JP2000192194A - Metal plate of high hardness and high expansion alloy excellent in thermal setting resistance, and its manufacture - Google Patents

Metal plate of high hardness and high expansion alloy excellent in thermal setting resistance, and its manufacture

Info

Publication number
JP2000192194A
JP2000192194A JP36616898A JP36616898A JP2000192194A JP 2000192194 A JP2000192194 A JP 2000192194A JP 36616898 A JP36616898 A JP 36616898A JP 36616898 A JP36616898 A JP 36616898A JP 2000192194 A JP2000192194 A JP 2000192194A
Authority
JP
Japan
Prior art keywords
hardness
less
metal plate
thermal expansion
expansion alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36616898A
Other languages
Japanese (ja)
Inventor
Toshihiro Uehara
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP36616898A priority Critical patent/JP2000192194A/en
Publication of JP2000192194A publication Critical patent/JP2000192194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal plate of high hardness and high expansion alloy combining high thermal expansion, high strength, and thermal setting resistance. SOLUTION: This metal plate of high hardness and high thermal expansion alloy excellent in thermal setting resistance has a composition consisting of, by weight, 0.1-1.0% C, <=1.0% Si, >1-21% Mn, 6-20% Ni, >6-15% Cr, 0.01-1.5% V, either or both of Mo and W within the range satisfying Mo+1/2 W<=3%, 0.005-0.2% N, and the balance essentially Fe or further containing <=0.5% Nb and further satisfying 30C -1.34 Si+0.5 Mn+Ni-0.67 Cr-Mo-0.5 W-5.3 V+20 N-10 Nb>=16. Moreover, the hardness at ordinary temperature is >=460 Hv, and the average coefficient of thermal expansion in the temperature range between ordinary temperature and 100 deg.C is >=16×10-6/ deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度、高熱膨張
特性、良好な耐熱へたり性を兼備する高硬度高膨張合金
金属板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-hardness and high-expansion alloy metal plate having high strength, high thermal expansion characteristics, and good heat resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】高膨張合金は、例えばテレビジョンのブ
ラウン管内で、電子ビームを受けてシャドウマスクが加
熱されるときに生じる熱膨張による色ずれ障害を補正す
るためのバイメタルから構成されるシャドウマスク支持
部材の高熱膨張側の金属板などに用いられており、代表
的には高膨張側にはオーステナイト系ステンレス鋼、た
とえばSUS304(Fe−18Cr−8Ni)が使用さ
れている。
2. Description of the Related Art A high-expansion alloy is a shadow mask made of a bimetal for compensating for a color misregistration failure caused by thermal expansion that occurs when the shadow mask is heated by receiving an electron beam in a cathode ray tube of a television, for example. It is used for a metal plate or the like on the high thermal expansion side of the support member. Typically, an austenitic stainless steel, for example, SUS304 (Fe-18Cr-8Ni) is used on the high expansion side.

【0003】[0003]

