前記化
成槽中の冷却水温を測定する冷却水温測定手段とを具備
していて、冷却水温の値に基づき冷却水の化成槽への供
給を制御する機能を備えた化成装置としたものである。
In order to solve the above problems, the present invention provides a chemical conversion method for cooling a storage battery housed in a chemical conversion tank by water cooling, wherein cooling water whose temperature is controlled is supplied to the chemical conversion tank. While circulating the cooling water in the formation tank, when the temperature of the cooling water in the formation tank is detected and becomes equal to or higher than the first set water temperature, cooling water lower than the cooling water in the formation tank is supplied to the formation tank. The supply of the cooling water to the chemical formation tank is stopped when the cooling water temperature in the chemical formation tank becomes equal to or lower than a second set water temperature lower than the first set water temperature. In such a storage battery chemical conversion device, the chemical conversion tank for storing a storage battery, cooling water supply means for supplying cooling water to the chemical formation tank, and cooling water circulation means for circulating cooling water in the chemical formation tank, The cooling water supply means includes a temperature control means for controlling a cooling water temperature to be supplied, and a cooling water temperature measuring means for measuring a cooling water temperature in the chemical conversion tank. It is a chemical conversion device provided with a function of controlling the supply of water.

【0007】[0007]

【発明の実施の形態】本発明の一実施の形態を図1に示
す。
FIG. 1 shows an embodiment of the present invention.

【0008】まず、蓄電池1は化成槽2に収納される。
蓄電池1は互いに電気的に接続(図示せず)される。次
に温度制御装置3により温度制御された冷却水が冷却水
供給手段4により化成槽2に供給される。蓄電池1の通
電中、化成槽2中の冷却水5は冷却水循環手段6により
循環される。冷却水5の水温は冷却水温測定手段として
の温度センサー7により測定され、冷却水温が蓄電池1
の発熱とともに上昇し第1の設定水温以上となった場
合、冷却水供給手段4により第1の設定水温より低い新
たな冷却水が化成槽2に供給される。この冷却水供給に
より化成槽2中の冷却水5の水温は低下するが、第1の
設定水温より低い第2の設定水温まで低下した時点で冷
却水供給手段4からの冷却水供給は停止される。このよ
うな方法によって蓄電池1の冷却水温が第1の設定水温
を超えて上昇することを防止するとともに、冷却水循環
手段6により化成槽2中の温度のばらつきを抑制するこ
とができる。また、外気温度が時刻や季節等の要因によ
り変動しても冷却水温がある所定温度以下にばらつきが
少ない状態で保持できるので、蓄電池の化成反応が均一
に進行し、化成後の蓄電池性能のばらつきを抑制し安定
した性能を得ることが可能となる。
First, a storage battery 1 is stored in a chemical conversion tank 2.
Storage batteries 1 are electrically connected to each other (not shown). Next, cooling water whose temperature is controlled by the temperature control device 3 is supplied to the chemical conversion tank 2 by the cooling water supply means 4. While the storage battery 1 is energized, the cooling water 5 in the chemical conversion tank 2 is circulated by the cooling water circulating means 6. The water temperature of the cooling water 5 is measured by a temperature sensor 7 as a cooling water temperature measuring means.
When the temperature rises with the heat generation and becomes equal to or higher than the first set water temperature, new cooling water lower than the first set water temperature is supplied to the chemical conversion tank 2 by the cooling water supply means 4. The supply of the cooling water lowers the temperature of the cooling water 5 in the formation tank 2, but when the temperature of the cooling water drops to the second set water temperature lower than the first set water temperature, the cooling water supply from the cooling water supply means 4 is stopped. You. By such a method, the cooling water temperature of the storage battery 1 can be prevented from rising above the first set water temperature, and the cooling water circulation means 6 can suppress the temperature variation in the formation tank 2. In addition, even if the outside air temperature fluctuates due to factors such as time and season, the cooling water temperature can be maintained at a certain temperature or less with little variation, so that the formation reaction of the storage battery proceeds uniformly, and the variation in storage battery performance after formation. And a stable performance can be obtained.

【0009】[0009]

【実施例】(実施例1)以下に本発明を密閉形鉛蓄電池
に実施した実施例を記載する。
(Embodiment 1) An embodiment in which the present invention is applied to a sealed lead-acid battery will be described below.

