JP2000193593A - Device and method for monitoring and analyzing electrode - Google Patents

Device and method for monitoring and analyzing electrode

Info

Publication number
JP2000193593A
JP2000193593A JP10372092A JP37209298A JP2000193593A JP 2000193593 A JP2000193593 A JP 2000193593A JP 10372092 A JP10372092 A JP 10372092A JP 37209298 A JP37209298 A JP 37209298A JP 2000193593 A JP2000193593 A JP 2000193593A
Authority
JP
Japan
Prior art keywords
light
electrode
reflected light
wave number
number difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10372092A
Other languages
Japanese (ja)
Other versions
JP3260331B2 (en
Inventor
Seiji Ogino
誠司 荻野
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP37209298A priority Critical patent/JP3260331B2/en
Publication of JP2000193593A publication Critical patent/JP2000193593A/en
Application granted granted Critical
Publication of JP3260331B2 publication Critical patent/JP3260331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To enable the degradation state of electrodes to be known during on-site operation by spectrally separating reflected light transmitted by light transmitting members and measuring the spectrum of the reflected light on the basis of a wave number difference from irradiation light. SOLUTION: A tungsten halogen lamp is provided as a light source 50, and monochromatic light is used as irradiation light. Light emitted from the light source 50 is introduced to a light transmitting member 51 via a chopper and a coupler and guided to a part to be measured by the light transmitting member 51. Plastic optical fibers are used as the light transmitting members 51 and 52. The surfaces of electrodes 5 and 6 are irradiated with light emergent from the irradiation end of the optical fiber 51, which is its tip part, and reflected light is received by the irradiation end of the optical fiber 51. The reflected light is introduced to the optical fiber 52, transmitted through it, and guided to a spectroscope 53. For obtaining the spectrum of the reflected light to be obtained by the spectroscope 53, the reflected light is amplified by a photomultiplier tube(PMT) 54 as being subjected to wavelength-driving by a processing device (personal computer) 55.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池活物質流通型
電池の電極分析モニタ装置およびモニタ方法に関し、な
かでもレドックスフロー型2次電池の電極分析モニタ装
置およびモニタ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode analysis monitoring device and a monitoring method for a battery flowing through a battery active material, and more particularly to an electrode analysis monitoring device and a monitoring method for a redox flow type secondary battery.

【0002】[0002]

【従来の技術】大規模な電力貯蔵技術は、原子力発電、
火力発電等のベース電源を定格出力で運転しながら、オ
フピーク時に余剰となる電力を蓄え、ピーク時にこれを
放電して、ロードレベリングに役立てようという技術で
ある。このような電力貯蔵技術によれば、平均需要に見
合った適正な容量のベース電源を保有し、これを効率的
な発電量の領域で定常運転できるので、電力発電設備の
経済性を高めることができるようになる。ピーク時の需
要電力に合わせて発電設備を保有していなくてもよく、
したがって、オフピーク時に過剰な設備を大規模に減速
運転させる事態を避けることができるようになる。
2. Description of the Related Art Large-scale power storage technologies include nuclear power generation,
This is a technique that, while operating a base power supply such as a thermal power generator at a rated output, stores excess power during off-peak times and discharges the power during peak times to use it for load leveling. According to such power storage technology, a base power source with an appropriate capacity corresponding to the average demand is possessed and can be operated in a steady state in the area of efficient power generation. become able to. It is not necessary to have power generation equipment according to peak demand.
Therefore, it is possible to avoid a situation in which excessive equipment is decelerated on a large scale during off-peak hours.

【0003】さらに、需要家である工場、ビル等に、こ
のような電力貯蔵設備を設置した場合には、安価な夜間
電力を貯蔵し必要時にこれを使用することができるの
で、電気料金面でのメリットが得られるほかに、非常用
電源、瞬停防止機能等を付加することも可能となる。
Further, when such an electric power storage facility is installed in a factory, a building, or the like, which is a consumer, inexpensive nighttime electric power can be stored and used when necessary, so that electricity costs can be reduced. In addition to the advantages described above, it is also possible to add an emergency power supply, a momentary power failure prevention function, and the like.

【0004】レドックスフロー型2次電池は、このよう
な期待に応える大規模な電力貯蔵技術として開発が推進
され、実用に供されようとしている技術である。
The redox flow type secondary battery is a technology that has been developed and put to practical use as a large-scale power storage technology that meets such expectations.

【0005】図4は、レドックスフロー型2次電池の単
一電池セルの構成を示す図である。図4(a)は正面図
を、図4(b)は断面図を、また図4(c)は各構成部
分を示す。正極5は正極セルに、また負極6は負極セル
に含まれ、各セルは隔膜7によって隔てられている。正
極液は正極液入り口1から正極セルに送り込まれ、多孔
質の正極5を通り、出口3から出てゆく。また、負極液
は入り口2から負極セルに送り込まれ、同じく多孔質の
負極6を通り、出口4から排出される。充電時と放電時
とで、電解液の流れる方向を反転させる装置もあるが、
本明細書ではとくに断らないかぎり電解液は充電時と放
電時とを問わず、上記の方向に流れることとする。
FIG. 4 is a diagram showing a configuration of a single battery cell of a redox flow type secondary battery. 4A is a front view, FIG. 4B is a cross-sectional view, and FIG. 4C shows each component. The positive electrode 5 is included in a positive electrode cell, and the negative electrode 6 is included in a negative electrode cell. Each cell is separated by a diaphragm 7. The cathode solution is fed into the cathode cell from the cathode solution inlet 1, passes through the porous cathode 5, and exits from the outlet 3. The negative electrode solution is fed into the negative electrode cell through the inlet 2, passes through the same porous negative electrode 6, and is discharged through the outlet 4. There is also a device that reverses the flowing direction of the electrolyte between charging and discharging,
In this specification, unless otherwise noted, the electrolyte flows in the above-described direction regardless of whether the battery is charged or discharged.

【0006】各セルは、電極5または6を含み、隔膜
7、フレーム11、Oリング9および双極板8によって
囲まれる領域に形成される。
Each cell includes an electrode 5 or 6 and is formed in a region surrounded by a diaphragm 7, a frame 11, an O-ring 9 and a bipolar plate 8.

【0007】正極液および負極液としては、バナジウム
等の金属イオンを溶解させた酸性水溶液を用いる。バナ
ジウムイオンを用いる場合、正極液はV4+とV5+とを、
負極液はV3+とV2+とを含む硫酸溶液とするのが普通で
ある。これらの正極液および負極液は、それぞれ別々の
タンクに貯蔵され、各電極を有する各電池セルへと送液
循環される。
As the positive electrode solution and the negative electrode solution, an acidic aqueous solution in which metal ions such as vanadium are dissolved is used. In the case of using vanadium ions, the positive electrode solution contains V 4+ and V 5+ ,
The negative electrode solution is usually a sulfuric acid solution containing V 3+ and V 2+ . These positive electrode solution and negative electrode solution are stored in separate tanks, respectively, and circulated to each battery cell having each electrode.

