JP2000180085A - Tube for heat exchanger - Google Patents

Tube for heat exchanger

Info

Publication number
JP2000180085A
JP2000180085A JP10355702A JP35570298A JP2000180085A JP 2000180085 A JP2000180085 A JP 2000180085A JP 10355702 A JP10355702 A JP 10355702A JP 35570298 A JP35570298 A JP 35570298A JP 2000180085 A JP2000180085 A JP 2000180085A
Authority
JP
Japan
Prior art keywords
spiral member
spiral
fluid
grooves
notch groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10355702A
Other languages
Japanese (ja)
Inventor
Kenji Yagisawa
研二 八木澤
Hiroyuki Yoshida
宏行 吉田
Tatsuhisa Ozawa
達央 小澤
Shigeki Kimura
茂樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Radiator Mfg Co Ltd
Marelli Corp
Original Assignee
Tokyo Radiator Mfg Co Ltd
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Radiator Mfg Co Ltd, Calsonic Kansei Corp filed Critical Tokyo Radiator Mfg Co Ltd
Priority to JP10355702A priority Critical patent/JP2000180085A/en
Publication of JP2000180085A publication Critical patent/JP2000180085A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Abstract

PROBLEM TO BE SOLVED: To enhance heat exchanging efficiency significantly by inserting a spiral member into a tubular member, making a plurality of grooves in the outer circumference of the spiral member at an interval and setting the depth of the groove equal to a specified multiple of the diameter at the spiral member or less. SOLUTION: A spiral member is inserted into a tubular member. The spiral member is formed by twisting a long planar member 25 of stainless steel. A plurality of grooves 27 are made in the outer circumference of the planar member 25 at an interval of L. The cut 27 has square shape and the depth X thereof is equal to 0.1 times of the diameter D of the planar member 25 or less. Total area of all grooves 27 is set in the range of 0.5-4% of the area S of the planar member 25. When the spiral member is inserted, current velocity of fluid, e.g. EGR gas, is increased and the diameter of the fluid is decreased. Furthermore, fluid flow is disturbed in the vicinity of the inner surface of the pipe member by means of the grooves 27 thus enhancing the thermal conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気系からEGR
管路を介して吸気マニホールドに再循環されるEGRガ
スを冷却するためのEGRガス冷却装置等に使用される
熱交換器用チューブに関する。
[0001] The present invention relates to an EGR system for an exhaust system.
The present invention relates to a heat exchanger tube used for an EGR gas cooling device for cooling EGR gas recirculated to an intake manifold via a pipeline.

【0002】[0002]

【従来の技術】従来、エンジンでは、排気ガス中におけ
る窒素酸化物(NOx)を低減させるために、排気ガス
の一部を排気系から取り出し、混合気に加えるEGR
(Exhaust Gas Recirculation:排気再循環)が行われ
ている。このようなEGRを行うためのEGR装置は、
排気系からの排気ガスの一部をEGRガスとして燃焼室
に吸入される混合気に再循環させるように構成されてお
り、例えば、図4に示すように、排気マニホールド(ま
たは排気管)1と吸気マニホールド2との間を接続する
EGR通路3と、このEGR通路3に設けられたEGR
弁4とを備えている。
2. Description of the Related Art Conventionally, in an engine, in order to reduce nitrogen oxides (NOx) in the exhaust gas, a part of the exhaust gas is taken out of an exhaust system and added to an air-fuel mixture.
(Exhaust Gas Recirculation). An EGR device for performing such EGR includes:
A part of the exhaust gas from the exhaust system is recirculated as an EGR gas to the air-fuel mixture sucked into the combustion chamber. For example, as shown in FIG. 4, an exhaust manifold (or exhaust pipe) 1 An EGR passage 3 connecting the intake manifold 2 and an EGR passage provided in the EGR passage 3
And a valve 4.

【0003】そして、EGR弁4の開度をエンジンの運
転状態に応じて適宜に制御することにより、吸入混合気
に対するEGRガスの割合が調整される。このようなE
GR装置では、EGRガスが混合気と共に燃焼室に取り
込まれるため、EGRガスの温度を適度な温度に維持す
る必要がある。
[0003] The ratio of the EGR gas to the intake air-fuel mixture is adjusted by appropriately controlling the opening of the EGR valve 4 according to the operating state of the engine. Such an E
In the GR device, since the EGR gas is taken into the combustion chamber together with the air-fuel mixture, it is necessary to maintain the temperature of the EGR gas at an appropriate temperature.

