JP2000182492A - Alloy-type temperature fuse - Google Patents

Alloy-type temperature fuse

Info

Publication number
JP2000182492A
JP2000182492A JP10354644A JP35464498A JP2000182492A JP 2000182492 A JP2000182492 A JP 2000182492A JP 10354644 A JP10354644 A JP 10354644A JP 35464498 A JP35464498 A JP 35464498A JP 2000182492 A JP2000182492 A JP 2000182492A
Authority
JP
Japan
Prior art keywords
temperature
alloy
fuse element
fuse
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10354644A
Other languages
Japanese (ja)
Inventor
Toshiaki Saruwatari
利章 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP10354644A priority Critical patent/JP2000182492A/en
Publication of JP2000182492A publication Critical patent/JP2000182492A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Landscapes

  • Fuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop heat resistance performance of a protected apparatus in the maximum by using a low melting point fusible alloy, each having a composition within specified wt.% of Bi and Pb and the balance In in a fuse element. SOLUTION: A low-melting point fusible alloy, having a composition of 40-50 wt.% Bi, 13-25 wt.% Pb and the balance In is preferably used in a fuse element. Working temperature of an alloy type temperature fuse is set at 80-84 deg.C, the difference between liquidus temperature and solidus temperature of the fuse element is limited to within 5 deg.C, and resistance value changes caused by elongation of the fuse element in the manufacture of the alloy type temperature fuse is suppressed to a negligible range. An alloy-type temperature fuse using a Bi-Pb-Sn-Cd base alloy having a solidus temperature of 70 deg.C and a liquidus temperature of 72 deg.C as the fuse element and an alloy-type temperature fuse using a Bi-Pb-Sn base alloy having a eutectic point of 95 deg.C for the fuse element under cooperation for safely protecting an apparatus which has an allowable temperature of 100 deg.C or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は合金型温度ヒュ−ズ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy type temperature fuse.

【0002】[0002]

【従来の技術】合金型温度ヒュ−ズは、フラックスを塗
布した所定融点の低融点可溶合金片をヒュ−ズエレメン
トとして使用したものである。この合金型温度ヒュ−ズ
の作動機構は、過電流に基づく被保護機器の発熱で低融
点可溶合金片が溶融され、この溶融合金が溶融フラック
スとの共存のもとで電極(またはリ−ド導体端部)への
濡れによる引張りで分断され、この分断溶融合金の各電
極への濡れの進行で分断距離が増加され、この分断距離
が所定の絶縁距離に達したときに通電遮断が完結される
ことにある。かくして、被保護機器が致命的損傷から未
然に保護される。
2. Description of the Related Art An alloy type temperature fuse uses a low melting point fusible alloy piece having a predetermined melting point coated with a flux as a fuse element. The operating mechanism of this alloy type temperature fuse is such that the low melting point fusible alloy piece is melted by the heat generated by the device to be protected due to the overcurrent, and this molten alloy coexists with the molten flux to form the electrode (or lead). The end of the conductor is cut by tension due to wetting of the conductor, and the separation distance is increased by the progress of the wetting of the split molten alloy to each electrode. When the separation distance reaches the specified insulation distance, the current cutoff is completed. To be done. Thus, the protected device is protected from catastrophic damage.

【0003】周知の通り、合金は通常固相線温度と液相
線温度を有し、固相線温度で溶け始め、さらに温度が上
昇されるとある温度範囲内では液相中に固相粒体が分散
した固液共存状態となり、この範囲の上限温度、すなわ
ち液相線温度で完全に溶けて液相になる。合金型温度ヒ
ュ−ズのヒュ−ズエレメントには、前記した作動機構上
からは固相線温度と液相線温度とが一致する低融点可溶
合金、すなわち共晶合金を使用することが理想的である
が、加工上、線引き可能であることが要求され、非共晶
合金を使用せざるを得ないことが多い。
As is well known, alloys usually have a solidus temperature and a liquidus temperature, and begin to melt at the solidus temperature, and when the temperature is further increased, solid phase particles are contained in the liquid phase within a certain temperature range. The solid is in a solid-liquid coexisting state in which the body is dispersed, and completely melts into a liquid phase at the upper limit temperature of this range, that is, the liquidus temperature. For the fuse element of the alloy type temperature fuse, it is ideal to use a low melting point fusible alloy in which the solidus temperature and the liquidus temperature match from the above operating mechanism, that is, a eutectic alloy. However, it is required to be wire-drawable in processing, and in many cases, a non-eutectic alloy must be used.