【0008】各電極で充電時に起きる反応は、正極で
は、V4+→V5++e- (酸化反応)、また、負極では、
3++e- →V2+(還元反応)である。一方、放電時に
は、正極では、V5++e- →V4+(還元反応)、また、
負極では、V2+→V3++e- (酸化反応)の、充電時と
は逆向きの電池反応が進行する。
The reaction that occurs during charging at each electrode is V 4+ → V 5+ + e (oxidation reaction) at the positive electrode, and
V 3+ + e → V 2+ (reduction reaction). On the other hand, at the time of discharging, at the positive electrode, V 5+ + e → V 4+ (reduction reaction)
At the negative electrode, a battery reaction of V 2+ → V 3+ + e (oxidation reaction) proceeds in a direction opposite to that during charging.

【0009】上記したように、単一電池セルは、隔膜7
によって隔てられ、正極5および負極6を備えたものと
して構成される。高電圧を得るためには、両端に双極板
8を備えた単一電池セルを積層し電気的に直列に接続し
て、電池セルスタックと称する構造にして用いる。実際
の電池システムでは、この電池セルスタックをさらに複
数個、電気的に直列および並列に組合せて所要の出力を
得る構成が採用される。
[0009] As described above, the single battery cell includes the diaphragm 7.
And a positive electrode 5 and a negative electrode 6. In order to obtain a high voltage, a single battery cell having bipolar plates 8 at both ends is laminated and electrically connected in series, and used in a structure called a battery cell stack. An actual battery system employs a configuration in which a plurality of battery cell stacks are electrically combined in series and parallel to obtain a required output.

【0010】上記の電池反応が行われる場所である電極
の材料には、まず何よりも第一に、電極反応を活性化さ
せる役割が課せられる。電池反応が活性化されると電池
の内部抵抗が減少するので、電池反応の活性化と内部抵
抗の減少とは同じ意味に解してさしつかえない。したが
って、電池反応の活性化は電池の効率を左右する基本的
に重要な項目である。
The role of activating the electrode reaction is, first and foremost, of the material of the electrode where the above-mentioned battery reaction takes place. When the battery reaction is activated, the internal resistance of the battery is reduced. Therefore, the activation of the battery reaction and the decrease of the internal resistance may be understood in the same meaning. Therefore, activation of the battery reaction is a fundamentally important item that affects the efficiency of the battery.

【0011】電極材の役割としては、次いで、電解液送
液時の圧力低下の防止、耐酸性等が求められる。このよ
うな性能を兼ね備えた材料として、通常、多孔質の孔表
面を活性化させた層状のカーボンフェルトが使用され
る。
Next, as the role of the electrode material, it is required to prevent the pressure from dropping at the time of feeding the electrolytic solution and to prevent acidity. As a material having such performance, a layered carbon felt having a porous pore surface activated is usually used.

【0012】レドックスフロー型2次電池の実用運転に
おいては、電極の状態は内部抵抗に影響し電池効率を左
右するので、常にモニタしておき、劣化が激しくなった
場合には良好な状態の電極と直ちに取り替える必要があ
る。
In a practical operation of a redox flow type secondary battery, the condition of the electrode affects the internal resistance and affects the battery efficiency. Therefore, the condition of the electrode is always monitored, and if the deterioration becomes severe, the electrode in a good state is used. Need to be replaced immediately.

【0013】電解液のモニタ装置については、循環供給
する導管の一部に設けられた被測定部について測定を行
う、光源、光伝達用部材、受光センサおよび受光分析装
置を備えた電解液組成分析装置が開示されている(実用
新案公報平4−36059号公報)。
[0013] With respect to the electrolytic solution monitoring device, an electrolytic solution composition analysis system provided with a light source, a light transmitting member, a light receiving sensor, and a light receiving analyzing device for measuring a portion to be measured provided in a part of a circulating supply conduit. An apparatus is disclosed (Japanese Utility Model Publication No. Hei 4-36059).

【0014】しかしながら、電極については、オンサイ
トでその状態をモニタする技術は開発されていない。X
線解析装置を設置して、回折X線を測定することも考え
られるが、オンサイトでのモニタ装置として用いても有
力な情報が簡便に得にくく、また、とくに重要な表面の
状態のみを選別して得ることが不可能である。
However, no technique has been developed for monitoring the state of the electrode on-site. X
It is conceivable to install a X-ray analyzer to measure diffracted X-rays, but it is difficult to easily obtain powerful information even when used as an on-site monitoring device, and to select only important surface conditions. It is impossible to get.

【0015】したがって、実際に電池を組み、電池の評
価試験を実施して、電池効率が下がっているかどうか、
換言すれば、電池の内部抵抗が上がったかどうかを知る
ことにより、初めて電極の状態を認知することが可能で
あった。また、オンサイトでモニタする方法がないため
に、電極の劣化のメカニズムについての研究も思うよう
に進まなかった。
Therefore, a battery is actually assembled, and an evaluation test of the battery is performed to determine whether the battery efficiency is reduced.
In other words, it was possible to recognize the state of the electrode for the first time by knowing whether or not the internal resistance of the battery had increased. In addition, research on electrode degradation mechanisms did not proceed as expected because there was no way to monitor them onsite.

【0016】[0016]

【発明が解決しようとする課題】本発明の目的は、オン
サイトで操業中に電極の劣化状態を知ることができる電
池活物質流通型電池の電極分析モニタ装置およびモニタ
方法を提供すること、なかでもレドックスフロー型2次
電池の電極分析モニタ装置およびモニタ方法を提供する
ことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrode analysis monitoring apparatus and method for a battery active material flow type battery, which can determine the deterioration state of the electrode during on-site operation. An object of the present invention is to provide an electrode analysis monitoring device and a monitoring method for a redox flow type secondary battery.

【0017】[0017]

【課題を解決するための手段】本発明は、液体状または
気体状の電池活物質が流通する電池活物質流通型電池の
電極の分析モニタ装置であって、その最も基本的な構成
は、電極の被測定部を照射する光を出射する光源と、光
源から発した光を被測定部まで伝送する第1光伝送部材
と、被測定部から反射した光を分光器まで伝送する第2
光伝送部材と、第2光伝送部材を伝送されてきた反射光
を分光して、照射光との波数差においてその反射光のス
ペクトルを測定する反射光測定装置とを備える電極分析
モニタ装置とする。
SUMMARY OF THE INVENTION The present invention relates to an analysis and monitoring device for an electrode of a battery active material flow type battery through which a liquid or gaseous battery active material flows. A light source that emits light for irradiating the portion to be measured, a first optical transmission member that transmits light emitted from the light source to the portion to be measured, and a second optical transmission member that transmits light reflected from the portion to be measured to the spectroscope.
An electrode analysis monitor device comprising: a light transmission member; and a reflected light measurement device that disperses reflected light transmitted through the second light transmission member and measures a spectrum of the reflected light at a wave number difference from the irradiation light. .