【発明が解決しようとする課題】SUS304の硬さ
は、冷間加工後、450℃前後で時効処理を行なうと、
450Hv程度と高いが、熱膨張係数は15×10マイ
ナス6乗/℃程度しかない。一方、既存の高膨張材料と
して、22Ni−3.5Cr系および6Mn−20Ni
系のFe基合金があるが、これらはいずれも熱膨張係数
は20×10マイナス6乗/℃程度と高いが、強度が低
く、硬さでせいぜい250Hv程度で強度的に不十分で
ある。また、高膨張材料としてAMS5625にFe−
9.5Ni−5.5Mn系の合金が記載されている。し
かし、これも熱膨張係数は、22℃〜316℃の平均値
は約20×10マイナス6乗/℃と大きいが、硬さはは
約280Hvと低い値である。また、高膨張金属板は部
品加工後、ブラウン管等に組み込まれる場合には、50
0℃付近の加熱工程を経ることが多く、この加熱によっ
て軟化、あるいは変形すると、本来の部品としての形状
を保つことができなくなるばかりでなく、硬さが低下す
ると使用中に必要な強度が不足してしまう。したがっ
て、加熱工程によって熱へたりを起こしにくい材料が望
まれていた。本発明の目的は、高熱膨張、高強度、およ
び耐熱へたり性を兼備する高硬度高膨張合金金属板およ
びその製造方法を提供することである。
The hardness of SUS304 is determined by performing aging treatment at about 450 ° C. after cold working.
Although it is as high as about 450 Hv, its coefficient of thermal expansion is only about 15 × 10−6 / ° C. On the other hand, as existing high expansion materials, 22Ni-3.5Cr and 6Mn-20Ni are used.
Although there are Fe-based alloys, these have a high coefficient of thermal expansion of about 20 × 10−6 / ° C., but their strength is low and their hardness is insufficient at about 250 Hv at most. In addition, as a high expansion material,
A 9.5Ni-5.5Mn-based alloy is described. However, the average value of the coefficient of thermal expansion between 22 ° C. and 316 ° C. is as large as about 20 × 10−6 / ° C., but the hardness is as low as about 280 Hv. If the high expansion metal plate is assembled into a cathode ray tube or the like after processing the parts,
It often goes through a heating process at around 0 ° C. If it is softened or deformed by this heating, it will not only be unable to maintain its shape as an original part, but if the hardness is reduced, the strength required during use will be insufficient. Resulting in. Therefore, a material that is unlikely to cause heat settling in the heating step has been desired. An object of the present invention is to provide a high-hardness and high-expansion alloy metal plate having both high thermal expansion, high strength, and heat resistance, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者は上述した問題
を解決すべく、鋭意研究を行なった結果、特開平10−
259455号に記載のFe−Mn−Ni系合金を見出
した。これはC,Vを添加し、V,Cを主体とするバナ
ジウム炭化物による析出強化、C,N,Cr,Mo,Wを
添加することによる固溶強化および炭化物による析出強
化、V添加あるいはさらにNb添加による固溶強化処理
時の結晶粒の粗大化防止による強度アップ、冷間加工お
よび時効処理条件の適正化等によって、熱処理膨張係数
を大きく低下させることなく、高強度化を図ったもので
ある。本発明者はさらに検討を加えた結果、Crを必須
添加とし,かつその量を多く添加することによって熱膨
張係数を大きく低下させることなく、耐熱へたり性を向
上させることができることを新規に見出し、本発明に到
ったものである。
The present inventor has conducted intensive studies to solve the above-mentioned problems.
No. 259455 has been found. This is achieved by adding C and V, strengthening precipitation by vanadium carbide mainly containing V and C, solid solution strengthening by adding C, N, Cr, Mo and W, and strengthening precipitation by carbide and adding V or further Nb. By increasing the strength by preventing the crystal grains from being coarsened during the solid solution strengthening treatment by addition, and by optimizing the conditions of cold working and aging treatment, the strength is enhanced without significantly reducing the heat treatment expansion coefficient. . As a result of further studies, the present inventor has newly found that by making Cr an essential addition and adding a large amount thereof, heat resistance can be improved without significantly lowering the thermal expansion coefficient. This has led to the present invention.

【0005】すなわち、本発明は、重量%にて、C
0.1〜1.0%、Si 1.0%以下、Mn 1%を
越えて21%以下、Ni 6〜20%、Cr 6%を超
え15%以下、V 0.1〜1.5%、Mo,Wの1種
または2種以上をMo+1/2Wで3%以下、N 0.
005〜0.2%を含み、残部実質的にFeからなり、
さらに30C−1.34Si+0.5Mn+Ni−0.
67Cr−Mo−0.5W−5.3V+20Nが16以
上であり、かつ常温での硬さが460Hv以上、常温〜
100℃の平均熱膨張係数が16×10マイナス6乗/
℃以上であることを特徴とする耐熱へたり性の優れた高
硬度高膨張合金金属板である。
[0005] That is, the present invention provides a method for preparing C
0.1-1.0%, Si 1.0% or less, Mn more than 1% and 21% or less, Ni 6-20%, Cr more than 6% and 15% or less, V 0.1-1.5% , Mo, W at least 3% or less at Mo + WW.
005-0.2%, with the balance substantially consisting of Fe;
Furthermore, 30C-1.34Si + 0.5Mn + Ni-0.
67Cr-Mo-0.5W-5.3V + 20N is 16 or more, and the hardness at room temperature is 460 Hv or more,
The average coefficient of thermal expansion at 100 ° C. is 16 × 10−6th power /
A high-hardness and high-expansion alloy metal plate excellent in heat set resistance, which is not less than ℃.