【0010】前記した本発明の一実施の形態の化成方法
により図2に示すように未化成の12V65Ahの密閉
形鉛蓄電池8a,8b,…,8lを12個一列状態に化
成槽9に配列して収納した。各密閉形鉛蓄電池8a,8
b,…,8lは直列接続される。この化成槽9中に水温
20±2℃に温度制御された冷却水を供給した。冷却水
供給後、密閉形鉛蓄電池8a,8b,…,8lに通電し
た。この時の通電電流・時間は10A・20時間とし
た。冷却水循環手段6の冷却水排出口10は密閉形鉛蓄
電池8lの近辺に、また冷却水導入口11は密閉形鉛蓄
電池8aの近辺に設けて、冷却水を循環させて密閉形鉛
蓄電池8aから密閉形鉛蓄電池8lに向かう冷却水流を
発生させた。冷却水温の測定手段としては、密閉形鉛蓄
電池8lの近辺に冷却水温測定手段としての温度センサ
ー12を設けた。この温度センサー12による冷却水温
が第1の設定水温である45℃に達した時点で水温制御
機能を有する冷却水供給装置13よりの冷却水が冷却水
供給口14を通して化成槽9に再供給され、冷却水温が
第2の設定水温である40℃まで低下した時点で再供給
が停止するよう制御した。この冷却水供給口14は密閉
形鉛蓄電池8aの近辺に設けた。
According to the above-described chemical conversion method of one embodiment of the present invention, as shown in FIG. 2, 12 sealed 12V 65Ah lead-acid batteries 8a, 8b,... Stored. Each sealed lead-acid battery 8a, 8
, 8l are connected in series. Cooling water whose temperature was controlled to 20 ± 2 ° C. was supplied into the chemical conversion tank 9. After supplying the cooling water, the sealed lead-acid batteries 8a, 8b, ..., 8l were energized. At this time, the current / time was 10 A / 20 hours. The cooling water outlet 10 of the cooling water circulating means 6 is provided near the sealed lead-acid battery 8l, and the cooling water inlet 11 is provided near the sealed lead-acid battery 8a to circulate cooling water from the sealed lead-acid battery 8a. A cooling water flow was generated toward the sealed lead-acid battery 8l. As a means for measuring the cooling water temperature, a temperature sensor 12 as a cooling water temperature measuring means was provided in the vicinity of the sealed lead-acid battery 8l. When the temperature of the cooling water from the temperature sensor 12 reaches 45 ° C., which is the first set water temperature, the cooling water from the cooling water supply device 13 having a water temperature control function is resupplied to the formation tank 9 through the cooling water supply port 14. The re-supply was controlled to stop when the cooling water temperature dropped to 40 ° C., which is the second set water temperature. The cooling water supply port 14 was provided near the sealed lead-acid battery 8a.

【0011】上記のような本発明の構成により、密閉形
鉛蓄電池8a,8b,…,8lの化成を行った。
With the configuration of the present invention as described above, the sealed lead-acid batteries 8a, 8b, ..., 8l were formed.

【0012】次に比較例1として図3に示した構成によ
り前記と同様、12V65Ahの密閉形鉛蓄電池の化成
を行った。
Next, as Comparative Example 1, a sealed lead-acid battery of 12 V / 65 Ah was formed using the configuration shown in FIG.

【0013】化成槽15に12個の密閉形鉛蓄電池16
a,16b,…,16lを一列状態に配列して収納し
た。これらの密閉形鉛蓄電池16a,16b,…,16
lは直列接続される。化成槽15には冷却水が冷却水供
給口17より常時供給され、化成槽15から冷却水がオ
ーバーフローしないように冷却水排出口18より排出さ
れる構成とした。そして直列接続した密閉形鉛蓄電池1
6a,16b,…,16lに通電した。この時の通電電
流・時間は10A・20時間とした。
In a chemical conversion tank 15, twelve sealed lead-acid batteries 16
, 16l were arranged in a line and stored. These sealed lead-acid batteries 16a, 16b, ..., 16
l are connected in series. Cooling water is always supplied to the formation tank 15 from the cooling water supply port 17, and the cooling water is discharged from the formation tank 15 from the cooling water discharge port 18 so as not to overflow. And the sealed lead-acid battery 1 connected in series
, 16l were energized. At this time, the current / time was 10 A / 20 hours.