【0004】而るに、合金型温度ヒュ−ズのヒュ−ズエ
レメントの液相線温度と固相線温度との差をΔTとすれ
ば、固液共存状態でも前記した溶融ヒュ−ズエレメント
の分断の可能性があるから、ΔTの巾での動作温度のバ
ラツキを予定しておくことが妥当であり、被保護機器を
その耐熱性能を最大限乃至は充分に発揮させて使用する
ために、ΔTを極力狭くすることが要求される。
[0004] If the difference between the liquidus temperature and the solidus temperature of the fuse element of the alloy type temperature fuse is defined as ΔT, the molten fuse element described above can be used even in a solid-liquid coexistence state. Since there is a possibility of division, it is appropriate to plan the variation of the operating temperature in the width of ΔT, and in order to use the protected device at its maximum or sufficient heat resistance, It is required to reduce ΔT as much as possible.

【0005】従来、作動温度が100℃以下の合金型温
度ヒュ−ズとしては、共晶点95℃のBi−Pb−Sn
系共晶合金(Bi50重量%、Pb31、Sn19重量
%)をヒュ−ズエレメントとするもの、固相線温度70
℃,液相線温度72℃のBi−Pb−Sn−Cd系合金
(Bi50重量%、Pb25重量%、Sn12.5重量
%、Cd12.5重量%)をヒュ−ズエレメントとする
ものが汎用されている。
Conventionally, alloy-type temperature fuses having an operating temperature of 100 ° C. or less include Bi-Pb-Sn having a eutectic point of 95 ° C.
Using a eutectic alloy (Bi 50% by weight, Pb31, Sn 19% by weight) as a fuse element, solidus temperature 70
A fuse element made of a Bi-Pb-Sn-Cd alloy (50% by weight of Bi, 25% by weight of Pb, 12.5% by weight of Sn, 12.5% by weight of Cd) having a liquidus temperature of 72 ° C is widely used. ing.

【0006】上記双方の合金型温度ヒュ−ズの作動温度
の中間温度を作動温度とする合金型温度ヒュ−ズとし
て、Bi26〜32重量%,Pb8〜12重量%,残部
Inをヒュ−ズエレメントとするものが提案されている
(特開昭60−295951号公報)。
As an alloy type temperature fuse having an operating temperature at an intermediate temperature between the operating temperatures of the two alloy type temperature fuses, 26 to 32% by weight of Bi, 8 to 12% by weight of Pb, and the balance In as a fuse element. (Japanese Patent Laid-Open No. 60-295951).

【0007】[0007]

【発明が解決しようとする課題】合金型温度ヒュ−ズに
おいて、ヒュ−ズエレメントが常時通電電流によるジュ
−ル熱で発熱する場合そのヒュ−ズエレメントの温度上
昇をΔT’とし、このΔT’が零の場合に被保護機器の
温度がTmになったときに合金型温度ヒュ−ズが作動す
るとすれば、ヒュ−ズエレメントの前記ジュ−ル発熱の
もとでは、被保護機器の温度が(Tm−ΔT’)になっ
たときに合金型温度ヒュ−ズが作動することになる。従
って、被保護機器の耐熱性能をほぼ最大限に発揮させる
には、ヒュ−ズエレメントの液相線温度と固相線温度と
の差ΔTを小さくすることにより作動温度のバラツキを
抑えることの外に、ヒュ−ズエレメントの前記ジュ−ル
発熱を排除することが必要である。
In an alloy type temperature fuse, when the fuse element generates heat due to Joule heat caused by a constant current, the temperature rise of the fuse element is defined as .DELTA.T '. If the temperature of the device to be protected reaches Tm when the temperature of the device to be protected is equal to zero, the temperature of the device to be protected can be increased by the Joule heat of the fuse element. When (Tm−ΔT ′), the alloy type temperature fuse is activated. Therefore, in order to maximize the heat-resistant performance of the protected device, it is necessary to reduce the difference ΔT between the liquidus temperature and the solidus temperature of the fuse element to reduce the variation in operating temperature. In addition, it is necessary to eliminate the Joule heat of the fuse element.