【0006】本発明においては、上記合金組成に加え
て、Nb 0.5%以下を含み、30C−1.34Si
+0.5Mn+Ni−0.67Cr−Mo−0.5W−
5.3V+20N−10Nbが16以上とすることがで
きる。また、本発明の組成においては、重量%にて、C
0.35〜1.0%、Si1.0%以下、Mn 3%
〜10%、Ni 6〜15%、Cr 6%を超え13%
以下、V 0.1〜1.0%、Mo,Wの1種または2
種以上をMo+1/2Wで3%以下、N 0.005〜
0.2%を満足することが望ましい。
In the present invention, in addition to the above alloy composition, the alloy contains 0.5% or less of Nb and contains 30C-1.34Si.
+ 0.5Mn + Ni-0.67Cr-Mo-0.5W-
5.3V + 20N-10Nb can be 16 or more. Further, in the composition of the present invention, C
0.35-1.0%, Si 1.0% or less, Mn 3%
-10%, Ni 6-15%, Cr more than 6% and 13%
Hereinafter, V 0.1 to 1.0%, one or two of Mo and W
3% or less at Mo + 1 / 2W, N 0.005
It is desirable to satisfy 0.2%.

【0007】本発明の耐熱へたり性の優れた高硬度高熱
膨張合金金属板は、たとえば上記組成の合金を30%以
上の圧下率で冷間加工することによって得ることができ
る。この時、冷間加工後に、400℃〜750℃で時効
処理を行なうことが望ましい。
The high hardness and high thermal expansion alloy metal sheet of the present invention having excellent heat set resistance can be obtained, for example, by cold working an alloy having the above composition at a rolling reduction of 30% or more. At this time, it is desirable to perform aging treatment at 400 ° C. to 750 ° C. after the cold working.

【0008】[0008]

【発明の実施の形態】以下に本発明における各元素の作
用について述べる。Cは、オーステナイト生成元素であ
るとともに、オーステナイト基地に固溶し、強化に大き
く寄与するだけでなく、凝固時にV、あるいは更にNb
との間にMC型炭化物を形成し、固溶化処理時の結晶粒
の粗大化を防止し、さらに時効処理によってVとの間に
VCを主体とするバナジウム炭化物を形成し焼もどし軟
化抵抗を増す効果がある。このような効果をもたらすた
めには最低0.1%以上の添加を必要とするが、1.0
%を越えて添加すると、延性を低下させ、素材の加工性
を劣化させることから、0.1〜1.0%とした。さら
に望ましくは、0.35〜1.0%がよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The function of each element in the present invention will be described below. C is an austenite-forming element and forms a solid solution in the austenite matrix, and not only greatly contributes to strengthening, but also V or Nb during solidification.
Forms an MC-type carbide between them and prevents coarsening of crystal grains during the solution treatment, and further forms a vanadium carbide mainly composed of VC between V and V by aging treatment to increase tempering softening resistance. effective. To achieve such an effect, it is necessary to add at least 0.1% or more.
%, The ductility is reduced and the workability of the material is deteriorated. More desirably, 0.35 to 1.0% is good.

【0009】Siは、脱酸剤として添加されるが、1%
を越えて添加すると、延性を低下させるので、1.0%
以下とした。Mnは、オーステナイトを安定化させ、高
い熱膨張係数をもたらすとともに、耐熱へたり性の向上
させるのに非常に有効な元素であるが、1%以下では効
果が少なく、一方、20%を越えて添加すると固溶化熱
処理時の耐酸化性を劣化させるので、1%を越え20%
以下とした。さらに望ましくは,3〜10%がよい。N
iは、オーステナイトを安定化させ、高い熱膨張係数を
もたらすために必須の添加元素であるが、6%より少な
いと効果が少なく、一方、20%を越えて添加すると、
熱膨張係数が逆に低下するだけでなく、素材のコストア
ップをもたらすことから、6〜20%とした。さらに望
ましくは,6〜15%がよい。
[0009] Si is added as a deoxidizing agent.
If added in excess of 0.1%, the ductility is reduced.
It was as follows. Mn is a very effective element for stabilizing austenite, providing a high coefficient of thermal expansion, and improving heat resistance, but is less effective at 1% or less, while exceeding 20%. When added, the oxidation resistance during the solution heat treatment is deteriorated, so that it exceeds 1% and is 20%.
It was as follows. More preferably, it is 3 to 10%. N
i is an essential additive element for stabilizing austenite and providing a high coefficient of thermal expansion. When i is less than 6%, the effect is small.
On the contrary, the coefficient of thermal expansion is reduced, and the cost of the material is increased. More preferably, it is 6 to 15%.

