JP2000182800A - Vacuum container - Google Patents

Vacuum container

Info

Publication number
JP2000182800A
JP2000182800A JP10354189A JP35418998A JP2000182800A JP 2000182800 A JP2000182800 A JP 2000182800A JP 10354189 A JP10354189 A JP 10354189A JP 35418998 A JP35418998 A JP 35418998A JP 2000182800 A JP2000182800 A JP 2000182800A
Authority
JP
Japan
Prior art keywords
vacuum vessel
main body
reinforcing ribs
vacuum
reinforcing rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10354189A
Other languages
Japanese (ja)
Inventor
Toshihiro Otani
利宏 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10354189A priority Critical patent/JP2000182800A/en
Publication of JP2000182800A publication Critical patent/JP2000182800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce influence of eddy current by providing a plurality of non-conductor reinforcing ribs axially mounted on the outside face of a vacuum container main body at predetermined intervals over the whole cross sectional circumference of the vacuum container main body made of a metallic tube. SOLUTION: Over the whole cross sectional circumference of a vacuum container main body 2, a plurality of plate type ceramic non-conductor reinforcing ribs 31 are brazed/welded axially at predetermined intervals so as to be connected to the outside face of the vacuum container main body 2. The inside of the vacuum container main body 2 will become deformed because of applied external pressure when it is evacuated into a vacuum, however, the deformation is suppressed by the non-conductor reinforcing ribs 31. The non-conductor reinforcing ribs 31 are not conductors, so that no eddy current is generated by an alternating magnetic filed generated in a magnetic pole of an electromagnet. Therefore, limitation of the number of installed rib plates does not have to be taken into consideration, and sufficient reinforcement can be carried out. On the other hand, the plate type reinforcing ribs are installed at optional intervals, so that the container can be manufactured at low costs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、シンクロトロン
等の物理実験や粒子線治療等に用いられる円形加速器用
のビームダクトに好適な真空容器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum vessel suitable for a beam duct for a circular accelerator used for a physical experiment such as a synchrotron or a particle beam therapy.

【0002】[0002]

【従来の技術】荷電粒子を加速・蓄積する装置であるシ
ンクロトロンあるいはストレージリングの構成要素とし
て、加速高エネルギー化したビームが通過するビームダ
クト等の真空容器が使われている。ところで、このシン
クロトロンのビームダクトは、内部が高真空に保たれな
ければならないため、外圧に耐え得る強度の構造が要求
され、かつまた、該真空容器の構造材料は、非磁性かつ
ガス放出が少ないことも要求される。
2. Description of the Related Art As a component of a synchrotron or a storage ring, which is a device for accelerating and accumulating charged particles, a vacuum container such as a beam duct through which a beam of accelerated and high energy passes is used. By the way, since the inside of the beam duct of this synchrotron must be kept in a high vacuum, a structure having a strength capable of withstanding an external pressure is required, and the structural material of the vacuum vessel is non-magnetic and has no outgassing. Less is also required.

【0003】また、以上のような真空容器は、電磁石の
交番磁界に曝されることによって、渦電流が発生する。
そしてこの渦電流により新たな磁界が発生し、電磁石の
交番磁界を乱すとともに、渦電流による交番磁界の遮断
効果が生まれ、真空容器内に期待していた磁界が侵入出
来ない問題も起こり、軌道を周回するビームの不安定性
の要因となる。そこで、可能な限り、真空容器に発生す
る渦電流値を小とする必要があるが、上記問題の解決策
として、一般に薄肉真空容器が用いられている。しか
し、肉厚が薄くなるほど、外圧に対して変形しやすくな
るため、薄肉金属管を用いた真空容器は、何らかの補強
手段が必要となる。
Further, the above-described vacuum vessel generates an eddy current when exposed to an alternating magnetic field of an electromagnet.
This eddy current generates a new magnetic field, which disturbs the alternating magnetic field of the electromagnet, and produces an effect of blocking the alternating magnetic field due to the eddy current. This causes instability of the orbiting beam. Therefore, it is necessary to reduce the value of the eddy current generated in the vacuum vessel as much as possible. However, as a solution to the above problem, a thin vacuum vessel is generally used. However, the thinner the wall, the more easily it is deformed by an external pressure. Therefore, a vacuum container using a thin metal tube requires some reinforcing means.

【0004】図10並びに図11は、例えば特開平5−
326191号公報に示された従来の薄肉真空容器を示
す図であり、図10は正面断面図、図11は図10のA
−A線に沿う一部断面の側面図である。図において、1
はシンクロトロン用ビームダクト等に使用される真空容
器、2は筒状の金属管からなる真空容器本体であり、そ
の断面形状は長円形のいわゆるレーストラック形状もし
くは楕円形状が一般的である。3は真空容器本体2の軸
線方向(長手方向)に所定間隔で真空容器本体2の外面
にロー付けもしくは溶接にて接合された複数枚の金属製
補強リブであり、真空容器本体2の断面形状に応じた横
幅と電磁石の磁極間隔に応じた高さを持つ長方形で、例
えば、オーステナイト系ステンレス鋼のような非磁性金
属で構成されている。4は真空容器本体2に設けられ、
液圧成形等により容器内面から襞状に加圧成形された成
形凸部である。なお、この成形凸部4は必要に応じて設
けられるものであり、形成しない場合もある。5は真空
容器本体2の開口部にフランジ状に成形された接合端部
であり、この接合端部5を互いに突き合わせて溶接する
ことにより真空容器1を連結し、所定長さのビームダク
トに構成する。6は加速器の電磁石磁極であり、真空容
器1はこの電磁石磁極6の間に納められる。
FIG. 10 and FIG.
FIG. 11 is a diagram showing a conventional thin-walled vacuum vessel disclosed in Japanese Patent No. 326191, FIG. 10 is a front sectional view, and FIG.
FIG. 4 is a side view of a partial cross section along the line A. In the figure, 1
Reference numeral denotes a vacuum vessel used for a synchrotron beam duct or the like, and reference numeral 2 denotes a vacuum vessel main body formed of a cylindrical metal tube, and its cross-sectional shape is generally an elliptical so-called race track shape or elliptical shape. Reference numeral 3 denotes a plurality of metal reinforcing ribs joined to the outer surface of the vacuum vessel main body 2 by brazing or welding at predetermined intervals in the axial direction (longitudinal direction) of the vacuum vessel main body 2. The width is a rectangle having a width according to the height and a height corresponding to the magnetic pole interval of the electromagnet, and is made of, for example, a nonmagnetic metal such as austenitic stainless steel. 4 is provided on the vacuum vessel main body 2,
It is a molding convex portion formed by pressure molding from the inner surface of the container by hydraulic molding or the like. It is to be noted that the formed convex portion 4 is provided as needed, and may not be formed. Numeral 5 is a joint end formed in a flange shape at the opening of the vacuum vessel main body 2. The vacuum vessel 1 is connected by butt welding the joint ends 5 to each other to form a beam duct having a predetermined length. I do. Reference numeral 6 denotes an electromagnetic pole of the accelerator, and the vacuum vessel 1 is accommodated between the electromagnetic poles 6.

【0005】次に動作について説明する。シンクロトロ
ンの電磁石内に設置された真空容器1は、真空ポンプ
(図示せず)により、容器内の気体を排気され、真空容
器本体2の内部は真空状態に保たれる。該真空容器本体
2の内部が真空状態になることにより、真空容器本体2
は外圧によって容器内部方向に変形する方向の外力を受
け、この外圧により真空容器本体2が変形しようとする
が、このとき、真空容器本体2にロー付けもしくは溶接
された補強リブ3により、真空容器本体2の変形が抑制
されるものとなる。なお、このとき、金属製補強リブ3
は、真空容器本体2から補強リブ3の頂点までの高さが
高いほど構造強度向上に寄与し、また、成形凸部4は、
成形ベローズと同様の原理により、ビームの軌道半径に
応じた曲率に真空容器本体2を湾曲させる働きをすると
ともに、該成形凸部4自体が真空容器本体2の構造強度
を高めている。
Next, the operation will be described. The vacuum container 1 installed in the electromagnet of the synchrotron is evacuated of the gas in the container by a vacuum pump (not shown), and the inside of the vacuum container main body 2 is kept in a vacuum state. When the inside of the vacuum vessel body 2 is in a vacuum state, the vacuum vessel body 2
Is subjected to an external force in the direction of deformation toward the inside of the container due to the external pressure, and the vacuum container body 2 tends to be deformed by the external pressure. At this time, the reinforcing rib 3 brazed or welded to the vacuum container body 2 causes The deformation of the main body 2 is suppressed. At this time, the metal reinforcing ribs 3
The higher the height from the vacuum vessel main body 2 to the top of the reinforcing rib 3 contributes to the improvement of the structural strength, and the molded convex portion 4
According to the same principle as the molded bellows, the vacuum vessel main body 2 functions to bend to a curvature corresponding to the orbital radius of the beam, and the molded convex portion 4 itself increases the structural strength of the vacuum vessel main body 2.

【0006】[0006]

【発明が解決しようとする課題】上記のように、従来の
真空容器は、真空容器本体2に発生する渦電流を低減す
るために、薄肉金属材料で製作され、かつ該真空容器本
体2の構造強度上の弱化を補うために、補強リブ3並び
に成形凸部4を設けている。しかし、このようなもので
は、真空容器本体2の断面形状が極端に扁平になること
により、構造力学的に不安定な状態になり、かつ電磁石
磁極6の間隔の制限から、構造強度を上げるための金属
製補強リブ3の高さを十分に確保できない場合、単位長
さ当りのリブの枚数(実効的な厚さ)を増やす必要があ
る。一方、この金属製補強リブ3にも、電磁石磁極6か
ら付与される交番磁界により微量の渦電流が発生してい
るが、前述のように補強リブ3の実効厚さを増やすと、
補強リブ3に発生する渦電流の影響が大となり、真空容
器本体2を薄肉で製作し渦電流の影響を小とした効果が
打ち消されてしまうという問題点があった。
As described above, the conventional vacuum vessel is made of a thin metal material in order to reduce the eddy current generated in the vacuum vessel body 2, and the structure of the vacuum vessel body 2 is reduced. In order to compensate for weakening in strength, a reinforcing rib 3 and a formed convex portion 4 are provided. However, in such a case, since the cross-sectional shape of the vacuum vessel main body 2 becomes extremely flat, it becomes structurally unstable, and the structural strength is increased due to the limitation of the interval between the electromagnet poles 6. When the height of the metal reinforcing ribs 3 cannot be sufficiently secured, it is necessary to increase the number of ribs per unit length (effective thickness). On the other hand, a small amount of eddy current is also generated in the metal reinforcing rib 3 due to the alternating magnetic field applied from the electromagnet pole 6, but as described above, when the effective thickness of the reinforcing rib 3 is increased,
The effect of the eddy current generated in the reinforcing ribs 3 becomes large, and there is a problem that the effect of making the vacuum vessel body 2 thin and reducing the effect of the eddy current is negated.

【0007】この発明は以上のような課題を解決するた
めになされたもので、ビーム形状並びに電磁石磁極間隔
からの制限に規制されず、十分な構造強度を有しつつ
も、渦電流の影響を小と出来る真空容器を得ることを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is not restricted by the restrictions on the beam shape and the distance between the magnetic poles of the electromagnet. The purpose is to obtain a vacuum vessel that can be small.

【0008】[0008]

【課題を解決するための手段】請求項1に係る真空容器
は、筒状の金属管からなる真空容器本体の軸線方向(長
手方向)に断面方向の全周にわたって所定間隔で、該真
空容器本体の外面に取付けられた複数枚の不導体製補強
リブを備えたものである。
According to a first aspect of the present invention, there is provided a vacuum vessel comprising: a vacuum vessel main body comprising a cylindrical metal tube; and a predetermined interval over an entire circumference in a sectional direction in an axial direction (longitudinal direction) of the vacuum vessel main body. Are provided with a plurality of nonconductive reinforcing ribs attached to the outer surface thereof.

【0009】請求項2に係る真空容器は、不導体製補強
リブを、真空容器本体の軸線方向(長手方向)に、断面
方向の全周にわたって所定間隔で真空容器本体の内面に
取付けられたものである。
A vacuum container according to a second aspect of the present invention has reinforcing ribs made of a non-conductor attached to the inner surface of the vacuum vessel main body at predetermined intervals along the entire axial direction (longitudinal direction) of the vacuum vessel main body in a sectional direction. It is.

【0010】請求項3に係る真空容器は、真空容器本体
の軸線方向(長手方向)に、断面方向の所定間隔で内面
に取付けられた不導体製補強リブと真空容器本体が全周
にわたって接合されておらず、部分的に接合されている
ものである。
According to a third aspect of the present invention, in the vacuum vessel, a non-conductive reinforcing rib attached to an inner surface of the vacuum vessel body at a predetermined interval in a cross-sectional direction in the axial direction (longitudinal direction) of the vacuum vessel body is joined to the vacuum vessel body all around. It is not partially joined.

【0011】請求項4及び請求項5に係る真空容器は、
真空容器本体の軸線方向(長手方向)に、断面方向の全
周にわたって従来の金属製補強リブと不導体製補強リブ
とを併用した形で真空容器本体の内外両面に補強リブを
取付けたものである。
[0011] The vacuum container according to claim 4 and 5 is:
Reinforcing ribs are attached to both the inner and outer surfaces of the vacuum vessel main body in the form of using both conventional metal reinforcing ribs and non-conductive reinforcing ribs along the entire circumference in the sectional direction in the axial direction (longitudinal direction) of the vacuum vessel main body. is there.

【0012】請求項6に係る真空容器は、不導体製補強
リブを真空容器本体の内外両面に取付けたものである。
According to a sixth aspect of the present invention, there is provided a vacuum vessel wherein reinforcing ribs made of a non-conductor are attached to both the inner and outer surfaces of the vacuum vessel body.

【0013】請求項7に係る真空容器は、不導体製補強
リブを、真空容器本体の軸線方向(長手方向)に所定間
隔で金属製補強リブと任意の割合で混在させた形態で、
真空容器本体に取付けたものである。
According to a seventh aspect of the present invention, there is provided a vacuum vessel, wherein reinforcing ribs made of a non-conductor are mixed with metal reinforcing ribs at a predetermined interval in an axial direction (longitudinal direction) of the vacuum vessel body at an arbitrary ratio.
It is attached to the vacuum vessel body.

【0014】請求項8に係る真空容器は、不導体製補強
リブを、真空容器本体において構造強度的に著しく弱い
箇所のみに真空容器本体の軸線方向(長手方向)に所定
間隔で取付けたものである。
The vacuum vessel according to the present invention is characterized in that reinforcing ribs made of a non-conductor are attached only at locations where structural strength is extremely weak in the vacuum vessel body at predetermined intervals in the axial direction (longitudinal direction) of the vacuum vessel body. is there.

【0015】請求項9に係る真空容器は、不導体製補強
リブを、セラミックスにて構成したものである。
According to a ninth aspect of the present invention, the non-conductive reinforcing rib is formed of ceramics.

【0016】[0016]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1を示す正面断面図であり、図2は側面断面
図である。図において、1は真空容器、2は筒状の金属
管からなる真空容器本体である。31はこの真空容器本
体2の軸線方向(長手方向)に断面方向の全周にわたっ
て所定間隔で真空容器本体2の外面にロー付けもしくは
溶接にて接合された、複数枚の板状のセラミックスの不
導体製補強リブであり、真空容器内を通過するビームの
形状に応じて任意のリング状の形状に加工されており、
かつ真空容器本体2とは該不導体製補強リブ31のメタ
ライズ処理された面でロー付けもしくは溶接されること
により接合されている。なお、4は液圧成形等により容
器内面から襞状に加圧成形された成形凸部、5は真空容
器本体2の開口部にフランジ状に成形された接合端部で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a front sectional view showing Embodiment 1 of the present invention, and FIG. 2 is a side sectional view. In the figure, reference numeral 1 denotes a vacuum vessel, and 2 denotes a vacuum vessel body composed of a cylindrical metal tube. Reference numeral 31 denotes a plurality of plate-shaped ceramics joined to the outer surface of the vacuum vessel body 2 by brazing or welding at predetermined intervals over the entire circumference in a cross-sectional direction in the axial direction (longitudinal direction) of the vacuum vessel body 2. It is a reinforcing rib made of conductor, processed into an arbitrary ring shape according to the shape of the beam passing through the vacuum vessel,
Further, it is joined to the vacuum vessel main body 2 by brazing or welding at the metalized surface of the nonconductive reinforcing rib 31. Reference numeral 4 denotes a molding protrusion formed by pressure forming from the inner surface of the container by hydraulic molding or the like, and reference numeral 5 denotes a joining end portion formed in a flange shape at the opening of the vacuum container main body 2.

【0017】次に、上記実施の形態1の真空容器の動作
について説明する。シンクロトロンの電磁石内に設置さ
れた真空容器1は、真空ポンプ(図示せず)により、容
器内の気体を排気され、真空容器本体2の内部は真空状
態に保たれる。該真空容器本体2の内部が真空状態にな
ることにより、真空容器本体2は外圧によって容器内部
方向に変形する方向の外力を受け、この外力により真空
容器本体2が変形しようとするが、このとき、真空容器
本体2にロー付けもしくは溶接された不導体製補強リブ
31により、真空容器本体2の変形が抑制される。そこ
で、本実施形態では、補強リブ31は不導体製としてい
るため、電磁石(図示せず)の磁極に発生する交番磁界
によって渦電流が発生せず、このため、従来の金属製補
強リブ3のような枚数の制限を考慮しなくてもよいの
で、十分な補強を行うことが出来る。また、任意の間隔
で板状の補強リブを取り付けているので、一体型のセラ
ミックス製容器に比べて安価に製作出来るものである。
Next, the operation of the vacuum vessel of the first embodiment will be described. The vacuum container 1 installed in the electromagnet of the synchrotron is evacuated of the gas in the container by a vacuum pump (not shown), and the inside of the vacuum container main body 2 is kept in a vacuum state. When the inside of the vacuum vessel main body 2 is brought into a vacuum state, the vacuum vessel main body 2 receives an external force in a direction of being deformed toward the inside of the vessel by an external pressure, and the vacuum vessel main body 2 tends to be deformed by this external force. The deformation of the vacuum vessel main body 2 is suppressed by the nonconductive reinforcing ribs 31 brazed or welded to the vacuum vessel main body 2. Therefore, in the present embodiment, since the reinforcing ribs 31 are made of a non-conductive material, an eddy current is not generated by an alternating magnetic field generated at the magnetic pole of an electromagnet (not shown). Since there is no need to consider such a limitation on the number of sheets, sufficient reinforcement can be performed. In addition, since plate-shaped reinforcing ribs are attached at arbitrary intervals, it can be manufactured at a lower cost than an integrated ceramic container.

【0018】実施の形態2.上記実施の形態1では、真
空容器本体2の外面に不導体製補強リブ31を接合する
場合について述べたが、本実施形態では、図3および図
4に示すように、不導体製補強リブ32を、真空容器本
体2の軸線方向(長手方向)に、断面方向の全周にわた
って所定間隔で真空容器本体2の内面に接合するもので
ある。なお、この不導体製補強リブ32の表面には、電
荷が蓄積されないように、窒化チタン薄膜等の導電性薄
膜が蒸着されている。このような不導体製補強リブ32
を用いることにより、補強リブ32と真空容器本体2の
接合面に付与される応力が圧縮方向になるため、接合部
が剥離しにくくなる。
Embodiment 2 FIG. In the first embodiment, the case where the non-conductive reinforcing rib 31 is joined to the outer surface of the vacuum vessel main body 2 has been described. However, in the present embodiment, as shown in FIGS. Are joined to the inner surface of the vacuum vessel body 2 at predetermined intervals in the axial direction (longitudinal direction) of the vacuum vessel body 2 over the entire circumference in the cross-sectional direction. A conductive thin film such as a titanium nitride thin film is vapor-deposited on the surface of the non-conductive reinforcing rib 32 so that electric charges are not accumulated. Such a reinforcing rib 32 made of a nonconductor
By using, the stress applied to the joint surface between the reinforcing rib 32 and the vacuum vessel main body 2 is in the compression direction, so that the joint portion is not easily peeled.

【0019】実施の形態3.上記実施の形態2では、不
導体製補強リブ32を真空容器本体2の軸線方向(長手
方向)に、断面方向の全周にわたって所定間隔で真空容
器本体2の内面にロー付け等により接合する場合につい
て述べたが、本実施形態では、図5に示すように、不導
体製補強リブ32は、全周にわたって接合されていなく
てもよく、例えば、下面のみをロー付け部7により部分
的に接合して、真空排気時には、真空容器本体2の上下
面いずれかが不導体製補強リブ32に密着するようにし
ても良い。以上のような接合方法を採ることにより、真
空容器本体2の上下面いずれか片面が、不導体製補強リ
ブ32と接合されておらず、機械的に自由となっている
ので、装置の故障等により瞬間的に大気解放が起こり、
真空容器本体2内の圧力が上昇することにより真空容器
本体に衝撃荷重が加わった場合でも、真空容器本体2と
不導体製補強リブ32の接合部で破壊が起こりにくくな
る。
Embodiment 3 In the second embodiment, the non-conductive reinforcing rib 32 is joined to the inner surface of the vacuum vessel main body 2 by brazing or the like at predetermined intervals over the entire circumference in the cross-sectional direction in the axial direction (longitudinal direction) of the vacuum vessel main body 2. However, in the present embodiment, as shown in FIG. 5, the reinforcing ribs 32 made of non-conductor may not be joined over the entire circumference. For example, only the lower surface is partially joined by the brazing portion 7. Then, at the time of evacuation, one of the upper and lower surfaces of the vacuum vessel main body 2 may be brought into close contact with the reinforcing rib 32 made of nonconductor. By employing the above-described joining method, one of the upper and lower surfaces of the vacuum vessel main body 2 is not joined to the non-conductive reinforcing rib 32 and is mechanically free. Instantaneously releases the atmosphere,
Even when an impact load is applied to the vacuum vessel main body due to an increase in the pressure inside the vacuum vessel main body 2, destruction is less likely to occur at the joint between the vacuum vessel main body 2 and the nonconductive reinforcing rib 32.

【0020】実施の形態4.上記実施の形態1および2
では、不導体製補強リブ31または32を真空容器本体
2の軸線方向(長手方向)に、断面方向の全周にわたっ
て所定間隔で真空容器本体2の外面もしくは内面のみに
ロー付け等により接合する場合について述べたが、本実
施形態では、図6に示すように、従来例の金属製補強リ
ブ3と、真空容器本体2の内面に設けられた不導体製補
強リブ32とを併用して、真空容器本体2の内外両面に
補強リブ3と32とを取付けたものである。このように
構成することで、真空容器本体2の外側並びに内側双方
に十分な補強リブの高さを取れない場合にも、真空容器
本体の内外の補強リブ双方の高さの和として、十分なリ
ブ高さを確保できるものとなる。
Embodiment 4 Embodiments 1 and 2 above
In the case where the reinforcing ribs 31 or 32 made of nonconductor are joined to the outer surface or inner surface of the vacuum vessel main body 2 only by brazing or the like at predetermined intervals over the entire circumference in the sectional direction in the axial direction (longitudinal direction) of the vacuum vessel main body 2 However, in the present embodiment, as shown in FIG. 6, the metal reinforcing ribs 3 of the conventional example and the non-conductive reinforcing ribs 32 provided on the inner surface of the vacuum vessel main body 2 are used together to form a vacuum. The reinforcing ribs 3 and 32 are attached to both the inner and outer surfaces of the container body 2. With this configuration, even when the reinforcing ribs on both the outside and the inside of the vacuum vessel main body 2 cannot have a sufficient height, the sum of the heights of the reinforcing ribs on the inside and outside of the vacuum vessel main body is sufficient. The rib height can be secured.

【0021】なお、上記実施の形態においては、金属製
補強リブ3が真空容器本体2の外面に接合され、不導体
製リブ32が真空容器本体2の内面に接合されている場
合について述べたが、上記とは反対に、金属製補強リブ
3を真空容器本体2の内面に接合し、不導体製補強リブ
31を真空容器本体2の外面に接合するようにしても良
い。
In the above embodiment, the case where the metal reinforcing ribs 3 are joined to the outer surface of the vacuum vessel main body 2 and the non-conductive ribs 32 are joined to the inner surface of the vacuum vessel main body 2 has been described. On the contrary, the reinforcing ribs 3 made of metal may be joined to the inner surface of the main body 2 of the vacuum vessel, and the reinforcing ribs 31 made of non-conductor may be joined to the outer surface of the main body 2 of the vacuum vessel.

【0022】実施の形態5.上記実施の形態4では、従
来例の金属製補強リブ3と不導体製補強リブ32を併用
して真空容器本体2の内外両面に補強リブ3と32を取
付ける場合について述べたが、本実施形態では、図7に
示すように、不導体製補強リブ31と32を真空容器本
体2の内外両面に取付けたものである。以上のように構
成することで、実施の形態4の効果を保ちつつ、金属製
リブを設けていないため、さらに渦電流の発生を低減で
きる効果がある。
Embodiment 5 In the fourth embodiment, the case where the reinforcing ribs 3 and 32 are attached to both the inner and outer surfaces of the vacuum vessel body 2 by using the metal reinforcing rib 3 and the non-conductive reinforcing rib 32 of the conventional example in combination has been described. In this embodiment, as shown in FIG. 7, reinforcing ribs 31 and 32 made of non-conductive material are attached to the inner and outer surfaces of the vacuum vessel main body 2. With the configuration as described above, since the metal rib is not provided while maintaining the effect of the fourth embodiment, there is an effect that generation of eddy current can be further reduced.

【0023】実施の形態6.上記実施の形態1では、不
導体製補強リブ31を真空容器本体2の軸線方向(長手
方向)に所定間隔で真空容器本体2に接合する場合につ
いて述べたが、本実施形態では、図8に示すように、金
属製補強リブ3とセラミックス製の不導体補強リブ31
を、任意の割合で混在させた形態で真空容器本体2に接
合したものであり、このように構成することで、渦電流
の低減を図ることが出来るとともに、セラミックス等の
不導体の使用量を最低限に抑えることができ、より安価
に製作できるメリットがある。なお、上記実施の形態に
おいては、金属製補強リブ3とセラミックス製の不導体
補強リブ31を、任意の割合で混在させた形態で真空容
器本体2の外面に接合した場合について述べたが、上記
とは反対に、金属製補強リブ3とセラミックス製の不導
体補強リブ32を、任意の割合で混在させた形態で真空
容器本体2の内面に接合しても良い。
Embodiment 6 FIG. In the first embodiment, the case where the nonconductive reinforcing ribs 31 are joined to the vacuum vessel main body 2 at predetermined intervals in the axial direction (longitudinal direction) of the vacuum vessel main body 2 has been described. In the present embodiment, FIG. As shown, the metal reinforcing ribs 3 and the ceramic non-conductive reinforcing ribs 31 are provided.
Are joined to the vacuum vessel main body 2 in a form mixed at an arbitrary ratio. With such a configuration, the eddy current can be reduced and the amount of non-conductors such as ceramics can be reduced. The advantage is that it can be minimized and can be manufactured at lower cost. In the above-described embodiment, the case has been described where the metal reinforcing ribs 3 and the ceramic non-conductive reinforcing ribs 31 are joined to the outer surface of the vacuum vessel main body 2 in a form in which the reinforcing ribs 31 are mixed at an arbitrary ratio. Conversely, the metal reinforcing ribs 3 and the ceramic non-conductive reinforcing ribs 32 may be joined to the inner surface of the vacuum vessel body 2 in a form mixed at an arbitrary ratio.

【0024】実施の形態7.また、上記実施の形態1、
2および3では、不導体製補強リブ31、32並びに金
属製補強リブ3を真空容器本体2の軸線方向(長手方
向)に所定間隔で、断面の全周にわたって真空容器本体
2に接合する場合について述べたが、本実施形態では、
図9に示すように、真空容器本体2において、構造強度
的に著しく弱い箇所のみに、不導体製補強リブ33を取
付けるようにしたものである。このように構成すること
で、セラミックス等の不導体の使用量を低減できるとと
もに、不導体製補強リブ33が、真空容器本体2の全周
にわたって一体となっていないため、取り付け作業性が
良く、従来例に対する改造が容易となる。
Embodiment 7 FIG. In the first embodiment,
2 and 3, the reinforcing ribs 31 and 32 made of non-conductor and the reinforcing rib 3 made of metal are joined to the vacuum vessel main body 2 at predetermined intervals in the axial direction (longitudinal direction) of the vacuum vessel main body 2 over the entire circumference of the cross section. As described above, in the present embodiment,
As shown in FIG. 9, non-conductive reinforcing ribs 33 are attached only to portions of the vacuum vessel main body 2 where the structural strength is extremely weak. With this configuration, the amount of non-conductors such as ceramics can be reduced, and the reinforcing ribs 33 made of non-conductors are not integrated over the entire circumference of the vacuum vessel main body 2, so that the mounting workability is good. Modification to the conventional example becomes easy.

【0025】[0025]

【発明の効果】この発明の請求項1の真空容器によれ
ば、シンクロトロン等の加速器に使用される真空容器の
外面に接合される補強リブを不導体製にしたので、電磁
石の磁極に発生する交番磁界によって渦電流が発生しな
いため、金属製補強リブのような枚数の制限が存在せ
ず、十分な補強を行うことが出来る。また、任意の間隔
で、板状の補強リブを取付けているので、一体型のセラ
ミックス製容器に比べて安価に製作出来る。
According to the vacuum vessel of the first aspect of the present invention, since the reinforcing ribs joined to the outer surface of the vacuum vessel used for the accelerator such as a synchrotron are made of a non-conductive material, the reinforcing ribs are generated at the magnetic poles of the electromagnet. Since an eddy current is not generated by the alternating magnetic field, there is no limitation on the number of metal reinforcing ribs, and sufficient reinforcement can be performed. In addition, since plate-shaped reinforcing ribs are attached at arbitrary intervals, it can be manufactured at a lower cost than an integrated ceramic container.

【0026】この発明の請求項2の真空容器によれば、
不導体製補強リブを真空容器本体の内面に接合している
ので、補強リブと真空容器本体の接合面に付与される応
力が圧縮方向になるため、接合部が剥離しにくくなる。
According to the vacuum container of the second aspect of the present invention,
Since the non-conductive reinforcing rib is bonded to the inner surface of the vacuum vessel main body, the stress applied to the bonding surface between the reinforcing rib and the vacuum vessel main body is in the compression direction, so that the bonded portion is less likely to peel.

【0027】この発明の請求項3の真空容器によれば、
不導体製補強リブは真空容器本体の断面の全周にわたっ
て接合されておらず、一部機械的に自由とされているの
で、装置の故障等により瞬間的に大気解放が起こり、真
空容器内の圧力が上昇することにより、真空容器本体に
衝撃荷重が加わった場合でも、真空容器本体と不導体製
補強リブの接合部で破壊が起こりにくくなる。
According to the vacuum container of claim 3 of the present invention,
The nonconductive reinforcing ribs are not joined over the entire circumference of the cross section of the vacuum vessel main body and are partially mechanically free. Due to the increase in pressure, even when an impact load is applied to the vacuum vessel main body, breakage is less likely to occur at the joint between the vacuum vessel main body and the reinforcing rib made of a nonconductor.

【0028】この発明の請求項4及び5の真空容器によ
れば、従来の金属製補強リブと不導体製リブとを併用し
て真空容器本体の内外両側に補強リブを取付けたので、
真空容器本体の外側並びに内側双方に十分な補強リブの
高さを取れない場合に、真空容器本体の内外の補強リブ
双方の高さの和として十分なリブ高さを確保できる。
According to the vacuum container of the fourth and fifth aspects of the present invention, the conventional metal reinforcing ribs and the non-conductive ribs are used together, and the reinforcing ribs are attached to both the inside and outside of the vacuum container body.
In a case where a sufficient height of the reinforcing ribs cannot be provided on both the outside and the inside of the vacuum vessel main body, a sufficient rib height can be secured as the sum of the heights of the reinforcing ribs inside and outside the vacuum vessel main body.

【0029】この発明の請求項6の真空容器によれば、
不導体製補強リブを真空容器本体の内外両面に設けたの
で、請求項4及び5の効果を保ちつつ、さらに渦電流の
発生を低減できる。
According to the vacuum container of claim 6 of the present invention,
Since the reinforcing ribs made of non-conductor are provided on both the inner and outer surfaces of the vacuum vessel body, it is possible to further reduce the generation of eddy currents while maintaining the effects of claims 4 and 5.

【0030】この発明の請求項7の真空容器によれば、
金属製補強リブとセラミックス製などの不導体製補強リ
ブを、任意の割合で混在させたので、渦電流の低減が図
れるとともに、セラミックス等の不導体の使用量を最低
限に抑えることができ、より安価に製作できる。
[0030] According to the vacuum container of claim 7 of the present invention,
Since metal reinforcing ribs and non-conductive reinforcing ribs made of ceramics and the like are mixed at an arbitrary ratio, eddy current can be reduced, and the amount of non-conductive materials such as ceramics can be minimized. It can be manufactured at lower cost.

【0031】この発明の請求項8の真空容器によれば、
真空容器本体において構造強度的に著しく弱い箇所のみ
に不導体製補強リブを取付けるようにしたので、セラミ
ックス等の不導体の使用量を低減できるとともに、不導
体製補強リブが、真空容器本体の全周にわたって一体と
なっていないため、取付け作業性が良く、従来例に対す
る改造が容易となる。
According to the vacuum container of claim 8 of the present invention,
Since non-conductive reinforcing ribs are attached only to locations where the structural strength is extremely weak in the vacuum vessel body, the amount of non-conductive materials such as ceramics can be reduced, and the non-conductive reinforcing ribs Since it is not integrated over the circumference, the mounting workability is good, and it is easy to modify the conventional example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の真空容器を示す正
面断面図である。
FIG. 1 is a front sectional view showing a vacuum vessel according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1の真空容器を示す一
部断面の側面図である。
FIG. 2 is a partial cross-sectional side view showing a vacuum vessel according to Embodiment 1 of the present invention.

【図3】 この発明の実施の形態2の真空容器を示す正
面断面図である。
FIG. 3 is a front sectional view showing a vacuum vessel according to Embodiment 2 of the present invention.

【図4】 この発明の実施の形態2の真空容器を示す一
部断面の側面図である。
FIG. 4 is a partial cross-sectional side view showing a vacuum vessel according to Embodiment 2 of the present invention.

【図5】 この発明の実施の形態3の真空容器を示す正
面断面図である。
FIG. 5 is a front sectional view showing a vacuum vessel according to Embodiment 3 of the present invention.

【図6】 この発明の実施の形態4の真空容器を示す一
部断面の側面図である。
FIG. 6 is a partial cross-sectional side view showing a vacuum vessel according to Embodiment 4 of the present invention.

【図7】 この発明の実施の形態5の真空容器を示す一
部断面の側面図である。
FIG. 7 is a partial cross-sectional side view showing a vacuum vessel according to Embodiment 5 of the present invention.

【図8】 この発明の実施の形態6の真空容器を示す一
部断面の側面図である。
FIG. 8 is a partial cross-sectional side view showing a vacuum vessel according to Embodiment 6 of the present invention.

【図9】 この発明の実施の形態7の真空容器を示す正
面断面図である。
FIG. 9 is a front sectional view showing a vacuum vessel according to Embodiment 7 of the present invention.

【図10】 従来の真空容器を示す正面断面図である。FIG. 10 is a front sectional view showing a conventional vacuum vessel.

【図11】 従来の真空容器を示すもので、図10のA
−A線に沿う一部断面の側面図である。
FIG. 11 shows a conventional vacuum vessel, which is shown in FIG.
FIG. 4 is a side view of a partial cross section along the line A.

【符号の説明】[Explanation of symbols]

1 真空容器、2 真空容器本体、3 金属製補強リ
ブ、31,32,33不導体製補強リブ、7 ロー付け
部。
1 vacuum vessel, 2 vacuum vessel main body, 3 metal reinforcing ribs, 31, 32, 33 non-conductive reinforcing ribs, 7 brazing parts.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 筒状の金属管からなる真空容器本体の軸
線方向(長手方向)に、断面方向の全周にわたって所定
間隔で該真空容器本体の外面に取付けられた複数枚の不
導体製補強リブを備えたことを特徴とする真空容器。
1. A plurality of nonconductive reinforcements attached to the outer surface of a vacuum vessel main body made of a cylindrical metal tube at predetermined intervals in the axial direction (longitudinal direction) of the vacuum vessel main body over the entire circumference in a cross-sectional direction. A vacuum vessel comprising a rib.
【請求項2】 筒状の金属管からなる真空容器本体の軸
線方向(長手方向)に、断面方向の全周にわたって所定
間隔で該真空容器本体の内面に取付けられた複数枚の不
導体製補強リブを備えたことを特徴とする真空容器。
2. A plurality of reinforcements made of non-conductors attached to the inner surface of a vacuum vessel main body made of a cylindrical metal tube at a predetermined interval in the axial direction (longitudinal direction) of the vacuum vessel main body along the entire circumference in the cross-sectional direction A vacuum vessel comprising a rib.
【請求項3】 不導体製補強リブは、真空容器本体の内
面に部分的にロー付あるいは溶接で接合されていること
を特徴とする請求項2記載の真空容器。
3. The vacuum vessel according to claim 2, wherein the nonconductive reinforcing rib is partially joined to the inner surface of the vacuum vessel body by brazing or welding.
【請求項4】 真空容器本体の外面に金属製補強リブを
取付けたことを特徴とする請求項2または請求項3記載
の真空容器。
4. The vacuum vessel according to claim 2, wherein a metal reinforcing rib is attached to an outer surface of the vacuum vessel main body.
【請求項5】 真空容器本体の内面に金属製補強リブを
取付けたことを特徴とする請求項1記載の真空容器。
5. The vacuum vessel according to claim 1, wherein a metal reinforcing rib is attached to an inner surface of the vacuum vessel body.
【請求項6】 筒状の金属管からなる真空容器本体の軸
線方向(長手方向)に、断面方向の全周にわたって所定
間隔で該真空容器本体の外面と内面の両面に取付けられ
た複数枚の不導体製補強リブを備えたことを特徴とする
真空容器。
6. A plurality of sheets attached to both the outer surface and the inner surface of the vacuum vessel body at predetermined intervals in the axial direction (longitudinal direction) of the vacuum vessel body made of a cylindrical metal tube over the entire circumference in the cross-sectional direction. A vacuum vessel comprising a reinforcing rib made of a non-conductor.
【請求項7】 不導体製補強リブは、真空容器本体の軸
線方向(長手方向)に所定間隔で金属製補強リブと任意
の割合で混在させた形態で真空容器本体に取付けられて
いることを特徴とする請求項1から請求項6のいずれか
1項に記載の真空容器。
7. The reinforcing rib made of a non-conductor is attached to the main body of the vacuum vessel at a predetermined interval in the axial direction (longitudinal direction) of the main body of the vacuum vessel and in a form mixed with the reinforcing rib made of metal at an arbitrary ratio. The vacuum vessel according to any one of claims 1 to 6, wherein the vacuum vessel is characterized in that:
【請求項8】 筒状の金属管からなる真空容器本体の軸
線方向(長手方向)に所定間隔で、該真空容器本体の構
造強度的に弱い箇所のみに部分的に不導体製補強リブを
接合したことを特徴とする真空容器。
8. A non-conductive reinforcing rib is partially joined only to a portion of the vacuum vessel main body having a weak structural strength at a predetermined interval in an axial direction (longitudinal direction) of the vacuum vessel main body formed of a cylindrical metal tube. A vacuum container characterized by the following.
【請求項9】 不導体製補強リブは、セラミックス製で
あることを特徴とする請求項1から請求項8のいずれか
1項に記載の真空容器。
9. The vacuum vessel according to claim 1, wherein the reinforcing rib made of a non-conductor is made of ceramics.
JP10354189A 1998-12-14 1998-12-14 Vacuum container Pending JP2000182800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10354189A JP2000182800A (en) 1998-12-14 1998-12-14 Vacuum container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10354189A JP2000182800A (en) 1998-12-14 1998-12-14 Vacuum container

Publications (1)

Publication Number Publication Date
JP2000182800A true JP2000182800A (en) 2000-06-30

Family

ID=18435892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10354189A Pending JP2000182800A (en) 1998-12-14 1998-12-14 Vacuum container

Country Status (1)

Country Link
JP (1) JP2000182800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021487A (en) * 2006-07-12 2008-01-31 Mitsubishi Electric Corp Vacuum vessel, and its manufacturing method
JP2011526350A (en) * 2008-07-04 2011-10-06 インベンソール ゲーエムベーハー Thin-walled cuboid self-supporting vacuum container for sorption machines, especially for adsorption machines
CN108831812A (en) * 2018-06-12 2018-11-16 中国科学院近代物理研究所 Vacuum tube for accelerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021487A (en) * 2006-07-12 2008-01-31 Mitsubishi Electric Corp Vacuum vessel, and its manufacturing method
JP2011526350A (en) * 2008-07-04 2011-10-06 インベンソール ゲーエムベーハー Thin-walled cuboid self-supporting vacuum container for sorption machines, especially for adsorption machines
CN108831812A (en) * 2018-06-12 2018-11-16 中国科学院近代物理研究所 Vacuum tube for accelerator
CN108831812B (en) * 2018-06-12 2020-11-13 中国科学院近代物理研究所 Vacuum tube for accelerator

Similar Documents

Publication Publication Date Title
JP4363344B2 (en) Particle beam accelerator
JP2000182800A (en) Vacuum container
EP2731409A1 (en) Accelerating structure
JP3335773B2 (en) Beam duct
JPH03147298A (en) Vacuum container for accelerator
EP0696048B1 (en) Electron beam tubes
JP2008021487A (en) Vacuum vessel, and its manufacturing method
JPH03289099A (en) Beam duct
JPS63124399A (en) Vacuum container of accelerator
US4593164A (en) Housing of a vacuum switching tube
JP2019186083A (en) Klystron
EP0701266B1 (en) Cavity arrangements
JP4061248B2 (en) Vacuum chamber for particle accelerator
JPH1064699A (en) Circular accelerator
JPH05251200A (en) High frequency quadrupole accelerator
JP3727787B2 (en) Superconducting accelerator
JPH03269923A (en) Vacuum interrupter
JP2015050047A (en) Synchrotron
JP2823862B2 (en) Magnetron sputtering equipment
JP5117969B2 (en) Vacuum duct
JPS6332900A (en) Vacuum chamber for synchrotron accelerator
JPH0112773Y2 (en)
JPH02107765A (en) Magnetron sputtering device
JP2713189B2 (en) Withstand voltage ceramic structure for microwave tube
JPH07263194A (en) Accelerator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040413