【0004】すなわち、EGRガスは、本来高温である
が、このEGRガスの温度が高すぎると、混合気が加熱
されて熱膨張することにより空気の充填効率が悪くな
り、混合気の燃焼率が悪化してエンジンの出力低下を招
く虞がある。一方、EGRガスの温度が低すぎると、E
GRガス中のタール等の付着物質の粘度が増加して、付
着物質がEGR通路,EGR弁等に付着し易くなり、装
置の信頼性を低下させる虞がある。
[0004] That is, EGR gas is inherently high in temperature. If the temperature of this EGR gas is too high, the air-fuel mixture is heated and thermally expanded, thereby lowering the air filling efficiency and reducing the combustion rate of the air-fuel mixture. There is a possibility that the output will deteriorate and the output of the engine will decrease. On the other hand, if the temperature of the EGR gas is too low, E
The viscosity of the adhering substance such as tar in the GR gas increases, so that the adhering substance easily adheres to the EGR passage, the EGR valve, and the like, which may reduce the reliability of the apparatus.

【0005】従来、EGRガスを冷却するEGRガス冷
却装置として、例えば、特開平9−89491号公報等
に開示されるものが知られている。図5は、この種のE
GRガス冷却装置を示すもので、この冷却装置は、排気
マニホールドとEGR弁とを接続する管路に配置されて
いる。この冷却装置は、外筒5の軸長方向に、多数のチ
ューブ6を配置して構成されており、図6に示すよう
に、チューブ6の両端が端板7に支持されている。
Conventionally, as an EGR gas cooling device for cooling EGR gas, for example, a device disclosed in Japanese Patent Application Laid-Open No. 9-89491 is known. FIG. 5 shows this type of E
1 shows a GR gas cooling device, which is disposed in a pipeline connecting an exhaust manifold and an EGR valve. This cooling device is configured by arranging a number of tubes 6 in the axial direction of the outer cylinder 5, and both ends of the tubes 6 are supported by end plates 7 as shown in FIG. 6.

【0006】外筒5の外周には、冷却水の入口パイプ8
および出口パイプ9が開口されている。また、外筒5の
上端および下端には、フランジ部10,11が形成され
ている。上端のフランジ部10には、排気マニホールド
からの配管12が取付フランジ13を介して連結され、
下端のフランジ部11には、EGR弁への配管14が取
付フランジ15を介して連結されている。
At the outer periphery of the outer cylinder 5, an inlet pipe 8 for cooling water is provided.
And an outlet pipe 9 is opened. Further, flange portions 10 and 11 are formed at the upper end and the lower end of the outer cylinder 5. A pipe 12 from an exhaust manifold is connected to the upper flange 10 via a mounting flange 13.
A pipe 14 to the EGR valve is connected to the lower flange portion 11 via a mounting flange 15.

【0007】この冷却装置では、排気マニホールド側の
配管12からEGRガスが外筒5内に導入され、外筒5
内のチューブ6の間を流れる冷却水により冷却された
後、EGR弁側の配管14に導出される。
[0007] In this cooling device, EGR gas is introduced into the outer cylinder 5 from the pipe 12 on the exhaust manifold side.
After being cooled by the cooling water flowing between the tubes 6 inside, it is led out to the pipe 14 on the EGR valve side.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のEGRガス冷却装置では、チューブ6に単な
る円筒状の部材を使用しているため、チューブ6内を流
れるEGRガスと、このチューブ6の外側を流れる冷却
水との熱交換効率が比較的低く、従って、EGRガスを
所定の温度に冷却するためには、チューブ6の長さを長
く、あるいは、チューブ6の本数を増大する必要があ
り、装置が大きくなるという問題があった。
However, in such a conventional EGR gas cooling apparatus, since a simple cylindrical member is used for the tube 6, the EGR gas flowing through the tube 6 and the EGR gas flowing through the tube 6 are hardened. The heat exchange efficiency with the cooling water flowing outside is relatively low. Therefore, in order to cool the EGR gas to a predetermined temperature, it is necessary to lengthen the tube 6 or increase the number of tubes 6. However, there is a problem that the device becomes large.