【0014】これらの本発明および比較例の構成によ
り、外気温度を25℃に制御して化成を行った。この場
合の化成時の密閉形鉛蓄電池の最高温度を図4に示す。
According to the configurations of the present invention and the comparative example, the formation was performed while controlling the outside air temperature to 25 ° C. FIG. 4 shows the maximum temperature of the sealed lead-acid battery during formation in this case.

【0015】図4に示した結果より、本発明の実施例1
による密閉形鉛蓄電池の化成方法によれば、比較例1の
方法に比較して密閉形鉛蓄電池の温度上昇を抑制すると
ともに、密閉形鉛蓄電池間の温度のばらつきも抑制でき
ることがわかる。特に比較例1においては化成槽中の密
閉形鉛蓄電池の位置が冷却水排出側(冷却水下流側)に
なるほど上昇する傾向があるが、本発明の実施例1によ
ればこのような温度上昇の傾向を抑制することができ
る。
From the results shown in FIG. 4, the first embodiment of the present invention is shown.
It can be understood that according to the method for forming a sealed lead-acid battery described above, the temperature rise of the sealed lead-acid battery can be suppressed and the temperature variation between the sealed lead-acid batteries can be suppressed as compared with the method of Comparative Example 1. In particular, in Comparative Example 1, the position of the sealed lead-acid battery in the chemical conversion tank tends to increase as the position on the cooling water discharge side (downstream of cooling water) increases. Can be suppressed.

【0016】次にこれらの本発明の実施例1の化成方法
による密閉形鉛蓄電池8a,8b,…,8lと、比較例
1の化成方法による密閉形鉛蓄電池16a,16b,
…,16lの1CA放電持続時間を測定した。その結果
を図5に示す。
Next, the sealed lead-acid batteries 8a, 8b,..., 8l according to the chemical conversion method according to the first embodiment of the present invention and the sealed lead-acid batteries 16a, 16b,
, 16L of 1CA discharge duration was measured. The result is shown in FIG.

【0017】図5に示した結果により、本発明の実施例
1の化成方法による密閉形鉛蓄電池が、比較例1の化成
方法による密閉形鉛蓄電池に比較して放電持続時間のば
らつきが少なく、安定していることがわかる。また、図
4に示した結果との比較により、化成時の密閉形鉛蓄電
池の最高温度が高くなると1CA放電持続時間が低下す
る傾向が見られ、化成時の密閉形鉛蓄電池の最高温度を
ばらつき少なくコントロールすることにより、安定した
放電持続時間を得ることができる。
According to the results shown in FIG. 5, the sealed lead-acid battery according to the chemical conversion method of Example 1 of the present invention has less variation in the duration of discharge as compared with the sealed lead-acid battery according to the chemical conversion method of Comparative Example 1. It turns out that it is stable. In addition, a comparison with the results shown in FIG. 4 shows that when the maximum temperature of the sealed lead-acid battery during formation increases, the 1CA discharge duration tends to decrease, and the maximum temperature of the sealed lead-acid battery during formation varies. By performing the control with a small amount, a stable discharge duration can be obtained.

【0018】(実施例2)次に実施例2として、本発明
と比較例の化成方法による化成を外気温度40℃で実施
した。外気温度以外の条件は実施例1と同じとした。図
6に化成時における各密閉形鉛蓄電池の最高温度を示
す。
(Example 2) Next, as Example 2, chemical conversion by the chemical conversion method of the present invention and the comparative example was performed at an outside air temperature of 40 ° C. Conditions other than the outside air temperature were the same as in Example 1. FIG. 6 shows the maximum temperature of each sealed lead-acid battery during formation.

【0019】図6に示した結果から、本発明の実施例2
において密閉形鉛蓄電池の最高温度は外気温度が25℃
であった実施例1に比較してほとんど変化がないが、比
較例2によれば外気温度25℃の比較例1に比較して冷
却水温がさらに上昇し、かつ温度ばらつきも大きいこと
がわかる。
From the results shown in FIG. 6, the second embodiment of the present invention is shown.
The maximum temperature of sealed lead-acid batteries is 25 ° C
However, according to the comparative example 2, the cooling water temperature is further increased and the temperature variation is large as compared with the comparative example 1 in which the outside air temperature is 25 ° C.

【0020】そして、これら本発明の実施例2の化成方
法による密閉形鉛蓄電池と、比較例2の化成方法による
密閉形鉛蓄電池の1CA放電持続時間を測定した。これ
らの結果を図7に示す。
Then, the 1CA discharge duration of the sealed lead-acid battery manufactured by the chemical conversion method of Example 2 of the present invention and the sealed lead-acid battery manufactured by the chemical conversion method of Comparative Example 2 was measured. These results are shown in FIG.