【0008】しかしながら、前記したBi−Pb−In
系合金をヒュ−ズエレメントとする合金型温度ヒュ−ズ
では、ヒュ−ズエレメントのIn含有量が多いために低
張力でも伸び易く、合金型温度ヒュ−ズ製造時でのヒュ
−ズエレメントの減径率が大であってヒュ−ズエレメン
トの電気抵抗値の増加が無視し得ず、前記要件を満足に
充足させ難い。
However, the aforementioned Bi-Pb-In
In the alloy type temperature fuse using a system alloy as a fuse element, the fuse element has a large In content, so that it can be easily extended even at a low tension. Since the diameter reduction rate is large, the increase in the electric resistance value of the fuse element cannot be ignored, and it is difficult to satisfy the above requirements satisfactorily.

【0009】本発明の目的は、作動温度を72℃〜95
℃の中間温度とし、被保護機器をその耐熱性能をほぼ最
大限に発揮させて保護できる合金型温度ヒュ−ズを提供
することにある。
It is an object of the present invention to reduce the operating temperature from 72 ° C to 95 ° C.
It is an object of the present invention to provide an alloy-type temperature fuse capable of protecting a device to be protected by making its heat resistant performance almost maximized at an intermediate temperature of ° C.

【0010】[0010]

【課題を解決するための手段】本発明に係る合金型温度
ヒュ−ズは、Bi40〜50重量%、Pb13〜25重
量%、残部Inの組成の低融点可溶合金をヒュ−ズエレ
メントに使用したことを特徴とする構成である。
The alloy type temperature fuse according to the present invention uses, as a fuse element, a low melting point fusible alloy having a composition of 40 to 50% by weight of Bi, 13 to 25% by weight of Pb, and the balance of In. This is a configuration characterized by the following.

【0011】本発明に係る合金型温度ヒュ−ズにおい
て、ヒュ−ズエレメントの合金組成をBi40〜50重
量%,Pb13〜25重量%,残部Inとする理由は、
(a)合金型温度ヒュ−ズの作動温度を80℃〜84℃
とし、(b)ヒュ−ズエレメントの液相線温度と固相線
温度との差を5℃以内にとどめ、(c)合金型温度ヒュ
−ズ製造時のヒュ−ズエレメントの伸びに起因する抵抗
値変動を無視し得る程度に抑える、ことにある。
In the alloy type temperature fuse according to the present invention, the reason why the alloy composition of the fuse element is 40 to 50% by weight of Bi, 13 to 25% by weight of Pb, and the balance In is as follows.
(A) The operating temperature of the alloy mold temperature fuse is set to 80 ° C to 84 ° C.
(B) the difference between the liquidus temperature and the solidus temperature of the fuse element is kept within 5 ° C., and (c) the temperature is caused by the elongation of the fuse element when the alloy type temperature fuse is manufactured. That is, the resistance value fluctuation is suppressed to a negligible level.