【0009】本発明は、かかる従来の問題を解決するた
めになされたもので、従来より大幅に熱交換効率を向上
することができる熱交換器用チューブを提供することを
目的とする。
[0009] The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a tube for a heat exchanger capable of greatly improving heat exchange efficiency as compared with the conventional one.

【0010】[0010]

【課題を解決するための手段】請求項1の熱交換器用チ
ューブは、円筒状の管部材の内周に、螺旋部材を嵌挿
し、この螺旋部材の外周に間隔を置いて複数の切欠溝を
形成するとともに、前記切欠溝の深さを、前記螺旋部材
の直径の0.1倍以下の値にしてなることを特徴とす
る。
According to a first aspect of the present invention, there is provided a heat exchanger tube in which a spiral member is inserted into an inner periphery of a cylindrical tube member, and a plurality of cutout grooves are formed on the outer periphery of the spiral member at intervals. The depth of the notch groove is set to a value of 0.1 times or less of the diameter of the spiral member.

【0011】請求項2の熱交換器用チューブは、請求項
1記載の熱交換器用チューブにおいて、前記複数の切欠
溝の面積を合計した総切欠溝面積の値を、前記螺旋部材
の面積の0.5%以上で4%以下の値にしてなることを
特徴とする。
According to a second aspect of the present invention, in the heat exchanger tube according to the first aspect, a value of a total notch groove area obtained by summing up the areas of the plurality of notch grooves is set to 0.1% of an area of the spiral member. It is characterized in that it is set to a value of 5% or more and 4% or less.

【0012】(作用)請求項1の熱交換器用チューブで
は、円筒状の管部材の内周に、螺旋部材を嵌挿したの
で、EGRガス等の流体の流れが加速され、かつ、流体
直径が減少し、管部材への熱伝達率が向上される。
(Function) In the heat exchanger tube of the first aspect, since the spiral member is inserted into the inner periphery of the cylindrical tube member, the flow of the fluid such as EGR gas is accelerated, and the diameter of the fluid is reduced. The heat transfer coefficient to the pipe member is improved.

【0013】また、螺旋部材の外周に間隔を置いて複数
の切欠溝を形成したので、切欠溝により管部材の内面近
傍の流体の流れが乱され、管部材への熱伝達率が向上さ
れる。そして、切欠溝の深さを、螺旋部材の直径の0.
1倍以下の値にしたので、切欠溝を流れる流体の主流へ
の影響は殆どなく、流体の圧力損失は僅かしか生じな
い。
Further, since a plurality of notches are formed at intervals on the outer periphery of the spiral member, the flow of the fluid near the inner surface of the tube member is disturbed by the notches, and the heat transfer coefficient to the tube member is improved. . Then, the depth of the notch groove is set to 0.
Since the value is not more than one time, there is almost no influence on the main flow of the fluid flowing through the notch groove, and only a small pressure loss of the fluid occurs.

【0014】すなわち、切欠溝の深さが、螺旋部材の直
径の0.1倍を越えると、切欠溝を通過して比較的多量
の流体が流れるようになるため、螺旋部材に沿う流体の
旋回方向速度が低下し、管部材への熱伝達率が低下す
る。請求項2の熱交換器用チューブでは、複数の切欠溝
の面積を合計した総切欠溝面積の値が、螺旋部材の面積
の0.5%以上で4%以下の値にされる。
That is, when the depth of the notch groove exceeds 0.1 times the diameter of the spiral member, a relatively large amount of fluid flows through the notch groove, so that the fluid swirls along the spiral member. The directional speed decreases, and the heat transfer coefficient to the pipe member decreases. In the heat exchanger tube according to the second aspect, the value of the total notch groove area obtained by adding the areas of the plurality of notch grooves is set to a value of 0.5% or more and 4% or less of the area of the spiral member.