【0018】最も基本的な上記の発明の対象とする電池
は、レドックスフロー型2次電池、燃料電池等であり、
電池活物質は、Vイオン等を含んだ電解液、酸素、水
素、空気等が対象となる。
The most basic objects of the present invention are redox flow type secondary batteries, fuel cells and the like.
The battery active material includes an electrolyte containing V ions and the like, oxygen, hydrogen, air, and the like.

【0019】反射光を分光し、照射光の波数から一定波
数だけずれた波数のスペクトルを観察して、被測定部の
構成原子特有の格子振動等の情報を得る分光法はラマン
分光分析法と呼ばれる。その照射光には、通常、単色光
が用いられ、その単色光の波数との波数差によって反射
光のスペクトルを表示するのが普通である。この照射光
との波数差を、単に波数差またはラマンシフトという。
A spectroscopic method for dispersing the reflected light and observing a spectrum of a wave number shifted from the wave number of the irradiation light by a certain wave number to obtain information such as lattice vibration peculiar to constituent atoms of the part to be measured is a Raman spectroscopic method. Called. Normally, monochromatic light is used as the irradiation light, and the spectrum of the reflected light is usually displayed by a wave number difference from the wave number of the monochromatic light. The wave number difference from the irradiation light is simply referred to as a wave number difference or Raman shift.

【0020】上記の本発明の基本構成により、このラマ
ン分光分析が可能となる。ラマン分光では、反射光を用
いるので、電池反応の活性箇所となる電極の表面の状態
のみを知ることができ、電極が電池反応を促進するか否
か正確に認知できるようになる。X線は透過力が強いた
めに、上記したように、従来のX線解析では表面のみの
状態を得ることが困難であった。
The above-described basic configuration of the present invention enables this Raman spectroscopic analysis. Since the reflected light is used in Raman spectroscopy, it is possible to know only the state of the surface of the electrode, which is the active part of the battery reaction, and to accurately recognize whether or not the electrode promotes the battery reaction. As described above, it is difficult to obtain only the surface state in the conventional X-ray analysis because X-rays have a high penetrating power.

【0021】上記の電極分析モニタ装置をレドックスフ
ロー型2次電池用に用いる場合は、電池活物質は電解液
に含まれ、電極は、その電解液が電解液経路を経て循環
流通される電池セル内に含まれており、第1光伝送部材
の照射端の部分および第2光伝送部材の受光端の部分と
はともに電池セル内に挿入され、電解液中の電極の表面
近くに位置するものとする。
When the above-mentioned electrode analysis monitoring device is used for a redox flow type secondary battery, the battery active material is contained in the electrolyte, and the electrode is used as a battery cell in which the electrolyte is circulated through the electrolyte solution path. And the irradiation end portion of the first light transmission member and the light reception end portion of the second light transmission member are both inserted into the battery cell and located near the surface of the electrode in the electrolyte. And

【0022】上記のように、第1光伝送部材の照射端の
部分および第2光伝送部材の受光端の部分とを電極の表
面近くに位置させることにより、強度の高い反射光を効
率よく受光して、精度の高いラマン分光分析が可能とな
る。
As described above, since the irradiation end portion of the first optical transmission member and the light receiving end portion of the second optical transmission member are located near the surface of the electrode, reflected light having high intensity can be efficiently received. As a result, highly accurate Raman spectroscopy can be performed.

【0023】レドックスフロー型2次電池の電極がカー
ボンフェルトで構成されている場合には、照射光との波
数差1360cm-1での反射光のピーク強度と、照射光
との波数差1580cm-1でのピーク強度との比を算出
する手段を備える電極分析モニタ装置とするのがよい。
[0023] When the redox flow secondary battery electrode is composed of carbon felt, the peak intensity of the reflected light at the wave number difference 1360 cm -1 of the irradiation light, the wave number difference 1580 cm -1 of the irradiation light It is preferable to provide an electrode analysis monitoring device including a means for calculating a ratio with respect to the peak intensity at the time.

【0024】波数差1360cm-1および1580cm
-1でのピーク強度の比を算出する手段を備えることによ
り、電池反応の活性化に寄与する物質を構成する炭素原
子と活性化に寄与するところの少ない物質を構成する炭
素原子との比を知り、電極の状態を定量的に認知するこ
とが可能となる。
Wave number differences 1360 cm -1 and 1580 cm
By providing a means for calculating the ratio of the peak intensities at -1 , the ratio between the carbon atoms constituting the substance contributing to the activation of the battery reaction and the carbon atoms constituting the substance contributing little to the activation can be calculated. It is possible to know and quantitatively recognize the state of the electrode.

【0025】また、さらに電極の使用期間が長くなり劣
化が進むと、反射光中に蛍光が含まれるようになり、2
つの反射光ピークがそれぞれ位置する波数差1360c
-1と1580cm-1とを含む波数差領域において、反
射光の基線の立上がり勾配を、その反射光中での蛍光の
強度を表わす指標として、その立ち上がり勾配を検知す
る手段を備えるのがよい。
Further, when the service period of the electrode is further prolonged and the electrode is deteriorated, the reflected light contains fluorescent light.
Difference 1360c where two reflected light peaks are located respectively
In the wave number difference region including m −1 and 1580 cm −1, it is preferable to include means for detecting the rising gradient of the rising slope of the baseline of the reflected light as an index indicating the intensity of the fluorescence in the reflected light. .

【0026】上記の蛍光は、波数差1200cm-1から
より高い波数差領域にかけて強度が高くなるので、2つ
の反射光ピークがそれぞれ位置する波数差1360cm
-1と1580cm-1とを含む波数差領域の基線を右肩上
がりにかさあげする。この蛍光は、電極材の劣化に伴っ
て進行する炭素原子とバナジウム原子との結合に由来す
るものと考えられている。
Since the intensity of the above-mentioned fluorescence increases from the wave number difference of 1200 cm -1 to the higher wave number difference region, the wave number difference of 1360 cm where the two reflected light peaks are located respectively.
The base line of the wave number difference region including -1 and 1580 cm -1 is raised upward to the right. It is considered that this fluorescence originates from the bond between the carbon atom and the vanadium atom that progresses with the deterioration of the electrode material.

【0027】したがって、上記の手段により、上記の波
数差の領域での基線の立ち上がり勾配により蛍光の強度
を知ることができ、電極材であるカーボンフェルトのさ
らなる劣化の程度を認知することが可能となる。
Therefore, by the above means, the intensity of the fluorescence can be known from the rising gradient of the baseline in the region of the wave number difference, and the degree of further deterioration of the carbon felt as the electrode material can be recognized. Become.