【0012】[0012]

【発明の実施の形態】本発明において使用するヒュ−ズ
エレメントの形状は、丸線、帯条体等であり、断面積は
丸線の場合で直径0.4mm〜0.8mmとされ、帯条
体の場合も実質的に同断面積とされる。このヒュ−ズエ
レメントは、前記組成の原料を混合溶融して棒状に鋳造
し、これをダイスやロ−ルにより線引き加工や圧延加工
して製造される。
BEST MODE FOR CARRYING OUT THE INVENTION The fuse element used in the present invention is a round wire, a strip, or the like, and has a cross section of 0.4 mm to 0.8 mm in diameter in the case of a round wire. In the case of a strip, the cross section is substantially the same. The fuse element is manufactured by mixing and melting the raw materials having the above-described composition, casting the rod into a rod shape, and drawing or rolling this with a die or a roll.

【0013】本発明において使用する合金型温度ヒュ−
ズの形式は、筒型アクシャルタイプ、ケ−ス型ラジアル
タイプ、基板タイプ、樹脂モ−ルドラジアルタイプ、テ
−プタイプ等である。図1は筒型アクシャルタイプを示
し、リ−ド導体1,1間にヒュ−ズエレメント2を溶接
により接合し、ヒュ−ズエレメント2にフラックス3を
塗布し、このフラックス塗布ヒュ−ズエレメントに絶縁
筒4、例えばセラミックス筒を挿通し、この絶縁筒4の
各端と各リ−ド導体1との間を封止材5例えばエポキシ
樹脂で封止してある。
[0013] The alloy type temperature hue used in the present invention.
The types of the cable include a cylindrical axial type, a case type radial type, a substrate type, a resin mold radial type, and a tape type. FIG. 1 shows a tubular axial type, in which a fuse element 2 is joined between lead conductors 1 and 1 by welding, a flux 3 is applied to the fuse element 2, and this flux-coated fuse element is used. An insulating tube 4, for example, a ceramic tube, is inserted through the insulating tube 4, and a space between each end of the insulating tube 4 and each lead conductor 1 is sealed with a sealing material 5, for example, epoxy resin.

【0014】図2はケ−ス型ラジアルタイプを示し、並
行リ−ド導体1,1の先端部間にヒュ−ズエレメント2
を溶接により接合し、ヒュ−ズエレメント2にフラック
ス3を塗布し、このフラックス塗布ヒュ−ズエレメント
を一端開口の絶縁ケ−ス4、例えばセラミックスケ−ス
で包囲し、この絶縁ケ−ス4の開口をエポキシ樹脂等の
封止材5で封止してある。
FIG. 2 shows a case-type radial type, in which a fuse element 2 is provided between the leading ends of parallel lead conductors 1 and 1.
Are welded, a flux 3 is applied to the fuse element 2, and the flux-coated fuse element is surrounded by an insulating case 4 having an opening at one end, for example, a ceramic case. Are sealed with a sealing material 5 such as an epoxy resin.

【0015】図3は基板タイプを示し、絶縁基板4、例
えばセラミックス基板上に一対の膜電極1,1を導電ペ
−スト(例えば銀ペ−スト)の印刷焼付けにより形成
し、各電極1にリ−ド導体11を溶接等により接続し、
電極1,1間にヒュ−ズエレメント2を溶接により接合
し、ヒュ−ズエレメント2にフラックス3を塗布し、こ
のフラックス塗布ヒュ−ズエレメントを封止材4例えば
エポキシ樹脂で封止してある。
FIG. 3 shows a substrate type in which a pair of film electrodes 1, 1 are formed on an insulating substrate 4, for example, a ceramic substrate, by printing and printing a conductive paste (for example, silver paste). The lead conductor 11 is connected by welding or the like,
A fuse element 2 is joined between the electrodes 1 and 1 by welding, a flux 3 is applied to the fuse element 2, and the flux-coated fuse element is sealed with a sealing material 4, for example, an epoxy resin. .

【0016】図4は樹脂モ−ルドラジアルタイプを示
し、並行リ−ド導体1,1の先端部間にヒュ−ズエレメ
ント2を溶接により接合し、ヒュ−ズエレメント2にフ
ラックス3を塗布し、このフラックス塗布ヒュ−ズエレ
メントを樹脂液ディッピングにより樹脂モ−ルド5して
ある。
FIG. 4 shows a resin mold radial type, in which a fuse element 2 is welded between the ends of the parallel lead conductors 1 and 1 and a flux 3 is applied to the fuse element 2. The flux-coated fuse element is resin-molded 5 by dipping the resin liquid.