【0021】図7に示した結果から、本発明の実施例2
の化成方法による蓄電池は、比較例2の化成方法による
密閉形鉛蓄電池に比較して1CA放電持続時間のばらつ
きが抑制されていることがわかる。特に比較例2におい
ては化成時の密閉形鉛蓄電池の最高温度上昇に基づき1
CA放電持続時間に著しい低下が見られたが、本発明の
実施例2では比較例2におけるような傾向は認められな
かった。そして、この図7に示した結果と化成時の外気
温度を25℃とした実施例1および比較例1での結果を
示す図5とを比較すると、本発明の化成方法によれば比
較例の方法に比べて外気温度が変動しても1CA放電持
続時間の差は少なく、放電性能が安定していることがわ
かる。
From the results shown in FIG. 7, the second embodiment of the present invention is shown.
It can be seen that in the storage battery according to the chemical conversion method of Example 1, the variation in the 1CA discharge duration is suppressed as compared with the sealed lead storage battery according to the chemical formation method of Comparative Example 2. In particular, in Comparative Example 2, the maximum temperature of the sealed lead-acid battery during formation was 1
Although a remarkable decrease was observed in the CA discharge duration, the tendency as in Comparative Example 2 was not observed in Example 2 of the present invention. Then, comparing the result shown in FIG. 7 with FIG. 5 showing the results of Example 1 and Comparative Example 1 in which the outside air temperature during chemical formation was 25 ° C., the chemical conversion method of the present invention Even if the outside air temperature fluctuates as compared with the method, the difference in the 1CA discharge duration is small, and it can be seen that the discharge performance is stable.

【0022】[0022]

【発明の効果】本発明の構成による蓄電池の化成方法に
よれば、化成時における蓄電池の冷却状態のばらつきを
抑制することにより蓄電池の性能ばらつきを低減するこ
とができる。また、時刻や季節変動によっても冷却状態
が一定に保たれるので、化成ロット間の性能ばらつきを
抑制し、安定した性能の蓄電池を得ることができる。
According to the method for forming a storage battery according to the present invention, it is possible to reduce the variation in the performance of the storage battery by suppressing the variation in the cooling state of the storage battery during the formation. In addition, since the cooling state is kept constant even by time and seasonal fluctuations, performance variation between chemical lots can be suppressed, and a storage battery with stable performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における蓄電池の化成方
法および装置を示すブロック図
FIG. 1 is a block diagram showing a method and an apparatus for forming a storage battery according to an embodiment of the present invention.

【図2】本発明の実施例1における密閉形鉛蓄電池の化
成方法および装置を示すブロック図
FIG. 2 is a block diagram showing a method and an apparatus for forming a sealed lead-acid battery according to Embodiment 1 of the present invention.

【図3】比較例1における密閉形鉛蓄電池の化成方法お
よび装置を示すブロック図
FIG. 3 is a block diagram showing a method and an apparatus for forming a sealed lead-acid battery in Comparative Example 1.

【図4】本発明の実施例1および比較例1における化成
による密閉形鉛蓄電池の化成中の最高温度を示す図
FIG. 4 is a diagram showing the maximum temperature during formation of a sealed lead-acid battery formed by formation in Example 1 and Comparative Example 1 of the present invention.

【図5】本発明の実施例1および比較例1における化成
による密閉形鉛蓄電池の1CA放電持続時間を示す図
FIG. 5 is a diagram showing a 1 CA discharge duration of a sealed lead-acid battery formed by chemical conversion in Example 1 and Comparative Example 1 of the present invention.

【図6】本発明の実施例2および比較例2における化成
による密閉形鉛蓄電池の化成中の最高温度を示す図
FIG. 6 is a diagram showing the maximum temperature during formation of a sealed lead-acid battery formed by formation in Example 2 and Comparative Example 2 of the present invention.