【0015】すなわち、総切欠溝面積の値が、螺旋部材
の面積の4%を越えると、切欠溝を流れる流体の主流へ
の影響が顕著になり、螺旋部材に沿う流体の旋回方向速
度が低下し、管部材への熱伝達率が低下する。一方、総
切欠溝面積の値が、螺旋部材の面積の0.5%未満の場
合には、切欠溝により管部材の内面近傍の流体の流れを
充分に乱すことが困難になり、管部材への熱伝達率が低
下する。
That is, when the value of the total notch groove area exceeds 4% of the area of the spiral member, the influence of the fluid flowing through the notch groove on the main flow becomes remarkable, and the rotational speed of the fluid along the spiral member decreases. As a result, the heat transfer coefficient to the pipe member decreases. On the other hand, when the value of the total notch groove area is less than 0.5% of the area of the spiral member, it becomes difficult to sufficiently disturb the flow of the fluid near the inner surface of the pipe member due to the notch groove, and The heat transfer coefficient is reduced.

【0016】[0016]

【発明の実施の形態】以下、本発明の詳細を図面に示す
実施形態について説明する。図1は、図2の螺旋部材を
展開した状態を示しており、図2は、本発明の熱交換器
用チューブの一実施形態を示している。図2において符
号21は、EGRガスからなる流体が流通される管部材
を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a state in which the spiral member of FIG. 2 is expanded, and FIG. 2 shows an embodiment of a heat exchanger tube of the present invention. In FIG. 2, reference numeral 21 denotes a pipe member through which a fluid composed of EGR gas flows.

【0017】この管部材21は、円筒状をしておりステ
ンレス鋼により形成されている。この管部材21の内面
には、螺旋部材23が嵌挿されている。螺旋部材23
は、ステンレス鋼からなり、管部材21の内面にニッケ
ルろう付けされている。この実施形態では、螺旋部材2
3は、図1に示すような長尺状の板材25を捻り加工す
ることにより形成されている。
The tube member 21 has a cylindrical shape and is made of stainless steel. A spiral member 23 is fitted on the inner surface of the tube member 21. Spiral member 23
Is made of stainless steel and is nickel brazed to the inner surface of the pipe member 21. In this embodiment, the spiral member 2
3 is formed by twisting a long plate material 25 as shown in FIG.

【0018】捻り加工は、例えば、板材25の両端を一
対の治具により把持し、一方の治具を回転することによ
り行われる。そして、この実施形態では、螺旋部材23
を形成するための板材25の外周には、間隔Lを置いて
複数の切欠溝27が形成されている。この実施形態で
は、切欠溝27の間隔Lは、螺旋部材23の1ピッチP
内に3個の切欠溝27が位置するような寸法に形成され
ている。
The twisting is performed, for example, by holding both ends of the plate member 25 with a pair of jigs and rotating one of the jigs. And in this embodiment, the spiral member 23
A plurality of cutout grooves 27 are formed at intervals L on the outer periphery of the plate member 25 for forming the notch. In this embodiment, the interval L between the notch grooves 27 is one pitch P of the spiral member 23.
It is formed in such a size that three notch grooves 27 are located therein.

【0019】この切欠溝27は、四角形状をしており、
各切欠溝27の深さXが、螺旋部材23の直径Dの0.
1倍以下の値、例えば、0.075倍にされている。そ
して、板材25に形成される全ての切欠溝27の面積を
合計した総切欠溝面積の値が、板材25、すなわち螺旋
部材23の面積Sの0.5%以上で4%以下の値(以下
この値を総切欠開口率という)にされている。
The notch 27 has a square shape.
The depth X of each notch 27 is equal to 0.
The value is set to a value of 1 or less, for example, 0.075 times. Then, the value of the total notch groove area obtained by summing the areas of all the notch grooves 27 formed in the plate member 25 is 0.5% or more and 4% or less of the area S of the plate member 25, that is, the spiral member 23 (hereinafter, not more than 4%). This value is referred to as a total notch opening ratio).

【0020】なお、この総切欠開口率は、後述する実験
結果から明らかなように、例えば、1.5%から2.0
%の範囲の値にするのが最も望ましい。上述した熱交換
器用チューブは、図1に示した板材25を捻り加工する
ことにより螺旋部材23を形成し、この螺旋部材23を
管部材21内に嵌挿し、熱処理を行い螺旋部材23の外
周を管部材21の内面にニッケルろう付けして形成され
る。
The total notch opening ratio is, for example, from 1.5% to 2.0%, as apparent from the experimental results described later.
Most preferably, it is in the range of%. The above-mentioned heat exchanger tube forms the spiral member 23 by twisting the plate member 25 shown in FIG. 1, inserts the spiral member 23 into the tube member 21, heat-treats the outer periphery of the spiral member 23. The inner surface of the tube member 21 is formed by nickel brazing.