【0017】図5はテ−プタイプを示し、樹脂ベ−スフ
ィルム41に一対の帯条リ−ド導体1,1を接着剤や融
着により固着し、これらの帯条リ−ド導体先端部間にヒ
ュ−ズエレメント2を溶接により接合し、ヒュ−ズエレ
メント2にフラックス3を塗布し、このフラックス塗布
ヒュ−ズエレメントを樹脂カバ−フィルム42の周辺部
の接着または融着により封止してある。
FIG. 5 shows a tape type in which a pair of strip lead conductors 1 and 1 are fixed to a resin base film 41 by an adhesive or fusion bonding, and these strip lead conductor tip portions. The fuse element 2 is joined by welding, a flux 3 is applied to the fuse element 2, and the flux-coated fuse element is sealed by bonding or fusing the peripheral portion of the resin cover film 42. It is.

【0018】上記何れのタイプの合金型温度ヒュ−ズの
製造においても、ボビンに巻取った長尺ヒュ−ズエレメ
ントを所定長さづつ繰り出して切断し、この切断したヒ
ュ−ズエレメントをリ−ド導体または膜電極に溶接する
工程を経るが、この工程でのヒュ−ズエレメントの伸び
を実質零にでき、ヒュ−ズエレメントの電気抵抗値を所
定値に保持できる。
In any of the above-mentioned types of alloy type temperature fuses, a long fuse element wound on a bobbin is fed out by a predetermined length and cut, and the cut fuse element is releasable. In this step, the fuse element is stretched substantially to zero in this step, and the electric resistance value of the fuse element can be maintained at a predetermined value.

【0019】合金型温度ヒュ−ズによる被保護機器の理
想的な保護条件は、被保護機器が許容温度(Tm)にな
ったときに合金型温度ヒュ−ズのヒュ−ズエレメントが
溶断作動することであり、その溶断作動がバラツキなく
生じること、従って一点の融点Tで生じることにある。
而して、ヒュ−ズエレメントに共晶点Tの共晶合金を使
用することにある。而るに、前記した(a)合金型温度
ヒュ−ズの作動温度を80℃〜84℃とし、(b)ヒュ
−ズエレメントの液相線温度と固相線温度との差を5℃
以内にとどめ、(c)合金型温度ヒュ−ズ製造時のヒュ
−ズエレメントの伸びに起因する抵抗値変動を無視し得
る程度に抑える等の要件上、非共晶合金をヒュ−ズエレ
メントに使用せざるを得ず、その非共晶ヒュ−ズエレメ
ントの液相線温度と固相線温度との温度差をΔTとす
る。また、ヒュ−ズエレメントが平常時通電電流でジュ
−ル発熱するとすれば、被保護機器が上記許容温度Tm
よりもやや低い温度(Tm−ΔTm)になったときに合
金型温度ヒュ−ズのヒュ−ズエレメントが溶断作動する
ことになる。従って、ヒュ−ズエレメントに非共晶合金
を使用しかつヒュ−ズエレメントにジュ−ル発熱が生じ
るときは、理想の条件、すなわちヒュ−ズエレメントの
液相線温度と固相線温度との差(ΔT)が0でかつジュ
−ル発熱が0の場合に較べ、ヒュ−ズエレメントの作動
温度に最大〔ΔTm+ΔT〕の温度ズレが生じることに
なる。
The ideal protection condition of the device to be protected by the alloy type temperature fuse is such that when the device to be protected reaches the allowable temperature (Tm), the fuse element of the alloy type temperature fuse is blown. That is, the fusing operation occurs without variation, and thus occurs at a single melting point T.
Thus, a eutectic alloy having a eutectic point T is used for the fuse element. The operating temperature of (a) the alloy type temperature fuse is set to 80 ° C. to 84 ° C., and (b) the difference between the liquidus temperature and the solidus temperature of the fuse element is 5 ° C.
(C) The non-eutectic alloy is used as the fuse element because of the requirement that the resistance value fluctuation caused by the elongation of the fuse element at the time of manufacturing the alloy type temperature fuse is suppressed to a negligible level. The temperature difference between the liquidus temperature and the solidus temperature of the non-eutectic fuse element must be used as ΔT. Further, if the fuse element generates Joule heat due to a normal conduction current, the device to be protected will be at the allowable temperature Tm.
When the temperature becomes slightly lower (Tm-.DELTA.Tm), the fuse element of the alloy type temperature fuse will perform a fusing operation. Therefore, when a non-eutectic alloy is used for the fuse element and Joule heat is generated in the fuse element, the ideal condition, that is, the temperature between the liquidus temperature and the solidus temperature of the fuse element, is considered. Compared to the case where the difference (ΔT) is 0 and the Joule heat is 0, the operating temperature of the fuse element has a maximum temperature deviation of [ΔTm + ΔT].