【図7】本発明の実施例2および比較例2における化成
による密閉形鉛蓄電池の1CA放電持続時間を示す図
FIG. 7 is a diagram showing a 1 CA discharge duration of a sealed lead-acid battery formed by chemical formation in Example 2 and Comparative Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 蓄電池 2,9,15 化成槽 3 温度制御装置 4,13 冷却水供給手段 5 冷却水 6 冷却水循環手段 7,12 温度センサー(冷却水温測定手段) 8a,8b,8c,8d,8e,8f,8g,8h,8
i,8j,8k,8l,16a,16b,16c,16
d,16e,16f,16g,16h,16i,16
j,16k,16l 密閉形鉛蓄電池 10,18 冷却水排出口 11 冷却水導入口 14,17 冷却水供給口
DESCRIPTION OF SYMBOLS 1 Storage battery 2,9,15 Chemical conversion tank 3 Temperature control device 4,13 Cooling water supply means 5 Cooling water 6 Cooling water circulation means 7,12 Temperature sensor (cooling water temperature measuring means) 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h, 8
i, 8j, 8k, 81, 16a, 16b, 16c, 16
d, 16e, 16f, 16g, 16h, 16i, 16
j, 16k, 16l Sealed lead-acid battery 10,18 Cooling water outlet 11 Cooling water inlet 14,17 Cooling water supply port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化成槽に収納した蓄電池を水冷により冷
却する化成方法において、温度制御された冷却水を前記
化成槽に供給し、前記化成槽中の冷却水を循環させると
ともに、前記化成槽中の冷却水温を検知して第1の設定
水温以上となった場合に前記化成槽中の冷却水より低温
の冷却水を前記化成槽に供給し、前記化成槽中の冷却水
温が第1の設定水温より低い第2の設定水温以下となっ
た場合に前記化成槽への冷却水の供給を停止することを
特徴とする蓄電池の化成方法。
In a chemical conversion method for cooling a storage battery housed in a chemical conversion tank by water cooling, cooling water whose temperature is controlled is supplied to the chemical formation tank, and the cooling water in the chemical formation tank is circulated. When the temperature of the cooling water is detected and becomes equal to or higher than the first set water temperature, cooling water lower than the cooling water in the formation tank is supplied to the formation tank, and the cooling water temperature in the formation tank is set to the first setting. A method for forming a storage battery, comprising: stopping supply of cooling water to the chemical conversion tank when the temperature becomes equal to or lower than a second set water temperature lower than the water temperature.
【請求項2】 蓄電池を収納する化成槽と、前記化成槽
に冷却水を供給する冷却水供給手段と、前記化成槽内の
冷却水を循環させる冷却水循環手段を備え、前記冷却水
供給手段は供給する冷却水温を制御する温度制御手段
と、前記化成槽中の冷却水温を測定する冷却水温測定手
段とを具備していて化成槽中の冷却水温の値に基づき冷
却水の化成槽への供給を制御する機能を備えていること
を特徴とする蓄電池の化成装置。
And a cooling water supply means for supplying cooling water to the formation tank, and a cooling water circulating means for circulating cooling water in the formation tank. Temperature control means for controlling the temperature of the supplied cooling water, and cooling water temperature measuring means for measuring the temperature of the cooling water in the chemical conversion tank, wherein the supply of the cooling water to the chemical formation tank based on the value of the cooling water temperature in the chemical formation tank A chemical conversion device for a storage battery, comprising:
JP10367086A 1998-12-24 1998-12-24 Chemical formation method and device for storage battery Pending JP2000195508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10367086A JP2000195508A (en) 1998-12-24 1998-12-24 Chemical formation method and device for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10367086A JP2000195508A (en) 1998-12-24 1998-12-24 Chemical formation method and device for storage battery

Publications (1)

Publication Number Publication Date
JP2000195508A true JP2000195508A (en) 2000-07-14

Family

ID=18488423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10367086A Pending JP2000195508A (en) 1998-12-24 1998-12-24 Chemical formation method and device for storage battery

Country Status (1)