【0021】以上のように構成された熱交換器用チュー
ブでは、円筒状の管部材21の内周に、螺旋部材23を
嵌挿し、この螺旋部材23の外周に間隔Lを置いて複数
の切欠溝27を形成し、切欠溝27の深さXを、螺旋部
材23の直径Dの0.1倍以下の値にしたので、従来よ
り大幅に熱交換効率を向上することができる。すなわ
ち、上述した熱交換器用チューブでは、円筒状の管部材
21の内周に、螺旋部材23を嵌挿したので、EGRガ
ス等の流体の流れが加速され、かつ、流体直径が減少
し、管部材21への熱伝達率が向上する。
In the heat exchanger tube constructed as described above, a spiral member 23 is inserted into the inner periphery of a cylindrical tube member 21 and a plurality of notched grooves are provided on the outer periphery of the spiral member 23 at intervals L. 27, and the depth X of the cutout groove 27 is set to a value not more than 0.1 times the diameter D of the spiral member 23, so that the heat exchange efficiency can be greatly improved as compared with the conventional case. That is, in the above-described heat exchanger tube, since the spiral member 23 is inserted into the inner periphery of the cylindrical tube member 21, the flow of the fluid such as EGR gas is accelerated, and the fluid diameter is reduced. The heat transfer coefficient to the member 21 is improved.

【0022】また、螺旋部材23の外周に間隔Lを置い
て複数の切欠溝27を形成したので、切欠溝27により
管部材21の内面近傍の流体の流れが乱され、管部材2
1への熱伝達率が向上する。そして、切欠溝27の深さ
Xを、螺旋部材23の直径Dの0.1倍以下の値にした
ので、切欠溝27を流れる流体の主流への影響は殆どな
く、流体の圧力損失は僅かしか生じない。
Further, since a plurality of notches 27 are formed on the outer periphery of the spiral member 23 at intervals L, the flow of fluid near the inner surface of the pipe member 21 is disturbed by the notches 27, and
1 is improved. Since the depth X of the notch groove 27 is set to a value not more than 0.1 times the diameter D of the spiral member 23, there is almost no effect on the main flow of the fluid flowing through the notch groove 27, and the pressure loss of the fluid is slight. Only occurs.

【0023】すなわち、切欠溝27の深さXが、螺旋部
材23の直径Dの0.1倍を越えると、切欠溝27を通
過して比較的多量の流体が流れるようになるため、螺旋
部材23に沿う流体の旋回方向速度が低下し、管部材2
1への熱伝達率が低下するが、本発明では、切欠溝27
の深さXを、螺旋部材23の直径Dの0.1倍以下の値
にしたので、切欠溝27を流れる流体の主流への影響は
殆どなく、流体の圧力損失、および、この圧力損失によ
る旋回方向速度の低下を僅かなものにすることができ
る。
That is, when the depth X of the notch groove 27 exceeds 0.1 times the diameter D of the spiral member 23, a relatively large amount of fluid flows through the notch groove 27, so that the spiral member 23, the swirling speed of the fluid along the pipe member 23 is reduced.
1, the heat transfer coefficient to the notch groove 27 is reduced in the present invention.
Is set to a value not more than 0.1 times the diameter D of the spiral member 23, so that there is almost no influence on the main flow of the fluid flowing through the cutout groove 27, and the pressure loss of the fluid and the pressure loss The decrease in the turning speed can be made small.