【0020】しかしながら、本発明に係る合金型温度ヒ
ュ−ズにおいては、ΔTを5℃以内に抑え、ΔTmを実
質的に0にして作動温度80℃〜84℃で作動させるこ
とができ、固相線温度70℃,液相線温度72℃のBi
−Pb−Sn−Cd系合金をヒュ−ズエレメントとする
既存の合金型温度ヒュ−ズと共晶点95℃のBi−Pb
−Sn系共晶合金をヒュ−ズエレメントとする既存の合
金型温度ヒュ−ズ等との協同のもとで許容温度が100
℃以下の機器を良好に保護できる。
However, the alloy-type temperature fuse according to the present invention can be operated at an operating temperature of 80 ° C. to 84 ° C. with ΔT suppressed to 5 ° C. or less and ΔTm substantially set to zero. Bi with a liquidus temperature of 70 ° C and a liquidus temperature of 72 ° C
Bi-Pb with a eutectic point of 95 ° C and an existing alloy-type temperature fuse having a Pb-Sn-Cd alloy as a fuse element
The allowable temperature is 100 in cooperation with an existing alloy-type temperature fuse or the like using a Sn-based eutectic alloy as a fuse element.
Equipment below ℃ can be protected well.

【0021】[0021]

【実施例】実施例及び比較例で使用した合金型温度ヒュ
−ズは筒型タイプであり、リ−ド導体には外径 1.
0mmの銅線を、絶縁筒にはセラミックス筒を、フラッ
クスにはロジンを主成分とするものを、封止材にはエポ
キシ樹脂をそれぞれ使用した。ヒュ−ズエレメントの外
径は1.0mm、長さは5.0mmとした。
The alloy type temperature fuse used in the examples and comparative examples is of a cylindrical type, and the outer diameter of the lead conductor is as follows.
A 0 mm copper wire, a ceramic cylinder as an insulating cylinder, a resin mainly composed of rosin as a flux, and an epoxy resin as a sealing material were used. The fuse element had an outer diameter of 1.0 mm and a length of 5.0 mm.

【0022】〔実施例1〕ヒュ−ズエレメントの合金組
成を、Bi48重量%,Pb19重量%,残部Inとし
た。この合金の液相線温度は82℃であり、固相線温度
は77℃であった。
Example 1 The alloy composition of the fuse element was 48% by weight of Bi, 19% by weight of Pb, and the balance In. The liquidus temperature of this alloy was 82 ° C and the solidus temperature was 77 ° C.

【0023】〔実施例2〕ヒュ−ズエレメントの合金組
成を、Bi55重量%,Pb25重量%,残部Inとし
た。この合金の液相線温度は84℃であり、固相線温度
は79℃であった。
Example 2 The alloy composition of the fuse element was 55% by weight of Bi, 25% by weight of Pb, and the balance In. The liquidus temperature of this alloy was 84 ° C and the solidus temperature was 79 ° C.