【0028】上記の電極分析モニタ装置は、つぎの本発
明における最も基本的な電極分析モニタ方法に用いられ
る装置である。その最も基本的な方法とは、液体状また
は気体状の電池活物質が流通する電池活物質流通型電池
の電極のモニタ方法であって、光源から発した光を被測
定部まで伝送し、被測定部に照射し、その被測定部から
反射した光を分光器まで伝送して分光し、その反射光の
スペクトルを照射光との波数差において測定することに
より、被測定部の状態を探知する電極分析モニタ方法で
ある。
The above-described electrode analysis monitoring apparatus is an apparatus used for the following most basic electrode analysis monitoring method of the present invention. The most basic method is a method for monitoring the electrodes of a battery active material flowing type battery in which a liquid or gaseous battery active material flows. The state of the measured part is detected by irradiating the measuring part, transmitting the light reflected from the measured part to the spectroscope and dispersing the light, and measuring the spectrum of the reflected light at the wave number difference from the irradiated light. This is an electrode analysis monitoring method.

【0029】上記の方法により、電極についてラマン分
光分析が可能となり、電極を構成している材料の表面の
電池反応箇所密度等の情報を得ることができるようにな
る。
According to the above-mentioned method, Raman spectroscopy can be performed on the electrode, and information such as the density of a cell reaction site on the surface of the material constituting the electrode can be obtained.

【0030】上記の電極の主要構成材料がカーボンフェ
ルトである場合、照射光との波数差1360cm-1での
反射光のピーク強度と、波数差1560cm-1での反射
光のピーク強度との比を算出し、そのピーク強度比が低
下するにつれ、電極が劣化していることを認知する電極
モニタ方法とする。
[0030] When main constituent material of the electrode is a carbon felt, the ratio of the peak intensity of the reflected light at the wave number difference 1360 cm -1 of the illumination light, the peak intensity of the reflected light at the wave number difference 1560 cm -1 Is calculated, and an electrode monitoring method for recognizing that the electrode is deteriorating as the peak intensity ratio decreases.

【0031】電池反応の活性化に寄与する、格子状態の
崩れた炭素原子に由来する波数差1360cm-1でのピ
ークと、活性化に寄与することの少ないグラファイト格
子を構成する炭素原子に由来する波数差1560cm-1
でのピークとの比を用いることにより、カーボンフェル
トの劣化状態を知ることが可能となる。
A peak at a wave number difference of 1360 cm -1 derived from carbon atoms having a distorted lattice state, which contributes to activation of a battery reaction, and a carbon atom constituting a graphite lattice, which hardly contributes to activation. Wave number difference 1560cm -1
By using the ratio to the peak at the above, it is possible to know the deterioration state of the carbon felt.

【0032】また、電極の使用期間が長くなり、劣化が
さらに進んだ場合には、2つの反射光ピークがそれぞれ
位置する照射光との波数差1360cm-1と1580c
-1とを含む波数差領域において、反射光の基線の立上
がり勾配を、反射光中の螢光の強度の指標とし、その立
ち上がり勾配の上昇につれ、電極が劣化していることを
認知するモニタ方法とする。
When the use period of the electrode is prolonged and the electrode is further deteriorated, the wave number difference between the reflected light and the irradiation light at which the two reflected light peaks are located is 1360 cm -1 and 1580 c.
In the wave number difference region including m- 1 , the rising slope of the baseline of the reflected light is used as an indicator of the intensity of the fluorescent light in the reflected light, and a monitor that recognizes that the electrode has deteriorated as the rising slope increases. Method.

【0033】電極の使用を連続長期間とせざるをえない
場合、上記のピーク強度比による方法とこの蛍光の強度
によって電極の状態を認知する方法とを併用することに
より、より正確に電極をモニタすることが可能となる。
When the electrode must be used continuously for a long period of time, the method based on the above-mentioned peak intensity ratio and the method of recognizing the state of the electrode based on the intensity of the fluorescence are used to more accurately monitor the electrode. It is possible to do.

【0034】[0034]

【発明の実施の形態】図1は、本発明の電極分析モニタ
装置の構成を示す図である。図1(b)は、図1(a)
に示した光伝送部材の照射端と受光端の部分および電極
の拡大図である。光源としてハロゲンランプ50が設け
られ、単色光を照射光として用いている。光源50から
出た光は、チョッパおよびカプラを経て光伝送部材51
に導入され、光伝送部材51によって被測定部まで導か
れる。光伝送部材51および52としては、プラスチッ
ク光ファイバが用いられている。
FIG. 1 is a diagram showing a configuration of an electrode analysis monitoring device according to the present invention. FIG. 1 (b) is the same as FIG.
FIG. 4 is an enlarged view of a portion of an irradiation end and a light receiving end of the optical transmission member shown in FIG. A halogen lamp 50 is provided as a light source, and monochromatic light is used as irradiation light. The light emitted from the light source 50 passes through a chopper and a coupler,
And guided by the optical transmission member 51 to the portion to be measured. Plastic optical fibers are used as the light transmission members 51 and 52.

【0035】この光ファイバ51の先端部である照射端
から出射した光は、電極5、6の表面に照射され、反射
を受ける。反射光は、光ファイバ52に導入され、この
中を伝送されて、分光器53に導かれる。この分光器5
3によって得られる反射光のスペクトルを得るために、
処理装置(パソコン)によって波長駆動しながら、光電
子倍増管(PMT:Photo-Multiplying Tube )によって
増幅する。本発明の記載における「反射光測定装置」と
は、上記の分光器53、光電子倍増管54および処理装
置55を備えた装置をさす。
The light emitted from the irradiation end, which is the tip of the optical fiber 51, is applied to the surfaces of the electrodes 5, 6 and is reflected. The reflected light is introduced into the optical fiber 52, transmitted through the optical fiber 52, and guided to the spectroscope 53. This spectroscope 5
3 to obtain the spectrum of the reflected light obtained by
Amplification is performed by a photomultiplier tube (PMT) while the wavelength is driven by a processing device (personal computer). The “reflected light measuring device” in the description of the present invention refers to a device including the above-described spectroscope 53, photomultiplier tube 54, and processing device 55.

【0036】これらの装置の接続部においては光を平行
光線にするために、または焦点に集光するために、とう
ぜんレンズ系が用いられている。たとえば、光源から発
した光は、レンズにより平行光線とされて光ファイバ5
1の一端に入射される。図1においては、このような接
続部のレンズ系は一々示されていないが、それらのレン
ズ系が配置されていることは前提とされている。
At the connection of these devices, a lens system is almost always used to collimate the light or focus it at the focal point. For example, light emitted from a light source is converted into a parallel light by a lens, and
1 at one end. FIG. 1 does not show each lens system of such a connection portion, but it is assumed that these lens systems are arranged.