【0024】そして、上述した熱交換器用チューブで
は、複数の切欠溝27の面積を合計した総切欠溝面積の
値を、螺旋部材23の面積Sの0.5%以上で4%以下
の値にしたので、切欠溝27を流れる流体の主流への影
響を殆どなくした状態で、切欠溝27により管部材21
の内面近傍の流体の流れを充分に乱すことができる。す
なわち、総切欠溝面積の値が、螺旋部材23の面積Sの
4%を越えると、切欠溝27を流れる流体の主流への影
響が顕著になり、螺旋部材23に沿う流体の旋回方向速
度が低下し、管部材21への熱伝達率が低下し、一方、
総切欠溝面積の値が、螺旋部材23の面積Sの0.5%
未満の場合には、切欠溝27により管部材21の内面近
傍の流体の流れを充分に乱すことが困難になり、管部材
21への熱伝達率が低下するが、この実施形態では、総
切欠溝面積の値を、螺旋部材23の面積Sの0.5%以
上で4%以下の値にしたので、切欠溝27を流れる流体
の主流への影響を殆どなくした状態で、切欠溝27によ
り管部材21の内面近傍の流体の流れを充分に乱すこと
ができる。
In the above-described heat exchanger tube, the total notch groove area value obtained by summing the areas of the plurality of notch grooves 27 is set to a value of 0.5% or more and 4% or less of the area S of the spiral member 23. Therefore, the pipe member 21 can be removed by the notch groove 27 while the influence of the fluid flowing through the notch groove 27 on the main flow is almost eliminated.
Can sufficiently disturb the flow of fluid near the inner surface. That is, when the value of the total notch groove area exceeds 4% of the area S of the spiral member 23, the influence of the fluid flowing through the notch groove 27 on the main flow becomes remarkable, and the rotational speed of the fluid along the spiral member 23 decreases. And the heat transfer coefficient to the pipe member 21 decreases.
The value of the total notch groove area is 0.5% of the area S of the spiral member 23.
If it is less than 0.0, it is difficult for the notch groove 27 to sufficiently disturb the flow of the fluid near the inner surface of the pipe member 21 and the heat transfer coefficient to the pipe member 21 is reduced. Since the value of the groove area is set to a value of 0.5% or more and 4% or less of the area S of the spiral member 23, the effect of the notch groove 27 with the influence of the fluid flowing through the notch groove 27 on the main flow is almost eliminated. The flow of the fluid near the inner surface of the pipe member 21 can be sufficiently disturbed.

【0025】図3は、実験により得られた上述した熱交
換器用チューブの総切欠開口率と熱伝達向上率との関係
を示している。なお、この図では、上述した螺旋部材2
3に切欠溝27を形成していない熱交換器用チューブの
熱伝達率が1とされ、この熱交換器用チューブを基準と
して、例えば、熱伝達率が2割向上した場合には、熱伝
達向上率が1.2とされ、熱伝達率が2割低減した場合
には、熱伝達向上率が0.8とされている。
FIG. 3 shows the relationship between the total notch opening ratio and the heat transfer improvement ratio of the above-described heat exchanger tubes obtained by experiments. In this figure, the above-mentioned spiral member 2
The heat transfer coefficient of the heat exchanger tube in which the notch groove 27 is not formed in the heat exchanger tube 3 is set to 1, for example, when the heat transfer coefficient is improved by 20% with respect to the heat exchanger tube, Is set to 1.2, and when the heat transfer coefficient is reduced by 20%, the heat transfer improvement rate is set to 0.8.

【0026】この図において、曲線Aは、切欠溝27の
深さXを螺旋部材23の直径Dの0.075倍にし、切
欠溝27の幅Wを変更することにより総切欠開口率を変
更した場合を、曲線Bは、切欠溝27の深さXを螺旋部
材23の直径Dの0.1倍にし、切欠溝27の幅Wを変
更することにより総切欠開口率を変更した場合を示して
いる。
In this figure, the curve A is obtained by changing the depth X of the notch groove 27 to 0.075 times the diameter D of the spiral member 23 and changing the width W of the notch groove 27 to change the total notch opening ratio. The curve B shows the case where the depth X of the notch groove 27 is set to 0.1 times the diameter D of the spiral member 23 and the width W of the notch groove 27 is changed to change the total notch opening ratio. I have.

【0027】そして、曲線Cは、切欠溝27の深さXを
螺旋部材23の直径Dの0.15倍にし、切欠溝27の
幅Wを変更することにより総切欠開口率を変更した場合
を示している。この図から、曲線AおよびBでは、特
に、総切欠開口率が1.5%から2.0%の範囲におい
て良好になっていることが分かる。
The curve C shows the case where the depth X of the notch groove 27 is 0.15 times the diameter D of the spiral member 23 and the width W of the notch groove 27 is changed to change the total notch opening ratio. Is shown. From this figure, it can be seen that curves A and B are particularly good when the total notch opening ratio is in the range of 1.5% to 2.0%.

【0028】また、曲線Cでは、熱伝達向上率が切欠溝
を形成しない場合より劣っているのが分かる。なお、上
述した実施形態では、EGRガス冷却装置に使用される
熱交換器用チューブに本発明を適用した例について説明
したが、本発明はかかる実施形態に限定されるものでは
なく、空気,ガス等の流体が流通される熱交換器用チュ
ーブに広く適用することができる。
Further, it can be seen from the curve C that the rate of improvement in heat transfer is inferior to the case where the notched groove is not formed. In the above-described embodiment, an example in which the present invention is applied to a tube for a heat exchanger used in an EGR gas cooling device has been described. However, the present invention is not limited to such an embodiment. The present invention can be widely applied to tubes for heat exchangers through which the above fluid flows.

【0029】[0029]

【発明の効果】以上述べたように、請求項1の熱交換器
用チューブでは、円筒状の管部材の内周に、螺旋部材を
嵌挿し、この螺旋部材の外周に間隔を置いて複数の切欠
溝を形成し、切欠溝の深さを、螺旋部材の直径の0.1
倍以下の値にしたので、従来より大幅に熱交換効率を向
上することができる。
As described above, in the heat exchanger tube according to the first aspect, a spiral member is inserted into the inner periphery of the cylindrical tube member, and a plurality of notches are provided at intervals on the outer periphery of the spiral member. A groove is formed, and the depth of the notch groove is set to 0.1 of the diameter of the spiral member.
Since the value is twice or less, the heat exchange efficiency can be greatly improved as compared with the conventional case.

【0030】請求項2の熱交換器用チューブでは、複数
の切欠溝の面積を合計した総切欠溝面積の値を、螺旋部
材の面積の0.5%以上で4%以下の値にしたので、切
欠溝を流れる流体の主流への影響を殆どなくした状態
で、切欠溝により管部材の内面近傍の流体の流れを充分
に乱すことができる。
In the heat exchanger tube of the second aspect, the value of the total notch groove area obtained by summing the areas of the plurality of notch grooves is set to a value of 0.5% or more and 4% or less of the area of the spiral member. The flow of the fluid near the inner surface of the pipe member can be sufficiently disturbed by the notch groove while the influence of the fluid flowing through the notch groove on the main flow is almost eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図2の螺旋部材を展開して示す説明図である。FIG. 1 is an explanatory view showing a spiral member of FIG. 2 in a developed state.

【図2】本発明の熱交換器用チューブの一実施形態を示
す断面図である。
FIG. 2 is a cross-sectional view showing one embodiment of the heat exchanger tube of the present invention.

【図3】図2の熱交換器用チューブの総切欠開口率と熱
伝達向上率との関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a total notch opening ratio of the heat exchanger tube of FIG. 2 and a heat transfer improvement ratio.

【図4】従来のEGR装置を示す説明図である。FIG. 4 is an explanatory view showing a conventional EGR device.

【図5】従来のEGRガス冷却装置を示す側面図であ
る。
FIG. 5 is a side view showing a conventional EGR gas cooling device.

【図6】図5のEGRガス冷却装置の要部の詳細を示す
断面図である。
FIG. 6 is a sectional view showing details of a main part of the EGR gas cooling device of FIG. 5;

【符号の説明】[Explanation of symbols]

21 管部材 23 螺旋部材 27 切欠溝 21 pipe member 23 spiral member 27 notch groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 宏行 東京都中野区南台5丁目24番15号 カルソ ニック株式会社内 (72)発明者 小澤 達央 東京都中野区南台5丁目24番15号 カルソ ニック株式会社内 (72)発明者 木村 茂樹 神奈川県川崎市川崎区藤崎3丁目5番1号 東京ラヂエーター製造株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Yoshida 5-24-15 Minamidai, Nakano-ku, Tokyo Calsonic Corporation (72) Inventor Tatsuo Ozawa 5-24-15 Minamidai, Nakano-ku, Tokyo Calso Nick Co., Ltd. (72) Inventor Shigeki Kimura 3-5-1 Fujisaki, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Tokyo Radiator Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の管部材(21)の内周に、螺旋
部材(23)を嵌挿し、この螺旋部材(23)の外周に
間隔を置いて複数の切欠溝(27)を形成するととも
に、前記切欠溝(27)の深さ(X)を、前記螺旋部材
(23)の直径(D)の0.1倍以下の値にしてなるこ
とを特徴とする熱交換器用チューブ。
1. A spiral member (23) is inserted into the inner periphery of a cylindrical tube member (21), and a plurality of cutout grooves (27) are formed at intervals on the outer periphery of the spiral member (23). And a depth (X) of the cutout groove (27) is set to a value not more than 0.1 times a diameter (D) of the spiral member (23).
【請求項2】 請求項1記載の熱交換器用チューブにお
いて、 前記複数の切欠溝(27)の面積を合計した総切欠溝面
積の値を、前記螺旋部材(23)の面積(S)の0.5
%以上で4%以下の値にしてなることを特徴とする熱交
換器用チューブ。
2. The tube for a heat exchanger according to claim 1, wherein a value of a total notch groove area obtained by summing an area of the plurality of notch grooves (27) is equal to 0 of an area (S) of the spiral member (23). .5
A heat exchanger tube characterized by having a value of not less than 4% and not more than 4%.
JP10355702A 1998-12-15 1998-12-15 Tube for heat exchanger Pending JP2000180085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10355702A JP2000180085A (en) 1998-12-15 1998-12-15 Tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10355702A JP2000180085A (en) 1998-12-15 1998-12-15 Tube for heat exchanger

Publications (1)

Publication Number Publication Date
JP2000180085A true JP2000180085A (en) 2000-06-30

Family

ID=18445335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10355702A Pending JP2000180085A (en) 1998-12-15 1998-12-15 Tube for heat exchanger

Country Status (1)

Country Link
JP (1) JP2000180085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379190A4 (en) * 2015-11-20 2019-09-18 Hideyuki Haruyama Heat exchange mixing device and solution conveying/cooling device
CN111457774A (en) * 2020-04-01 2020-07-28 常州大学 Enhanced heat transfer tube with opening and spiral insertion sheet
KR102266226B1 (en) * 2019-12-23 2021-06-17 (주)대주기계 Performance improvement of a tubular heat exchanger with rectangular cut twist thin plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379190A4 (en) * 2015-11-20 2019-09-18 Hideyuki Haruyama Heat exchange mixing device and solution conveying/cooling device
KR102266226B1 (en) * 2019-12-23 2021-06-17 (주)대주기계 Performance improvement of a tubular heat exchanger with rectangular cut twist thin plate
CN111457774A (en) * 2020-04-01 2020-07-28 常州大学 Enhanced heat transfer tube with opening and spiral insertion sheet

Similar Documents

Publication Publication Date Title
US8069905B2 (en) EGR gas cooling device
JP2001027157A (en) Strut for egr cooler
US20150292812A1 (en) Heat exchanger
JP2004191044A (en) Heat exchanger assembly with wedge-shaped refrigerant pipe generating balanced refrigerant flow
JP4247942B2 (en) EGR gas cooling device
JPH1113551A (en) Egr cooler
JP4031393B2 (en) EGR cooler
JPH11287571A (en) Egr cooler
JP2000180085A (en) Tube for heat exchanger
JP2000179410A (en) Heat exchange tube for egr
JP2002180915A (en) Egr cooler
JP2000073878A (en) Egr gas cooling device
JPH11303688A (en) Egr cooler
JP2001248980A (en) Multitubular heat exchanger
JP2001272193A (en) Core section of egr gas cooler and method of manufacturing the same
JP3982650B2 (en) Multi-tube EGR gas cooling system
JP2000265908A (en) Egr gas cooling device
JP2004077024A (en) Exhaust heat exchanger device
JPH1136995A (en) Exhaust gas cooling device
JPS58213192A (en) Finned heat exchanger
JP2002295992A (en) Heat exchanger
JPS63197887A (en) Heat exchanger
JPH11287588A (en) Egr cooler
JPS6222994A (en) Multi-tubular heat exchanger
JPH0926281A (en) Heat exchanger