【0010】Vは、凝固時にCとの間にMC型炭化物を
形成し、固溶化熱処理時の結晶粒の粗大化を防止し、さ
らに時効処理時にCとの間にVCを主体とする微細炭化
物を形成し焼もどし軟化抵抗を増す効果がある。その添
加量は、0.1%より少ないと上記の効果が十分でな
く、一方、1.5%を越えて添加するとMC型炭化物量
が多くなり、延性が低下し、素材の加工性を害すること
から、0.1〜1.5%とした。さらに望ましくは0.
1〜1.0%がよい。Crは、本合金の耐熱へたり性を
向上させるのに必要な元素であり、また、耐食性,固溶
化処理時の耐酸化性を向上させる元素であり、6%より
多くの添加が望ましい。一方、15%を超えて添加する
と、フェライト相を多く生成して硬さを低下させたり、
粗大なCr炭化物が生成しやすくなり、延性が低下する
ため、固溶化処理温度をより高温で行う必要が生じ、製
造性が悪くなることから、Crは6%を超え15%以下
とした。さらに望ましくは、6%を超え13%以下がよ
い。Mo,Wは、本合金のオーステナイト基地中に固溶
するとともに、一部は炭化物として析出して常温硬さお
よび耐熱へたり性を高めるのに効果が大きい元素であ
る。また、Mo,WはMo当量として、(Mo+1/2W)で整
理される。しかし、いずれもフェライト形成元素である
ため、多量の添加は、オーステナイト組織の安定性を阻
害することから、Mo+1/2Wで3%以下とした。
[0010] V forms an MC type carbide with C at the time of solidification, prevents coarsening of crystal grains at the time of solution treatment, and further forms a fine carbide mainly composed of VC between C and the C at the time of aging treatment. And has the effect of increasing tempering softening resistance. If the amount of addition is less than 0.1%, the above effect is not sufficient. On the other hand, if it exceeds 1.5%, the amount of MC type carbide increases, the ductility decreases, and the workability of the material is impaired. Therefore, it was set to 0.1 to 1.5%. More preferably, 0.
1-1.0% is good. Cr is an element necessary for improving the heat set resistance of the present alloy, and is an element for improving the corrosion resistance and the oxidation resistance during the solution treatment, and it is desirable to add Cr in an amount of more than 6%. On the other hand, if it is added in excess of 15%, a large amount of ferrite phase is formed to lower the hardness,
Since coarse Cr carbides are easily formed and ductility is reduced, it is necessary to perform the solution treatment at a higher temperature, and the productivity is deteriorated. Therefore, Cr is set to more than 6% and 15% or less. More preferably, it is more than 6% and 13% or less. Mo and W are elements that form a solid solution in the austenitic matrix of the present alloy and partially precipitate as carbides, and are highly effective in increasing the room temperature hardness and the heat resistance. Further, Mo and W are arranged as (Mo + 1 / 2W) as Mo equivalent. However, since both are ferrite-forming elements, the addition of a large amount impairs the stability of the austenite structure, so that Mo + 1 / 2W is set to 3% or less.

【0011】Nは、オーステナイト基地中に固溶してオ
ーステナイトを安定化させ、熱膨張係数を高めるととも
に、固溶強化によって常温硬さおよび耐熱へたり性を高
めるのに有効であり、添加する。Nは0.005%より
少ないと十分な効果が得られず,一方、0.2%を越え
て添加すると凝固時に鋼塊内部に欠陥を生じて鋼塊の健
全性を害することから、0.2%以下とした。Nbは凝
固時にCとの間にMC型炭化物を形成し、固溶化熱処理
時の結晶粒の粗大化を防止する効果があり、適宜添加す
ることができる。Nbは、0.5%を越えて添加すると
MC型炭化物が多くなり延性が低下し、素材の加工性を
害することから、添加する場合は0.5%以下とした。
N is dissolved in the austenite matrix to stabilize austenite, increases the coefficient of thermal expansion, and is effective for increasing the room temperature hardness and the heat resistance to set by solid solution strengthening, and is added. If N is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if N exceeds 0.2%, defects occur inside the steel ingot at the time of solidification, which impairs the soundness of the steel ingot. 2% or less. Nb forms an MC type carbide with C at the time of solidification, has an effect of preventing crystal grains from becoming coarse during solution heat treatment, and can be added as appropriate. When Nb is added in excess of 0.5%, MC-type carbides increase, ductility is reduced, and the workability of the material is impaired.

【0012】さらに上記に述べた合金元素は、個々の成
分範囲を満足するだけでなく、高膨張特性を得るために
は、少なくとも基地の基本的な構成相をオーステナイト
組織を基本組織とすることが必要である。本発明合金の
成分元素は、C,Mn,Ni,Nのオーステナイト形成
元素とSi,Cr,Mo,W,V,(Nb)のフェライ
ト形成元素からなっており、これらの元素のバランスを
Ni当量で整理した次式を下記の範囲とすることによっ
て、基地の基本構成相をオーステナイト組織とすること
ができる。 30C−1.34Si+0.5Mn+Ni−0.67Cr−Mo −0.5W−5.3V−10Nb+20N≧16 ・・・・・(1) ここで、C,Si,Mn,Ni,Cr,Mo,W,V,
Nb,Nは合金中の重量%を表している。この式の値が
16より小さいとオーステナイト組織が不安定となり、
高硬度および高膨張特性が得られないことから、(1)
式の値を18以上とした。
Further, in order to obtain the high expansion characteristics as well as satisfying the individual component ranges of the alloy elements described above, at least the basic constituent phase of the matrix should be based on an austenitic structure. is necessary. The constituent elements of the alloy of the present invention are composed of austenite forming elements of C, Mn, Ni and N and ferrite forming elements of Si, Cr, Mo, W, V and (Nb). By setting the following equation arranged in the following range to the following range, the basic constituent phase of the matrix can be an austenitic structure. 30C-1.34Si + 0.5Mn + Ni-0.67Cr-Mo-0.5W-5.3V-10Nb + 20N ≧ 16 (1) where C, Si, Mn, Ni, Cr, Mo, W, V,
Nb and N represent% by weight in the alloy. If the value of this equation is less than 16, the austenite structure becomes unstable,
Since high hardness and high expansion characteristics cannot be obtained, (1)
The value of the equation was 18 or more.

【0013】硬さは、高強度化するためには高い方が望
ましく、従来の高膨張合金である22Ni−3.5Cr
系および6Mn−20Ni系のFe基合金、およびAM
S5625に登録されている9.5Ni−5.5Mn系
のFe基合金より高くすることで高強度化を図ることを
狙って460Hv以上とした。本発明における熱膨張係
数は、上述した通りSUS304が有する15×10マ
イナス6乗/℃を超える熱膨張特性を目的とするため、
熱膨張係数(常温から100℃の平均値)が少なくとも
16×10マイナス6乗/℃以上とした。
It is desirable that the hardness is high in order to increase the strength, and 22Ni-3.5Cr which is a conventional high expansion alloy is used.
-Based and 6Mn-20Ni-based Fe-based alloys, and AM
460 Hv or more with the aim of increasing the strength by making it higher than the 9.5Ni-5.5Mn-based Fe-based alloy registered in S5625. As described above, the coefficient of thermal expansion in the present invention is intended to have a thermal expansion property exceeding 15 × 10 −6 / ° C. which SUS304 has,
The coefficient of thermal expansion (average value from normal temperature to 100 ° C.) was at least 16 × 10−6 / ° C. or more.

【0014】次に本発明合金金属板の製造方法について
説明する。冷間加工は、硬さを高める目的で行なうが、
圧下率が30%より小さいと十分な硬さが得られないこ
とから、圧下率は30%以上とした。冷間加工後の時効
処理は、引張強さ、ばね特性および熱膨張係数を高める
目的で行なうが、400℃以下では十分な効果が得られ
ず、また750℃を越えると硬さが大きく低下すること
から、400〜750℃で時効処理するものとした。
Next, a method for manufacturing the alloy metal sheet of the present invention will be described. Cold working is performed for the purpose of increasing hardness,
If the rolling reduction is less than 30%, sufficient hardness cannot be obtained, so the rolling reduction is 30% or more. The aging treatment after the cold working is performed for the purpose of increasing the tensile strength, the spring characteristics and the coefficient of thermal expansion. However, a sufficient effect cannot be obtained at 400 ° C. or less, and the hardness greatly decreases at 750 ° C. or more. Therefore, aging treatment was performed at 400 to 750 ° C.

【0015】[0015]

【実施例】本発明鋼、比較鋼および従来鋼をいずれも大
気誘導溶解炉で溶解し、10kgのインゴットを作製
し、熱間鍛造、熱間圧延によって約2mm厚さの板を作
製した。その後、1050℃で1時間の固溶化処理を行
ない、脱スケールの後、50%の冷間圧延によって、
1.0mm厚さの金属板に仕上げた。さらに650℃で
2分の時効処理を行なった後に、硬さ測定、熱膨張係数
測定、および熱へたり量の測定を行なった。熱へたり量
は,幅10mm×長さ100mmの板状試験片の長さ方
向の中央部を5mmだけたわませた状態で450℃で2
0分加熱し,冷却後の変形量を測定することで評価し
た。表1に本発明鋼No.1〜13、比較鋼No.21
〜23、従来鋼No.24〜26の化学組成および
(1)式により計算される値(A値)を、また、表2に
硬さ、平均熱膨張係数、熱へたり量をそれぞれ示す。
EXAMPLES The steel of the present invention, the comparative steel and the conventional steel were all melted in an air induction melting furnace to prepare a 10 kg ingot, and a plate having a thickness of about 2 mm was prepared by hot forging and hot rolling. Thereafter, a solution treatment was performed at 1050 ° C. for 1 hour, and after descaling, 50% cold rolling was performed.
Finished into a 1.0 mm thick metal plate. Furthermore, after performing aging treatment at 650 ° C. for 2 minutes, hardness measurement, thermal expansion coefficient measurement, and measurement of heat set were performed. The amount of heat set was 2 at 450 ° C with the central part in the length direction of a 10 mm wide x 100 mm long plate-shaped test piece bent by 5 mm.
It was evaluated by heating for 0 minutes and measuring the amount of deformation after cooling. Table 1 shows the steel No. of the present invention. No. 1 to 13, comparative steel No. 21
~ 23, conventional steel No. The chemical compositions of Nos. 24 to 26 and the value (A value) calculated by the formula (1) are shown in Table 2, and the hardness, the average thermal expansion coefficient, and the amount of heat set are shown in Table 2, respectively.

【0016】ここで,従来鋼No.24は、SUS30
4、No.25は22Ni−3.5Cr系のFe基合
金、No.26はAMS5625に登録されている9.
5Ni−5.5Mn系のFe基合金である。表2に示す
ように、本発明方法によって製造された本発明鋼No.
1〜13は、いずれも硬さが460Hv以上の高硬度を
有し、かつ30〜100℃の平均熱膨張係数が16×1
0マイナス6乗/℃以上の高膨張特性を示し、かつ熱へ
たり量が小さい値を示すことがわかる。一方、本発明に
対して、Cr量の低い、No.21は耐熱へたり量が大
きくなり好ましくない。また、化学組成および式(1)
の値が本発明と異なる比較鋼No.22〜23および従
来鋼No.24〜26は、硬さまたは/および熱膨張係
数が本発明合金より低い値しか示しておらず、また/お
よび熱へたり量も大きい値を示している。
Here, the conventional steel No. 24 is SUS30
4, no. No. 25 is a 22Ni-3.5Cr Fe-based alloy; 26 is registered in AMS 5625
5Ni-5.5Mn-based Fe-based alloy. As shown in Table 2, the steel No. of the present invention produced by the method of the present invention.
1 to 13 each have a high hardness of 460 Hv or more, and have an average thermal expansion coefficient of 16 × 1 at 30 to 100 ° C.
It can be seen that it exhibits a high expansion characteristic of 0-6 / ° C. or more and a small amount of heat sag. On the other hand, with respect to the present invention, No. 1 having a low Cr content. No. 21 is not preferable because the amount of heat sink is large. Also, the chemical composition and the formula (1)
No. of Comparative Steel No. 22 to 23 and conventional steel Nos. Nos. 24 to 26 indicate values lower in hardness or / and thermal expansion coefficient than those of the alloy of the present invention, and / or values in which the amount of heat sag is large.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上説明したように本発明鋼は、高い強
度と高い熱膨張係数および良好な耐熱へたり性を兼備し
た高硬度高膨張合金金属板が得られることができるもの
である。
As described above, the steel of the present invention can provide a high-hardness and high-expansion alloy metal plate having high strength, a high coefficient of thermal expansion, and good heat resistance.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、C 0.1〜1.0%、S
i 1.0%以下、Mn 1%を越えて21%以下、N
i 6〜20%、Cr 6%を超え15%以下、V
0.1〜1.5%、Mo,Wの1種または2種以上をM
o+1/2Wで3%以下、N 0.005〜0.2%を
含み、残部実質的にFeからなり、さらに30C−1.
34Si+0.5Mn+Ni−0.67Cr−Mo−
0.5W−5.3V+20Nが16以上であり、かつ常
温での硬さが460Hv以上、常温〜100℃の平均熱
膨張係数が16×10マイナス6乗/℃以上であること
を特徴とする耐熱へたり性の優れた高硬度高膨張合金金
属板。
C. 0.1 to 1.0% by weight of C,
i 1.0% or less, Mn more than 1% and 21% or less, N
i 6-20%, Cr more than 6% and 15% or less, V
0.1 to 1.5%, one or more of Mo and W
3% or less at o + 1 / 2W, containing 0.005 to 0.2% of N, the balance substantially consisting of Fe, and 30C-1.
34Si + 0.5Mn + Ni-0.67Cr-Mo-
0.5W-5.3V + 20N is 16 or more, the hardness at room temperature is 460Hv or more, and the average thermal expansion coefficient from room temperature to 100 ° C is 16 × 10−6 / ° C or more. High hardness and high expansion alloy metal plate with excellent settability.
【請求項2】 重量%にて、Nb 0.5%以下を含
み、30C−1.34Si+0.5Mn+Ni−0.6
7Cr−Mo−0.5W−5.3V+20N−10Nb
が16以上であることを特徴とする請求項1に記載の耐
熱へたり性の優れた高硬度高膨張合金金属板。
2. A composition containing 30% or less of Nb by 0.5% by weight and containing 30% of Cb-1.34Si + 0.5Mn + Ni-0.6.
7Cr-Mo-0.5W-5.3V + 20N-10Nb
The high-hardness and high-expansion alloy metal sheet having excellent heat set resistance according to claim 1, wherein the number is 16 or more.
【請求項3】 重量%にて、C 0.35〜1.0%、
Si 1.0%以下、Mn 3%〜10%、Ni 6〜
15%、Cr 6%を超え13%以下、V0.1〜1.
0%、Mo,Wの1種または2種以上をMo+1/2W
で3%以下、N 0.005〜0.2%であることを特
徴とする請求項1または2に記載の耐熱へたり性の優れ
た高硬度高膨張合金金属板。
3. 0.35 to 1.0% by weight of C,
Si 1.0% or less, Mn 3% to 10%, Ni 6 to
15%, Cr more than 6% and 13% or less, V0.1-1.
0%, one or more of Mo and W are Mo + 1 / 2W
The high-hardness and high-expansion alloy metal sheet according to claim 1 or 2, wherein the N is 0.005 to 0.2%.
【請求項4】 請求項1ないし3のいずれかに記載の合
金を30%以上の圧下率で冷間加工することを特徴とす
る高強度高膨張合金金属板の製造方法。
4. A method for producing a high-strength and high-expansion alloy metal sheet, comprising cold-working the alloy according to claim 1 at a rolling reduction of 30% or more.
【請求項5】 請求項1ないし3のいずれかに記載の合
金を30%以上の圧下率で冷間加工した後に400℃〜
750℃で時効処理を行なうことを特徴とする耐熱へた
り性の優れた高硬度高膨張合金金属板の製造方法。
5. The alloy according to claim 1, which is cold worked at a rolling reduction of 30% or more, and then heated to 400 ° C.
A method for producing a high-hardness and high-expansion alloy metal plate excellent in heat set resistance, which comprises performing aging treatment at 750 ° C.
JP36616898A 1998-12-24 1998-12-24 Metal plate of high hardness and high expansion alloy excellent in thermal setting resistance, and its manufacture Pending JP2000192194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36616898A JP2000192194A (en) 1998-12-24 1998-12-24 Metal plate of high hardness and high expansion alloy excellent in thermal setting resistance, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36616898A JP2000192194A (en) 1998-12-24 1998-12-24 Metal plate of high hardness and high expansion alloy excellent in thermal setting resistance, and its manufacture

Publications (1)

Publication Number Publication Date
JP2000192194A true JP2000192194A (en) 2000-07-11

Family

ID=18486094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36616898A Pending JP2000192194A (en) 1998-12-24 1998-12-24 Metal plate of high hardness and high expansion alloy excellent in thermal setting resistance, and its manufacture

Country Status (1)

Country Link
JP (1) JP2000192194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007921A1 (en) * 2009-07-13 2011-01-20 한국기계연구원 High strength / corrosion-resistant,.austenitic stainless steel with carbon - nitrogen complex additive, and method for manufacturing same
CN105861953A (en) * 2016-05-07 2016-08-17 惠安县泰达商贸有限责任公司 Alloy material for aircraft landing gear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007921A1 (en) * 2009-07-13 2011-01-20 한국기계연구원 High strength / corrosion-resistant,.austenitic stainless steel with carbon - nitrogen complex additive, and method for manufacturing same
CN105861953A (en) * 2016-05-07 2016-08-17 惠安县泰达商贸有限责任公司 Alloy material for aircraft landing gear

Similar Documents

Publication Publication Date Title
JPS6024353A (en) Heat-resistant 12% cr steel
US6551420B1 (en) Duplex stainless steel
EP2280089A1 (en) Duplex stainless steels
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JPS616257A (en) 12% cr heat resisting steel
EP1382701A1 (en) FERRITIC HEAT&amp;minus;RESISTANT STEEL AND METHOD FOR PRODUCTION THEREOF
JP2000192194A (en) Metal plate of high hardness and high expansion alloy excellent in thermal setting resistance, and its manufacture
JP4575111B2 (en) Heat-resistant alloy and method for producing heat-resistant alloy
JPH06322486A (en) Shadow mask supporting member and its production
JP3221462B2 (en) High-strength high-expansion alloy for juxtaposed bimetal, method for producing the same, and high-strength juxtaposed bimetal
CN112779462A (en) FeNiMnCr series high-expansion alloy with low Ni content, strip and application
JPH1161342A (en) High chromium ferritic steel
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JP3354480B2 (en) High strength and high expansion alloy metal sheet and method for producing the same
JPH03243743A (en) Wear-resistant steel for ordinary and medium temperature use having high hardness in medium and ordinary temperature range
JP2002285286A (en) High hardness and high expansion alloy having excellent thermal settling resistance, high hardness and high expansion alloy metallic sheet obtained by using the alloy and production method for the high hardness and high expansion alloy having excellent thermal settling resistance
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPH0735548B2 (en) Method for producing high-Cr ferritic heat-resistant steel pipe having high creep rupture strength
KR0129826B1 (en) Shadow mask support member and method of producing same
JPS5924172B2 (en) heat resistant bimetal
JPH09209035A (en) Production of austenitic stainless steel for high temperature use
JPH0288716A (en) Manufacture of heat resistant high cr ferritic steel pipe having high creep breaking strength
JP2000234150A (en) Martensitic stainless cold rolled steel strip for leaf spring and production of leaf spring
JPS60149744A (en) High-chromium steel having superior toughness
JP3224186B2 (en) Method for producing high-strength low-thermal-expansion Fe-Ni-based alloy material excellent in punchability