【0037】なお、当然のことであるが、外部の光によ
る影響を避けるために、この装置は全体または部分的に
外部の光から遮断されている。
As a matter of course, this device is wholly or partially shielded from external light in order to avoid the influence of external light.

【0038】図2は、図1に示す分析モニタによって得
られたラマンスペクトルを示す図である。図2(a)の
ラマンスペクトルには、波数差1360cm-1と158
0cm-1とに、特徴的な2つのピークが現れている。図
2(a)中の上段のラマンスペクトルは、電極を使用開
始するときに採取したラマンスペクトルであり、下段
は、一定期間充放電を繰り返したものについて採取した
ラマンスペクトルである。波数差1360cm-1のピー
クをDバンド、また1580cm-1のピークをGバンド
と呼ぶ場合がある。
FIG. 2 is a diagram showing a Raman spectrum obtained by the analysis monitor shown in FIG. The Raman spectrum of FIG. 2A shows that the wave number difference is 1360 cm -1 and 158
At 0 cm -1 , two characteristic peaks appear. The upper Raman spectrum in FIG. 2A is a Raman spectrum collected when the electrode is started to be used, and the lower Raman spectrum is a Raman spectrum collected after repeated charging and discharging for a certain period. The peak of wavenumber difference 1360 cm -1 there is a case D band and the peak of 1580 cm -1 called the G band.

【0039】同図において1360cm-1に現れるピー
クは、未組織炭素成分に由来するピークであり、このピ
ーク強度をIA と記す。未組織炭素成分とは、黒鉛の結
晶構造が崩れた組織であり、反応活性箇所密度の高い黒
鉛成分である。したがって、このIA が高いものほど、
電池反応が活発に行なわれ、内部抵抗は低いものにな
る。
The peak appearing at 1360 cm -1 in the figure is a peak derived from unorganized carbon component, referred to the peak intensity and I A. The unstructured carbon component is a structure in which the crystal structure of graphite is broken, and is a graphite component having a high reaction active site density. Accordingly, as those the I A is high,
The battery reaction is active and the internal resistance is low.

【0040】一方、波数差1580cm-1に現れるピー
クは、黒鉛成分に由来するピークであり、この強度をI
B と記す。このIB が大きいものほど、反応活性箇所密
度が低いために、電池反応が活性化されることは少な
い。
On the other hand, the peak appearing at a wave number difference of 1580 cm -1 is a peak derived from the graphite component.
Write B. As those greater this I B, because of the low reaction activity points density, it is less likely that cell reaction is activated.

【0041】図2(b)に、ピーク強度比(IA
B )の値と、電池の内部抵抗(Ω・ cm2 )を示す。
図2(b)によれば、ピーク強度比(IA /IB )は、
充放電が進むにつれて、1.21から0.35まで低下
する。このとき電池の内部抵抗は1.6Ω・ cm2 から
1.9Ω・ cm2 まで上昇していることが判明した。す
なわち、従来においては、電池を組み、内部抵抗測定装
置によりはじめて知ることができた内部抵抗を、電池に
組まれるか否かに関係なく、ラマン分光分析を行うこと
により簡便に知ることができるようになった。当然のこ
とであるが、本レドックスフロー型2次電池において
は、電池の状態で操業中にオンサイトで内部抵抗を知る
ことことの工学的意義は非常に大きく、本発明はこのよ
うな測定を可能としたために重要視されるものである。
FIG. 2B shows the peak intensity ratio (I A /
Shows the value of I B), the internal resistance of the batteries (Ω · cm 2).
According to FIG. 2 (b), the peak intensity ratio (I A / I B) is
As the charging and discharging progress, it decreases from 1.21 to 0.35. At this time, it was found that the internal resistance of the battery increased from 1.6 Ω · cm 2 to 1.9 Ω · cm 2 . That is, in the related art, the internal resistance that can be obtained for the first time by using an internal resistance measuring device by assembling a battery can be easily known by performing Raman spectroscopic analysis regardless of whether or not the battery is assembled. Became. Naturally, in the present redox flow type secondary battery, knowing the internal resistance on-site during operation in the state of the battery has a great engineering significance, and the present invention makes such measurements. It is important to make it possible.

【0042】上記したように、ピーク強度比(IA /I
B )を操業中にオンサイトで知ることにより、電極の状
態、すなわち電池の内部抵抗を知ることができ、電極の
取り替え時期を誤ることがなくなる。この結果、電池効
率の低い状態で運転する期間がなくなり、効率良く充放
電することが可能となる。
As described above, the peak intensity ratio (I A / I
By knowing B ) on-site during operation, it is possible to know the state of the electrodes, that is, the internal resistance of the battery, so that the electrode replacement time is not mistaken. As a result, there is no longer a period of operation in a state where the battery efficiency is low, and charging and discharging can be performed efficiently.

【0043】図3は、上記の使用状態からさらに充放電
反応を続けた電極のラマンスペクトルである。図3にお
いて、特徴的なことは、2つの反射光ピークがそれぞれ
位置する波数差1360cm-1と1580cm-1とを含
む波数差領域において、反射光の基線の立上がり勾配が
生じている。
FIG. 3 is a Raman spectrum of an electrode that has been subjected to a charge / discharge reaction further from the above-mentioned use state. 3, the characteristic that, in the wave number difference region including the wave number difference 1360 cm -1 and 1580 cm -1 which two reflected light peak is located respectively, the rising slope of the baseline of the reflected light is generated.

【0044】この蛍光は、電極の使用に伴って各種原子
の結合が進行し、それら結合状態にある原子から発せら
れるものであり、とくに炭素原子の蛍光(フォトルミネ
ッセンス PL:Photo-luminescence )に由来するもの
である。
The fluorescence is emitted from the atoms in the bonding state of various atoms as the electrodes are used, and the fluorescence is emitted from the carbon atoms (photoluminescence PL: Photo-luminescence). Is what you do.

【0045】先に述べたように、蛍光は波数差1200
cm-1以上の波数差域で右肩上がりに強度を高めるの
で、波数差1360cm-1と1580cm-1とを含む波
数差領域の基線は、その蛍光の強度分だけ右肩上がりに
かさあげされる。このような基線の立上がりは、図2
(a)には観測されていないことから、蛍光は電極の使
用が一定期間以上進行して、はじめて発生することがわ
かる。
As described above, the fluorescence has a wave number difference of 1200.
Since increasing the strength soaring in cm -1 or more wavenumber difference range, baseline wavenumber difference region including the wave number difference 1360 cm -1 and 1580 cm -1 it is raised to soaring by strength portion of the fluorescent You. The rise of such a baseline is shown in FIG.
Since it is not observed in (a), it is understood that the fluorescence is generated only after the use of the electrode has progressed for a certain period or more.