Country Link
JP (1) JP2000195508A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064335A (en) * 2010-12-01 2011-05-18 孟繁友 Environmentally-friendly temperature controlled formation method for storage battery and negative pressure environmentally-friendly temperature controlled energy-saving formation cabinet for storage battery
CN102170014A (en) * 2011-03-25 2011-08-31 肇庆理士电源技术有限公司 Pole plate formation system and formation alarming method
ITUA20162134A1 (en) * 2016-03-31 2017-10-01 O M Impianti Srl IMPROVED TYPE PLANT FOR LEAD ACID BATTERIES AND PROCEDURE FOR ACID LEAD-BUILT BATTERIES FORMED WITH THIS PLANT
CN107861542A (en) * 2017-11-24 2018-03-30 南通时瑞塑胶制品有限公司 A kind of constant temperature automatic control battery is internalized into charging rack system
CN111342157A (en) * 2020-02-14 2020-06-26 华富(江苏)电源新技术有限公司 Lead-acid storage battery container formation cooling water circulation system and control method
KR20210033218A (en) * 2019-09-18 2021-03-26 주식회사 한국아트라스비엑스 Water tank coolant circulation device that maintains the coolant inside the Hwaseong water tank
KR20230023405A (en) * 2021-08-10 2023-02-17 한국앤컴퍼니 주식회사 water tank for lead-acid batteries with individual height adjustment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064335A (en) * 2010-12-01 2011-05-18 孟繁友 Environmentally-friendly temperature controlled formation method for storage battery and negative pressure environmentally-friendly temperature controlled energy-saving formation cabinet for storage battery
CN102170014A (en) * 2011-03-25 2011-08-31 肇庆理士电源技术有限公司 Pole plate formation system and formation alarming method
ITUA20162134A1 (en) * 2016-03-31 2017-10-01 O M Impianti Srl IMPROVED TYPE PLANT FOR LEAD ACID BATTERIES AND PROCEDURE FOR ACID LEAD-BUILT BATTERIES FORMED WITH THIS PLANT
EP3226341A1 (en) * 2016-03-31 2017-10-04 O.M. Impianti S.r.l. Improved plant for the formation of lead-acid batteries and process for the formation of lead-acid batteries by means of said plant
CN107861542A (en) * 2017-11-24 2018-03-30 南通时瑞塑胶制品有限公司 A kind of constant temperature automatic control battery is internalized into charging rack system
KR20210033218A (en) * 2019-09-18 2021-03-26 주식회사 한국아트라스비엑스 Water tank coolant circulation device that maintains the coolant inside the Hwaseong water tank
KR102233122B1 (en) * 2019-09-18 2021-03-29 주식회사 한국아트라스비엑스 Water tank coolant circulation device that maintains the coolant inside the Hwaseong water tank
CN111342157A (en) * 2020-02-14 2020-06-26 华富(江苏)电源新技术有限公司 Lead-acid storage battery container formation cooling water circulation system and control method
CN111342157B (en) * 2020-02-14 2023-10-03 华富(江苏)电源新技术有限公司 Lead-acid storage battery internal formation cooling water circulation system and control method
KR20230023405A (en) * 2021-08-10 2023-02-17 한국앤컴퍼니 주식회사 water tank for lead-acid batteries with individual height adjustment
KR102580197B1 (en) 2021-08-10 2023-09-20 한국앤컴퍼니 주식회사 water tank for lead-acid batteries with individual height adjustment

Similar Documents

Publication Publication Date Title
JP6137122B2 (en) Method for controlling flow rate of cooling medium in fuel cell system, and fuel cell system
US10122030B2 (en) Fuel cell system and method of controlling operation of fuel cell
CN110582881B (en) Method and system for a battery
JP6380625B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
CA2926903C (en) Fuel cell system and method for controlling fuel cell system
JP4940640B2 (en) Fuel cell system
JP6532401B2 (en) Power storage system and control method of power storage system
US20070298315A1 (en) Battery cooling device, battery cooling air flow control device, and computer readable medium
JP2013114855A (en) Fuel cell system and fuel cell system controlling method
JP2004342461A (en) Fuel cell system
US10320011B2 (en) Fuel cell system
CN110034317B (en) Fuel cell system and control method of fuel cell system
JP5742946B2 (en) Fuel cell system
JP2000195508A (en) Chemical formation method and device for storage battery
JPWO2014171291A1 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2006324066A (en) Fuel cell system
JP2021174585A (en) Fuel cell system
JP2009212038A (en) Formation method of battery case for lead storage battery
JP5880618B2 (en) Fuel cell system and control method thereof
JP2000251921A (en) Battery jar forming device for lead-acid battery and battery jar forming method
CN210296574U (en) Temperature control system for power battery pack, battery box and electric automobile
JP2003217679A (en) Discharging method for secondary battery, storage battery and air conditioner
CN116581410B (en) Charge and discharge control method and device, electronic equipment, storage medium and charge and discharge system
JP3617084B2 (en) Floating charging method for sealed lead-acid batteries
CN110808436B (en) Battery module control method and device and storage medium