【0024】〔実施例3〕ヒュ−ズエレメントの合金組
成を、Bi40重量%,Pb13重量%,残部Inとし
た。この合金の液相線温度は80℃であり、固相線温度
は75℃であった。
Example 3 The alloy composition of the fuse element was Bi 40% by weight, Pb 13% by weight, and the balance In. The liquidus temperature of this alloy was 80 ° C and the solidus temperature was 75 ° C.

【0025】〔比較例〕ヒュ−ズエレメントの合金組成
を、Bi29重量%,Pb10重量%,残部Inとし
た。この合金の液相線温度は74℃であり、固相線温度
は70℃であった。
Comparative Example The alloy composition of the fuse element was Bi 29% by weight, Pb 10% by weight, and the balance In. The liquidus temperature of this alloy was 74 ° C and the solidus temperature was 70 ° C.

【0026】これらの実施例品及び比較例品(各試料数
は30箇)のそれぞにつきヒュ−ズエレメントの液相線
温度よりも3℃高い温度に保持した加熱オイル中に浸漬
したところ、100%の溶断率であった。
Each of the product of the example and the product of the comparative example (the number of samples was 30) was immersed in a heating oil maintained at a temperature 3 ° C. higher than the liquidus temperature of the fuse element. The fusing rate was 100%.

【0027】しかしながら、比較例品ではヒュ−ズエレ
メントの合金型温度ヒュ−ズ製造時での減径率が大きく
抵抗値増加が大であってヒュ−ズエレメントの常時通電
電流によるジュ−ル発熱に基づく上記ΔTmに起因する
作動ズレが生じる。これに対し、実施例品ではヒュ−ズ
エレメントの合金型温度ヒュ−ズ製造時の減径率が実質
上0であり、ヒュ−ズエレメントの液相線温度と固相線
温度との差が5℃以内であることと相俟って被保護機器
を充分に小さな温度ズレで保護できる。
However, in the comparative example, the fuse element has a large diameter reduction rate during manufacture of the alloy type temperature fuse and a large increase in the resistance value. , An operation shift due to the above ΔTm occurs. On the other hand, in the example product, the diameter reduction rate of the fuse element at the time of manufacturing the alloy type temperature fuse of the fuse element is substantially 0, and the difference between the liquidus temperature and the solidus temperature of the fuse element is different. In combination with the temperature being within 5 ° C., the device to be protected can be protected with a sufficiently small temperature deviation.

【0028】[0028]

【発明の効果】本発明によれば、作動温度が72℃と9
5℃との中間であり、作動温度のバラツキ乃至はズレを
充分に小さくできる合金型温度ヒュ−ズを提供でき、許
容温度が100℃以下の電気機器を固相線温度70℃,
液相線温度72℃のBi−Pb−Sn−Cd系合金をヒ
ュ−ズエレメントとする既存の合金型温度ヒュ−ズと共
晶点95℃のBi−Pb−Sn系共晶合金をヒュ−ズエ
レメントとする既存の合金型温度ヒュ−ズ等との協同の
もとで適確に保護できる。
According to the present invention, the operating temperature is 72.degree.
It is in the middle of 5 ° C and can provide an alloy-type temperature fuse capable of sufficiently reducing the variation or deviation of the operating temperature.
An existing alloy-type temperature fuse using a Bi-Pb-Sn-Cd-based alloy having a liquidus temperature of 72 ° C as a fuse element and a Bi-Pb-Sn-based eutectic alloy having a eutectic point of 95 ° C as a fuse element. It can be properly protected in cooperation with existing alloy-type temperature fuses, etc., which are used as cooling elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】筒型アクシャルタイプの合金型温度ヒュ−ズを
示す図面である。
FIG. 1 is a drawing showing a cylindrical axial type alloy fuse.

【図2】ケ−ス型ラジアルタイプの合金型温度ヒュ−ズ
を示す図面である。
FIG. 2 is a drawing showing a case type radial type alloy fuse.

【図3】基板タイプの合金型温度ヒュ−ズを示す図面で
ある。
FIG. 3 is a view showing a substrate type alloy type temperature fuse.

【図4】樹脂モ−ルドラジアルタイプの合金型温度ヒュ
−ズを示す図面である。
FIG. 4 is a drawing showing a resin mold radial type alloy fuse.

【図5】テ−プタイプの合金型温度ヒュ−ズを示す図面
である。
FIG. 5 is a drawing showing a tape type alloy type temperature fuse.

【符号の説明】[Explanation of symbols]

2 ヒュ−ズエレメント 2 fuse element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Bi40〜50重量%、Pb13〜25重
量%、残部Inの組成の低融点可溶合金をヒュ−ズエレ
メントに使用したことを特徴とする合金型温度ヒュ−
ズ。
An alloy type temperature fuse characterized in that a low melting point fusible alloy having a composition of 40 to 50% by weight of Bi, 13 to 25% by weight of Pb, and the balance of In is used for a fuse element.
Z.
JP10354644A 1998-12-14 1998-12-14 Alloy-type temperature fuse Pending JP2000182492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10354644A JP2000182492A (en) 1998-12-14 1998-12-14 Alloy-type temperature fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10354644A JP2000182492A (en) 1998-12-14 1998-12-14 Alloy-type temperature fuse

Publications (1)

Publication Number Publication Date
JP2000182492A true JP2000182492A (en) 2000-06-30

Family

ID=18438948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10354644A Pending JP2000182492A (en) 1998-12-14 1998-12-14 Alloy-type temperature fuse

Country Status (1)

Country Link
JP (1) JP2000182492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007185A (en) * 2001-06-19 2003-01-10 Matsushita Electric Ind Co Ltd Thermal fuse
JP2003016895A (en) * 2001-07-05 2003-01-17 Matsushita Electric Ind Co Ltd Thermal fuse

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007185A (en) * 2001-06-19 2003-01-10 Matsushita Electric Ind Co Ltd Thermal fuse
JP4734778B2 (en) * 2001-06-19 2011-07-27 パナソニック株式会社 Thermal fuse
JP2003016895A (en) * 2001-07-05 2003-01-17 Matsushita Electric Ind Co Ltd Thermal fuse
JP4724963B2 (en) * 2001-07-05 2011-07-13 パナソニック株式会社 Thermal fuse

Similar Documents

Publication Publication Date Title
JP4230194B2 (en) Alloy type thermal fuse and wire for thermal fuse element
US6819215B2 (en) Alloy type thermal fuse and fuse element thereof
US6774761B2 (en) Alloy type thermal fuse and fuse element thereof
JP2004176106A (en) Alloy type thermal fuse, and material for thermal fuse element
JP3841257B2 (en) Alloy type temperature fuse
JP2819408B2 (en) Alloy type temperature fuse
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP3995058B2 (en) Alloy type temperature fuse
JP3761846B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4230204B2 (en) Alloy type thermal fuse and material for thermal fuse element
JP2000182492A (en) Alloy-type temperature fuse
US20050220661A1 (en) Method of using an alloy type thermal fuse, and alloy type thermal fuse
JP2001266723A (en) Alloy-type thermal-fuse
US7160504B2 (en) Alloy type thermal fuse and fuse element thereof
JP2002150906A (en) Alloy-type thermal fuse
JP2516469B2 (en) Alloy type temperature fuse
JP2001143592A (en) Fuse alloy
JPH1140025A (en) Thermal alloy fuse
JPH03236132A (en) Alloy type temperature fuse
JP2001143589A (en) Alloy fuse
JPH06105582B2 (en) Thermal fuse and manufacturing method thereof
JP2001143591A (en) Alloy fuse
JPH04259720A (en) Alloy-type temperature fuse
JP2001143588A (en) Alloy fuse
JP2001135215A (en) Alloy-type thermal fuse