【0046】上記の波数差域の右肩上がりの基線は、直
線で近似され、この直線をPL線と呼ぶ。このPL線が
明確に認められる図3の状態において、電池の内部抵抗
は2.1Ω・ cm2 と、図2(a)中の下段のラマンス
ペクトルの状態よりもさらに高くなっていた。
The base line rising to the right in the wave number difference region is approximated by a straight line, and this straight line is called a PL line. In the state of FIG. 3 where the PL line is clearly recognized, the internal resistance of the battery was 2.1 Ω · cm 2 , which was even higher than the state of the Raman spectrum in the lower part of FIG. 2A.

【0047】上記により、反射光の2つのピーク強度比
および蛍光の強度を知ることにより、簡便に操業中にオ
ンサイトで、電極が電池反応を促進する状態にあるか否
かを認知することが可能であることが判明した。これら
の結果は、本発明が、レドックスフロー型2次電池の円
滑な運転に役立つ有力な技術として期待されることを示
している。
As described above, by knowing the ratio of the two peak intensities of the reflected light and the intensity of the fluorescence, it is possible to easily recognize whether the electrode is in a state of accelerating the battery reaction on-site during operation. It turned out to be possible. These results indicate that the present invention is expected to be a powerful technique that can be used for smooth operation of a redox flow secondary battery.

【0048】今回開示された実施の形態は、あくまで例
示であって、上記の実施の形態に限定されるものではな
い。本発明の範囲は、実施の形態についての説明ではな
く、特許請求の範囲の記載によって直接的に示され、さ
らに、特許請求の範囲と均等の意味および範囲内でのす
べての変更が含まれるものである。
The embodiment disclosed this time is merely an example, and is not limited to the above embodiment. The scope of the present invention is directly shown by the description of the claims, not the description of the embodiments, and further includes the meaning equivalent to the claims and all changes within the scope. It is.

【0049】[0049]

【発明の効果】本発明の電極分析モニタ装置およびモニ
タ方法によれば、電池反応が集中して進行する電極表面
のみの情報を有する反射光をラマン分光分析するため
に、電池反応を促進するか否かの状態を、正確にモニタ
することが可能となる。
According to the electrode analysis monitoring device and the monitoring method of the present invention, the Raman spectroscopic analysis of the reflected light having only the information on the electrode surface where the battery reaction progresses in a concentrated manner is required to promote the battery reaction. It is possible to accurately monitor the status of whether or not.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極分析モニタ装置の構成図である。FIG. 1 is a configuration diagram of an electrode analysis monitor device of the present invention.

【図2】電極であるカーボンフェルトのラマンスペクト
ルを示す図である。
FIG. 2 is a diagram showing a Raman spectrum of carbon felt as an electrode.

【図3】電極であるカーボンフェルトのラマンスペクト
ル中の基線の立ち上がり、すなわちPL線を示す図であ
る。
FIG. 3 is a diagram showing a rising of a base line in a Raman spectrum of carbon felt as an electrode, that is, a PL line.

【図4】レドックスフロー型2次電池の構成を示す図で
ある。
FIG. 4 is a diagram showing a configuration of a redox flow type secondary battery.

【符号の説明】[Explanation of symbols]

1 正極液入口 2 負極液入口 3 正極液出口 4 負極液出口 5 正極 6 負極 7 隔膜 8 集電板または双極板 9 Oリング 10 電解液の流れる方向 11 フレーム 50 光源 51 第1光伝送部材(プラスチック光ファイバ) 52 第2光伝送部材(プラスチック光ファイバ) 53 分光器 54 光電子倍増管(PMT) 55 処理装置(パソコン) DESCRIPTION OF SYMBOLS 1 Cathode solution inlet 2 Negative solution inlet 3 Positive solution outlet 4 Negative solution outlet 5 Positive electrode 6 Negative electrode 7 Separator 8 Current collector or bipolar plate 9 O-ring 10 Flow direction of electrolyte 11 Frame 50 Light source 51 First optical transmission member (plastic) Optical fiber) 52 Second optical transmission member (plastic optical fiber) 53 Spectroscope 54 Photomultiplier tube (PMT) 55 Processing device (PC)

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年1月6日(2000.1.6)[Submission Date] January 6, 2000 (200.1.6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

請求項2】 前記照射光との波数差1360cm-1
の前記反射光のピーク強度と、前記照射光との波数差1
580cm-1での前記反射光のピーク強度との比を算出
する手段を備える、請求項1に記載の電極分析モニタ装
置。
2. A peak intensity of said reflected light at a wave number difference of 1360 cm -1 from said irradiation light, and a wave number difference of 1 from said irradiation light.
2. The electrode analysis monitor device according to claim 1, further comprising means for calculating a ratio of the reflected light to a peak intensity at 580 cm -1 .

請求項3】 2つの反射光ピークがそれぞれ位置する
照射光との波数差1360cm-1と1580cm-1とを
含む波数差領域において、反射光の基線の立上がり勾配
を、その反射光中での蛍光の強度を表わす指標として、
その立ち上がり勾配を検知する手段を備える、請求項1
または2に記載の電極分析モニタ装置。
Wherein two reflected light peak in the wave number difference region including the wave number difference 1360 cm -1 and 1580 cm -1 of the illumination light respectively positioned, the reflected light rising slope of the baseline, in a reflected light As an index representing the intensity of fluorescence,
2. The apparatus according to claim 1, further comprising means for detecting the rising gradient.
Or the electrode analysis monitor device according to 2.

請求項4】 液体状または気体状の電池活物質が流通
する電池セルを含む電池活物質流通型電池の電極をモニ
タするモニタ方法であって、 光源から発した光を、前記電池活物質を含む電解液が循
環流通される電池セル内に位置する電極の表面近くまで
光伝送部材によって伝送し、その光伝送部材の照射端か
被測定部に照射し、その被測定部から反射した反射
、前記電極の表面近くから前記光伝送部材とは別に設
けた光伝送部材の受光端によって受光して、分光器まで
伝送して分光し、その反射光のスペクトルを照射光との
波数差において測定することにより、被測定部の状態を
探知する電極分析モニタ方法。
4. An electrode of a battery active material flowing type battery including a battery cell through which a liquid or gaseous battery active material flows is connected to a monitor.
A method of monitoring the light, wherein the light emitted from the light source is circulated by the electrolyte containing the battery active material.
Close to the surface of the electrode located inside the battery cell
The light is transmitted by an optical transmission member, and
Luo and irradiated to the measuring unit, separately set the reflected light reflected from the target subject, and the optical transmission member from near the surface of the electrode
An electrode analysis monitor that detects the state of the part to be measured by receiving the light at the light receiving end of the light transmitting member, transmitting the light to a spectroscope, separating the light, and measuring the reflected light spectrum at the wave number difference from the irradiation light. Method.

請求項5】 前記照射光との波数差1360cm-1
の前記反射光のピーク強度と、前記照射光との波数差
580cm-1 での前記反射光のピーク強度との比を算出
し、そのピーク強度比が低下するにつれ、電極が劣化し
ていることを認知する請求項4に記載の電極分析モニタ
方法。
And the peak intensity of the reflected light at 5. wavenumber difference 1360 cm -1 of the illumination light, the wave number difference 1 between the irradiation light
5. The electrode analysis monitoring method according to claim 4 , wherein a ratio with respect to the peak intensity of the reflected light at 580 cm -1 is calculated, and it is recognized that the electrode is deteriorated as the peak intensity ratio decreases.

請求項6】 2つの反射光ピークがそれぞれ位置する
照射光との波数差1360cm-1と1580cm-1とを
含む波数差領域において、反射光の基線の立上がり勾配
を、反射光中の蛍光の強度の指標とし、その立ち上がり
勾配の上昇につれ、電極が劣化していることを認知す
る、請求項4または5に記載の電極分析モニタ方法。
6. A two reflected light peak in the wave number difference region including the wave number difference 1360 cm -1 and 1580 cm -1 of the illumination light respectively positioned, the reflected light rising slope of the baseline, the fluorescence in reflected light The electrode analysis monitoring method according to claim 4 or 5 , wherein the method is used as an index of strength, and recognizes that the electrode has deteriorated as the rising gradient increases.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】[0017]

【課題を解決するための手段】本発明の電極分析モニタ
装置は、液体状または気体状の電池活物質が流通する
池セルを含む電池活物質流通型電池の電極を分析する
析モニタ装置であって、その最も基本的な構成は、光
出射する光源と、光源から発した光を伝送するものであ
り、電池活物質を含む電解液が循環流通される電池セル
内に位置する電極の表面近くまで挿入され、その照射端
から電極の被測定部に光を照射する第1光伝送部材と、
被測定部から反射した反射光を、電極の表面近くに位置
するその受光端によって受光して、分光器まで伝送する
第2光伝送部材と、第2光伝送部材を伝送されてきた反
射光を分光して、照射光との波数差においてその反射光
のスペクトルを測定する反射光測定装置とを備えてい
る。
An electrode analysis monitor according to the present invention.
The device is capable of supplying liquid or gaseous battery active material.
An analysis monitoring device for analyzing electrodes of a battery active material flowing type battery including a pond cell , the most basic configuration of which is a light source for emitting light and transmitting light emitted from the light source. Thing
Battery cell in which an electrolyte containing a battery active material is circulated and circulated
Inserted near the surface of the electrode located inside
A first light transmission member for irradiating light to a measured portion of the electrode from
The light reflected from the measurement unit, located near the surface of the electrode
A second light transmission member that receives light by the light receiving end and transmits the light to the spectroscope; and a reflected light transmitted through the second light transmission member is spectrally separated to obtain a spectrum of the reflected light at a wave number difference from the irradiation light. have a reflected light measuring apparatus for measuring the
You.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】上記の電極分析モニタ装置は、つぎの本発
明における最も基本的な電極分析モニタ方法に用いられ
る装置である。その最も基本的な方法とは、液体状また
は気体状の電池活物質が流通する電池セルを含む電池活
物質流通型電池の電極をモニタするモニタ方法であっ
て、光源から発した光を、電池活物質を含む電解液が循
環流通される電池セル内に位置する電極の表面近くまで
光伝送部材によって伝送し、その光伝送部材の照射端か
被測定部に照射し、その被測定部から反射した反射
、その電極の表面近くから、上記光伝送部材とは別に
設けた光伝送部材の受光端によって受光して、分光器ま
で伝送して分光し、その反射光のスペクトルを照射光と
の波数差において測定することにより、被測定部の状態
を探知する電極分析モニタ方法である。
The above-described electrode analysis monitoring apparatus is an apparatus used for the following most basic electrode analysis monitoring method of the present invention. And its most basic method, a monitoring method in which the liquid or gaseous battery active material to monitor the battery active material flow type battery electrode containing battery cells flows, a light emitted from the light source, battery Electrolyte containing active material circulates
Close to the surface of the electrode located inside the battery cell
The light is transmitted by an optical transmission member, and
Luo and irradiated to the measuring unit, the light reflected from the target subject, from near the surface of the electrodes, apart from the optical transmission member
Electrode analysis to detect the state of the part to be measured by receiving the light by the light receiving end of the provided light transmission member, transmitting it to the spectroscope, dispersing the light, and measuring the reflected light spectrum at the wave number difference from the irradiation light. This is a monitoring method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 2G020 AA04 AA05 BA02 CA04 CB26 CC01 CC48 CC49 CD04 CD23 CD36 2G043 AA03 BA07 CA05 EA01 EA03 FA03 FA06 GA02 GA04 GB01 HA01 HA05 HA12 JA01 LA02 NA01 5H026 AA10 CC08 RR01 5H027 AA10 KK00  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Tokuda 3-3-22 Nakanoshima, Kita-ku, Osaka-shi, Osaka F-term in Kansai Electric Power Co., Inc. (reference) 2G020 AA04 AA05 BA02 CA04 CB26 CC01 CC48 CC49 CD04 CD23 CD36 2G043 AA03 BA07 CA05 EA01 EA03 FA03 FA06 GA02 GA04 GB01 HA01 HA05 HA12 JA01 LA02 NA01 5H026 AA10 CC08 RR01 5H027 AA10 KK00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 液体状また気体状の電池活物質が流通す
る電池活物質流通型電池の電極の分析モニタであって、 電極の被測定部を照射する光を出射する光源と、 前記光源から発した光を被測定部まで伝送する第1光伝
送部材と、 被測定部から反射した光を分光器まで伝送する第2光伝
送部材と、 前記第2光伝送部材を伝送されてきた反射光を分光し
て、照射光との波数差においてその反射光のスペクトル
を測定する反射光測定装置とを備える電極分析モニタ装
置。
1. An analysis monitor for an electrode of a battery active material flowing type battery through which a liquid or gaseous battery active material flows, comprising: a light source for emitting light for irradiating a portion to be measured of the electrode; A first optical transmission member for transmitting the emitted light to the measured portion; a second optical transmission member for transmitting the light reflected from the measured portion to the spectroscope; and reflected light transmitted through the second optical transmission member. And a reflected light measuring device for measuring the spectrum of the reflected light at the wave number difference from the irradiation light.
【請求項2】 前記電池活物質は電解液に含まれ、前記
電極は、前記電解液が電解液の経路を経て循環流通され
る電池セル内に含まれ、前記第1光伝送部材の照射端の
部分および前記第2光伝送部材の受光端の部分とはとも
に前記電池セル内に挿入され、前記電解液中の前記電極
の表面近くに位置するものである請求項1に記載の電極
分析モニタ装置。
2. The battery according to claim 1, wherein the battery active material is included in an electrolyte, and the electrode is included in a battery cell in which the electrolyte is circulated through a path of the electrolyte. 2. The electrode analysis monitor according to claim 1, wherein both the portion and the light receiving end of the second optical transmission member are inserted into the battery cell and located near the surface of the electrode in the electrolyte. apparatus.
【請求項3】 前記照射光との波数差1360cm-1
の前記反射光のピーク強度と、前記照射光との波数差1
580cm-1での前記反射光のピーク強度との比を算出
する手段を備える請求項1または2に記載の電極分析モ
ニタ装置。
3. A peak intensity of the reflected light at a wave number difference of 1360 cm −1 from the irradiation light, and a wave number difference of 1 from the irradiation light.
3. The electrode analysis monitor device according to claim 1 , further comprising means for calculating a ratio of the reflected light to a peak intensity at 580 cm -1 .
【請求項4】 2つの反射光ピークがそれぞれ位置する
照射光との波数差1360cm-1と1580cm-1とを
含む波数差領域において、反射光の基線の立上がり勾配
を、その反射光中での蛍光の強度を表わす指標として、
その立ち上がり勾配を検知する手段を備える請求項1〜
3のいずれかに記載の電極分析モニタ装置。
4. A two reflected light peak in the wave number difference region including the wave number difference 1360 cm -1 and 1580 cm -1 of the illumination light respectively positioned, the reflected light rising slope of the baseline, in a reflected light As an index representing the intensity of fluorescence,
Claim 1 comprising means for detecting the rising gradient.
4. The electrode analysis monitor device according to any one of 3.
【請求項5】 液体状または気体状の電池活物質が流通
する電池活物質流通型電池の電極のモニタ方法であっ
て、 光源から発した光を被測定部まで伝送し、被測定部に照
射し、その被測定部から反射した光を分光器まで伝送し
て分光し、その反射光のスペクトルを照射光との波数差
において測定することにより、被測定部の状態を探知す
る電極分析モニタ方法。
5. A method for monitoring electrodes of a battery active material flowing type battery through which a liquid or gaseous battery active material flows, wherein light emitted from a light source is transmitted to a portion to be measured and irradiated to the portion to be measured. An electrode analysis monitoring method for detecting the state of the measured portion by transmitting the light reflected from the measured portion to a spectroscope for spectroscopy and measuring the reflected light spectrum at a wave number difference from the irradiation light. .
【請求項6】 前記照射光との波数差1360cm-1
の前記反射光のピーク強度と、前記波数差1560cm
-1でのピーク強度との比を算出し、そのピーク強度比が
低下するにつれ、電極が劣化していることを認知する請
求項5に記載の電極分析モニタ方法。
6. The peak intensity of the reflected light at a wave number difference of 1360 cm −1 from the irradiation light, and the wave number difference of 1560 cm −1 .
6. The electrode analysis monitoring method according to claim 5, wherein a ratio with respect to the peak intensity at -1 is calculated, and it is recognized that the electrode is deteriorated as the peak intensity ratio decreases.
【請求項7】 2つの反射光ピークがそれぞれ位置する
照射光との波数差1360cm-1と1580cm-1とを
含む波数差領域において、反射光の基線の立上がり勾配
を、反射光中の螢光の強度の指標とし、その立ち上がり
勾配の上昇につれ、電極が劣化していることを認知する
請求項5または6に記載の電極分析モニタ方法。
7. The two reflected light peak in the wave number difference region including the wave number difference 1360 cm -1 and 1580 cm -1 of the irradiation light located respectively, the rising slope of the baseline of the reflected light, fluorescence in reflected light The electrode analysis monitoring method according to claim 5 or 6, wherein an index of the strength of the electrode is used, and it is recognized that the electrode is deteriorated as the rising gradient increases.
JP37209298A 1998-12-28 1998-12-28 Electrode analysis monitoring device and monitoring method Expired - Fee Related JP3260331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37209298A JP3260331B2 (en) 1998-12-28 1998-12-28 Electrode analysis monitoring device and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37209298A JP3260331B2 (en) 1998-12-28 1998-12-28 Electrode analysis monitoring device and monitoring method

Publications (2)

Publication Number Publication Date
JP2000193593A true JP2000193593A (en) 2000-07-14
JP3260331B2 JP3260331B2 (en) 2002-02-25

Family

ID=18499841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37209298A Expired - Fee Related JP3260331B2 (en) 1998-12-28 1998-12-28 Electrode analysis monitoring device and monitoring method

Country Status (1)

Country Link
JP (1) JP3260331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2122727A1 (en) * 2007-02-12 2009-11-25 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2122727A1 (en) * 2007-02-12 2009-11-25 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
EP2122727A4 (en) * 2007-02-12 2014-03-19 Deeya Energy Inc Apparatus and methods of determination of state of charge in a redox flow battery

Also Published As

Publication number Publication date
JP3260331B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US7855005B2 (en) Apparatus and methods of determination of state of charge in a redox flow battery
US7826054B2 (en) Fuel cell instrumentation system
ES2776355T3 (en) Procedure and apparatus for transient state of charge measurement using input / output potentials
JP2015207555A (en) Battery management based on internal optical sensing
Rudolph et al. High resolution state of charge monitoring of vanadium electrolytes with IR optical sensor
CN102213683A (en) X-ray transmission inspection apparatus and X-ray transmission inspection method
JP2014137898A (en) Redox flow battery system, control method of redox flow battery system, power generation system, and control method of power generation system
JP3022571B2 (en) Redox flow battery and method of measuring charge / discharge depth of redox flow battery
US7422811B2 (en) Fuel cell life predicting device and fuel cell system
JP3260331B2 (en) Electrode analysis monitoring device and monitoring method
CN104865226B (en) A kind of method for quick and device of the side reaction of all-vanadium flow battery positive pole
KR101879647B1 (en) Management system for fuel cell
JP2012151014A (en) Oxygen concentration measurement device
US11251449B2 (en) Redox flow battery system
Yang et al. A real-time monitoring of pre-overcharge in high‑nickel lithium ion batteries via plasma emission spectroscopy
US20230335770A1 (en) Redox flow battery with raman spectrometer
JP2020038756A (en) Lithium ion secondary battery and lithium ion secondary battery system
CN218350106U (en) Auxiliary device for testing viscosity of electrolyte
CN117192392A (en) State of charge monitoring method and device for all-vanadium liquid flow energy storage system
US20230131299A1 (en) Cell for electrochemically determining active species concentrations in redox flow batteries
JP2004265667A (en) Fuel cell evaluation device and fuel cell evaluation method
KR101957124B1 (en) Measuring device of dissolution of electrode and separator for MCFC
KR20170100117A (en) Cell internal resistance measuring device and method for small portable PEMFC
JPH0436059Y2 (en)
CN112146047A (en) Solar optical fiber lighting equipment and electrochemical test system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees