JP2000179433A - Spark ignition engine of fuel cylinder injection type - Google Patents

Spark ignition engine of fuel cylinder injection type

Info

Publication number
JP2000179433A
JP2000179433A JP10353440A JP35344098A JP2000179433A JP 2000179433 A JP2000179433 A JP 2000179433A JP 10353440 A JP10353440 A JP 10353440A JP 35344098 A JP35344098 A JP 35344098A JP 2000179433 A JP2000179433 A JP 2000179433A
Authority
JP
Japan
Prior art keywords
injection
period
fuel
pressurized air
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10353440A
Other languages
Japanese (ja)
Other versions
JP3852230B2 (en
Inventor
Takeshi Taniyama
剛 谷山
Yukihiro Yoshizawa
幸大 吉沢
Takayuki Arai
孝之 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP35344098A priority Critical patent/JP3852230B2/en
Publication of JP2000179433A publication Critical patent/JP2000179433A/en
Application granted granted Critical
Publication of JP3852230B2 publication Critical patent/JP3852230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure an optimal intake air fluidity in a cylinder for every driving condition and to improve various performances by employing two-fluid type fuel injection valve independently injecting the fuel and a pressure air and providing a means variably controlling the injection timing and period of the pressure air in a stratified combustion drive and homogeneous combustion drive. SOLUTION: A two-fluid type fuel injection valve independently injection fuel and a pressure air is used for a fuel injection valve 10 and controlled by an engine control unit 11 (ECU). The ECU 11 controls an ignition plug 9 and a fuel injection valve 10 based on air volume signal detected by an air flowmeter in a intake passage 12, and load signals detected by a throttle sensor of a throttle valve 14. The ECU 11 has a pressure air injection period variable means 11A and a pressure air injection timing variable means 11B arranged therein in a form of software. This constitution can changed the injection timing and period of the pressure air according to respective driving conditions of a stratified combustion drive and a homogeneous combustion drive.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は筒内噴射式火花点火
機関に関する。
The present invention relates to a direct injection type spark ignition engine.

【0002】[0002]

【従来の技術】燃焼室に直接燃料を噴射する燃料噴射弁
と、点火プラグとを備えて、機関の低負荷域で圧縮行程
中に燃料を噴射させて成層燃焼を行わせる一方、機関の
高負荷域では吸気行程中に燃料を噴射させて均質燃焼を
行わせるようにした筒内噴射式火花点火機関では、前述
の成層燃焼を成立させるためには、吸入行程で燃焼室内
に吸入空気に強力な筒内流動を付与することが不可欠と
なる。
2. Description of the Related Art A fuel injection valve for directly injecting fuel into a combustion chamber, and a spark plug are provided to inject stratified combustion by injecting fuel during a compression stroke in a low load range of the engine while maintaining high engine speed. In a direct injection type spark ignition engine in which fuel is injected during the intake stroke to perform homogeneous combustion in the load range, in order to achieve the above-described stratified combustion, the intake air is strongly injected into the combustion chamber during the intake stroke. It is indispensable to provide an in-cylinder flow.

【0003】そこで、一般には吸気ポートをヘリカルポ
ート構造としたり、あるいは吸気ポートに旋回流強化手
段を設けて、吸気行程で吸気に強い旋回流を付与するよ
うにしている。
Therefore, generally, the intake port has a helical port structure, or a swirl flow enhancing means is provided at the intake port so that a strong swirl flow is given to the intake air during the intake stroke.

【0004】[0004]

【発明が解決しようとする課題】吸気行程で吸気に強い
旋回流を付与したとしても、圧縮行程では圧縮作用で筒
内流動が減衰されてしまうことは否めない。
Even if a strong swirling flow is given to the intake air in the intake stroke, it is undeniable that the in-cylinder flow is attenuated by the compression action in the compression stroke.

【0005】一方、特開平5−180123号公報に
は、燃料と加圧エアとを供給する2流体式の燃料噴射弁
を用いて、機関の特定運転域では加圧エアを増量するよ
うにした燃料供給システムが開示されており、そこで、
この2流体式の燃料噴射弁を用いて加圧エアにより筒内
流動を強化させることが考えられるが、単純に加圧エア
を筒内流動強化手段に用いても、加圧エアによる燃料の
微粒化,気化促進作用と燃料の拡散作用とで却って成層
燃焼が不安定になってしまう可能性がある。
On the other hand, Japanese Patent Application Laid-Open No. 5-180123 discloses a two-fluid fuel injection valve for supplying fuel and pressurized air, and increasing the amount of pressurized air in a specific operating range of the engine. A fuel supply system is disclosed, wherein:
It is conceivable that the two-fluid fuel injection valve is used to enhance the in-cylinder flow by pressurized air. There is a possibility that stratified combustion may become unstable due to the gasification and vaporization promotion action and the fuel diffusion action.

【0006】そこで、本発明は燃料噴射弁として前述の
2流体式の燃料噴射弁を採用し、成層燃焼運転および均
質燃焼運転の何れの運転時にあっても、運転条件に合わ
せて加圧エアの供給を細かく制御できて各運転条件に最
適な筒内流動を得ることができて、燃焼の安定化と機関
出力の向上および排気エミッションの向上とを実現でき
る筒内噴射式火花点火機関を提供するものである。
Accordingly, the present invention employs the above-described two-fluid type fuel injection valve as a fuel injection valve, and in any of the stratified combustion operation and the homogeneous combustion operation, the compressed air is supplied in accordance with the operation conditions. Provided is an in-cylinder injection-type spark ignition engine capable of finely controlling the supply and obtaining an optimal in-cylinder flow for each operation condition, thereby achieving stable combustion, improved engine output, and improved exhaust emissions. Things.

【0007】[0007]

【課題を解決するための手段】請求項1の発明にあって
は、燃焼室に直接燃料を噴射する燃料噴射弁と、点火プ
ラグとを備え、低負荷域で圧縮行程中に燃料を噴射させ
て成層燃焼を行わせると共に、高負荷域で吸気行程中に
燃料を噴射させて均質燃焼を行わせるようにした筒内噴
射式火花点火機関において、前記燃料噴射弁として燃料
と加圧エアとを個別に噴射可能な2流体式の燃料噴射弁
を用いると共に、成層燃焼運転時および均質燃焼運転時
に、機関の運転条件に応じて該燃料噴射弁の加圧エアの
噴射時期および噴射期間を可変制御する噴射時期・期間
可変手段を設けたことを特徴としている。
According to a first aspect of the present invention, there is provided a fuel injection valve for directly injecting fuel into a combustion chamber, and an ignition plug, and the fuel is injected during a compression stroke in a low load region. In a direct injection type spark ignition engine in which fuel is injected during the intake stroke in a high load region to perform homogeneous combustion, fuel and pressurized air are used as the fuel injection valve. A two-fluid fuel injection valve that can be individually injected is used, and during stratified combustion operation and homogeneous combustion operation, the injection timing and injection period of the compressed air of the fuel injection valve are variably controlled according to the operating conditions of the engine. Injection time / period variable means is provided.

【0008】請求項2の発明にあっては、請求項1に記
載の噴射時期・期間可変手段が、成層燃焼運転時に、機
関回転数,負荷,および油水温に応じて、加圧エアの噴
射時期と噴射期間とを変化させるものであることを特徴
としている。
According to the second aspect of the present invention, the injection timing / period variable means according to the first aspect of the present invention is configured to inject the compressed air during stratified charge combustion operation according to the engine speed, the load, and the oil water temperature. It is characterized in that the timing and the injection period are changed.

【0009】請求項3の発明にあっては、請求項2に記
載の噴射時期・期間可変手段が、成層燃焼運転時に、機
関回転数が低くなるほど加圧エアの噴射期間を長くする
ものであることを特徴としている。
According to a third aspect of the present invention, the injection timing / period variable means according to the second aspect extends the injection period of the pressurized air as the engine speed decreases during the stratified charge combustion operation. It is characterized by:

【0010】請求項4の発明にあっては、請求項2,3
に記載の噴射時期・期間可変手段が、成層燃焼運転時
に、機関負荷が増大するほど加圧エアの噴射期間を長く
するものであることを特徴としている。
[0010] In the invention of claim 4, claims 2 and 3 are provided.
Is characterized in that during the stratified charge combustion operation, the injection period of the pressurized air is lengthened as the engine load increases.

【0011】請求項5の発明にあっては、請求項2〜4
に記載の噴射時期・期間可変手段が、成層燃焼運転時
に、油水温が低いほど加圧エアの噴射期間を長くするも
のであることを特徴としている。
In the invention of claim 5, claims 2 to 4 are provided.
Is characterized in that during the stratified charge combustion operation, the lower the oil water temperature, the longer the injection period of the pressurized air during the stratified charge combustion operation.

【0012】請求項6の発明にあっては、請求項1〜5
に記載の噴射時期・期間可変手段は、その加圧エア噴射
終了時期が燃料噴射終了時期よりも後に設定されている
ことを特徴している。
According to the sixth aspect of the invention, the first to fifth aspects are provided.
Is characterized in that the pressurized air injection end timing is set after the fuel injection end timing.

【0013】請求項7の発明にあっては、請求項6に記
載の噴射時期・期間可変手段は、成層燃焼運転時に、油
水温が低いほど燃料噴射終了時期から加圧エア噴射終了
時期までの期間を長くするものであることを特徴として
いる。
In the invention according to claim 7, the injection timing / period variable means according to claim 6 is characterized in that during stratified charge combustion operation, the lower the oil water temperature, the lower the oil water temperature from the end of fuel injection to the end of pressurized air injection. It is characterized by extending the period.

【0014】請求項8の発明にあっては、請求項1〜7
に記載の噴射時期・期間可変手段が、均質燃焼運転時
に、圧縮行程中には燃焼室内に加圧エアのみを噴射させ
るものであることを特徴としている。
In the invention of claim 8, claims 1 to 7
Is characterized in that only the pressurized air is injected into the combustion chamber during the compression stroke during the homogeneous combustion operation.

【0015】請求項9の発明にあっては、請求項8に記
載の噴射時期・期間可変手段が、均質燃焼運転時に、機
関回転数,負荷,および油水温に応じて、圧縮行程中の
燃焼室内への加圧エア噴射期間を変化させるものである
ことを特徴としている。
According to a ninth aspect of the present invention, the injection timing / period varying means according to the eighth aspect of the present invention provides a fuel injection control device that performs the combustion during the compression stroke according to the engine speed, the load, and the oil temperature during the homogeneous combustion operation. It is characterized in that the period of pressurized air injection into the room is changed.

【0016】請求項10の発明にあっては、請求項9に
記載の噴射時期・期間可変手段が、均質燃焼運転時に、
機関負荷が増大するほど加圧エア噴射期間を長くするも
のであることを特徴としている。
According to a tenth aspect of the present invention, the injection timing / period variable means according to the ninth aspect provides the following when the homogeneous combustion operation is performed.
It is characterized in that the pressurized air injection period is lengthened as the engine load increases.

【0017】[0017]

【発明の効果】請求項1に記載の発明によれば、燃料噴
射弁として燃料と加圧エアとを噴射可能な2流体式の燃
料噴射弁を用いて、成層燃焼運転時および均質燃焼運転
時に、それぞれ機関の運転条件に応じて該燃料噴射弁の
加圧エアの噴射時期および噴射期間を可変制御するよう
にしてあるため、成層燃焼運転時には運転条件に応じた
加圧エアの噴射時期と噴射期間の制御によって、全ての
運転条件下で最適な燃焼をもたらす筒内流動を積極的に
作り出すことができ、燃焼を安定化させて燃焼効率を向
上できると共に、燃料消費率および排気性状を改善する
ことができる。
According to the first aspect of the present invention, a two-fluid type fuel injection valve capable of injecting fuel and pressurized air is used as a fuel injection valve during a stratified combustion operation and a homogeneous combustion operation. Since the injection timing and injection period of the pressurized air of the fuel injection valve are variably controlled according to the operating conditions of the engine, respectively, during stratified combustion operation, the injection timing and injection of the compressed air according to the operating conditions are determined. By controlling the period, it is possible to positively create in-cylinder flow that produces optimal combustion under all operating conditions, stabilize combustion, improve combustion efficiency, and improve fuel consumption rate and exhaust properties. be able to.

【0018】また、均質燃焼運転時にも前記成層燃焼運
転時と同様に、全ての運転条件下で最適な燃焼をもたら
す筒内流動を積極的に作り出すことができるため、筒内
混合気の均質化がより一層促進されて機関出力の向上と
排気性状の改善とを実現することができる。
Also, in the homogeneous combustion operation, as in the stratified combustion operation, the in-cylinder flow that provides the optimum combustion under all the operating conditions can be positively created. Is further promoted, and the improvement of the engine output and the improvement of the exhaust property can be realized.

【0019】請求項2に記載の発明によれば、請求項1
の発明の効果に加えて、成層燃焼運転時に、運転条件を
表す主要なパラメータである機関回転数,負荷,および
油水温の検出信号に基づいて加圧エアの噴射時期と噴射
期間とを、運転条件に合わせて細かく適切に可変制御す
ることができて、より一層安定した成層燃焼を行わせる
ことができる。
According to the second aspect of the present invention, the first aspect is provided.
In addition to the effects of the invention, during the stratified combustion operation, the injection timing and injection period of the compressed air are controlled based on the detection signals of the engine speed, load, and oil temperature, which are the main parameters representing the operating conditions. Variable control can be finely and appropriately adjusted according to conditions, and more stable stratified combustion can be performed.

【0020】請求項3に記載の発明によれば、請求項2
の発明の効果に加えて、通常、成層燃焼運転時でも機関
回転数が低い場合には、吸気行程で生成される筒内流動
が弱く、良好な混合気形成と点火プラグ周りへの混合気
の輸送作用とが不十分となってしまうが、機関回転数が
低くなるほど加圧エアの噴射期間が長くなるように制御
されるため、機関回転数の低い運転時にあっても混合気
の成層化と輸送性に適切な強い筒内流動が得られて安定
した成層燃焼を行わせることができる。
According to the invention of claim 3, according to claim 2,
In addition to the effects of the invention, in general, when the engine speed is low even in the stratified combustion operation, the in-cylinder flow generated in the intake stroke is weak, and a good mixture is formed and the mixture around the spark plug is formed. Although the transport function becomes insufficient, the injection period of the pressurized air is controlled to be longer as the engine speed decreases, so that even when the engine speed is low, the air-fuel mixture can be stratified. Strong in-cylinder flow suitable for transportability can be obtained, and stable stratified combustion can be performed.

【0021】他方、機関回転数が高い場合には、吸気行
程で生成される筒内流動で良好な混合気形成と、点火プ
ラグ周りへの混合気の良好な輸送性とが得られるが、こ
の機関回転数が高い場合には前述とは逆に加圧エアの噴
射期間が短くされるため、混合気の成層化を阻害しない
適切な筒内流動とすることができる。
On the other hand, when the engine speed is high, good air-fuel mixture formation and good transportability of the air-fuel mixture around the ignition plug are obtained by the in-cylinder flow generated in the intake stroke. When the engine speed is high, the injection period of the pressurized air is shortened, contrary to the above, so that an appropriate in-cylinder flow that does not hinder stratification of the air-fuel mixture can be achieved.

【0022】請求項4に記載の発明によれば、請求項
2,3の発明の効果に加えて、通常、成層燃焼運転時で
も機関負荷が高い場合には、圧縮行程で燃焼室内に噴射
される燃料量が多く、吸気行程で生成される筒内流動だ
けでは良好な混合気形成が不十分となってしまうが、機
関負荷が増大するほど加圧エアの噴射期間が長くなるよ
うに制御されるため、機関負荷が高い運転時にあっても
混合気の成層化に適切な強い筒内流動が得られて安定し
た成層燃焼を行わせることができる。
According to the fourth aspect of the present invention, in addition to the effects of the second and third aspects of the present invention, normally, when the engine load is high even during the stratified charge combustion operation, the fuel is injected into the combustion chamber in the compression stroke. A large amount of fuel is generated, and good mixture formation is insufficient only with the in-cylinder flow generated in the intake stroke.However, it is controlled so that the injection period of the pressurized air becomes longer as the engine load increases. Therefore, even during operation with a high engine load, a strong in-cylinder flow suitable for stratification of the air-fuel mixture is obtained, and stable stratified combustion can be performed.

【0023】他方、機関負荷が低い場合には、圧縮行程
で燃焼室内に噴射される燃料量が少なく、吸気行程で生
成される筒内流動で良好な混合気形成が行われるが、こ
の機関負荷が低い場合には前述とは逆に加圧エアの噴射
期間が短くされるので、混合気の成層化を阻害しない適
切な筒内流動とすることができる。
On the other hand, when the engine load is low, the amount of fuel injected into the combustion chamber during the compression stroke is small, and a good mixture is formed by the in-cylinder flow generated during the intake stroke. Is low, the injection period of the pressurized air is shortened, contrary to the above, so that an appropriate in-cylinder flow that does not hinder stratification of the air-fuel mixture can be achieved.

【0024】請求項5に記載の発明によれば、請求項2
〜4の発明の効果に加えて、成層燃焼運転時でも油水温
の低い場合、即ち、機関の冷機時には、圧縮行程で燃焼
室内へ燃料が噴射されてピストン冠面に液膜となって付
着する燃料の気化が困難となって、燃焼の不安定化およ
び未燃HC,スモークの発生やデポジットの堆積が問題
となるが、油水温が低いほど加圧エアの噴射期間が長く
なるように制御されるため、筒内流動が強化されて前記
付着分の燃料の気化を促進させることができて、成層燃
焼の安定化と排気性状の改善とを行わせることができ
る。
According to the invention of claim 5, according to claim 2,
In addition to the effects of the inventions of (1) to (4), when the oil-water temperature is low even during stratified charge combustion operation, that is, when the engine is cold, fuel is injected into the combustion chamber in the compression stroke and adheres as a liquid film on the piston crown surface. It becomes difficult to vaporize the fuel, causing instability of combustion, generation of unburned HC and smoke, and accumulation of deposits. However, the lower the oil water temperature, the longer the injection period of pressurized air is controlled. Therefore, the in-cylinder flow is strengthened, and the vaporization of the attached fuel can be promoted, so that the stratified combustion can be stabilized and the exhaust properties can be improved.

【0025】他方、油水温が十分に高まって暖機完了状
態になると、前述とは逆に加圧エアの噴射期間が短くさ
れるので、混合気の成層化を阻害しない適切な筒内流動
とすることができる。
On the other hand, when the oil water temperature is sufficiently high to complete the warm-up, the injection period of the pressurized air is shortened, contrary to the above, so that the in-cylinder flow does not hinder the stratification of the air-fuel mixture. be able to.

【0026】請求項6に記載の発明によれば、請求項1
〜5の発明の効果に加えて、加圧エアの噴射終了時期が
燃料の噴射終了時期よりも後となるため、特に成層燃焼
運転時に燃料噴射弁のノズル孔内に残る燃料液膜を加圧
エアの噴射によって吹き飛ばして、該ノズル孔内および
出口付近を常にきれいに保つことができ、ノズル先端の
デポジット付着を回避して燃料の噴霧形状を安定化さ
せ、機関の安定性を向上することができる。
According to the invention of claim 6, according to claim 1,
In addition to the effects of the fifth to fifth aspects of the present invention, since the injection end time of the compressed air is later than the injection end time of the fuel, the fuel liquid film remaining in the nozzle hole of the fuel injection valve is particularly pressurized during the stratified charge combustion operation. It can be blown off by the injection of air to keep the inside of the nozzle hole and the vicinity of the outlet clean at all times, avoiding deposits at the nozzle tip, stabilizing the fuel spray shape, and improving engine stability. .

【0027】請求項7に記載の発明によれば、請求項6
の発明の効果に加えて、成層燃焼運転時でも油水温が低
い機関の冷機時には、圧縮行程で燃焼室内へ燃料が噴射
されてピストン冠面に液膜となって付着する燃料の気化
が困難となって、燃焼の不安定化および未燃HC,スモ
ークの発生やデポジットの堆積が問題となるが、油水温
が低いほど燃料噴射終了時期から加圧エア噴射終了時期
までの期間が長くなるため、前記付着分の燃料の気化を
促進させることができて、成層燃焼の安定化と排気性状
の改善とを行わせることができる。
According to the invention of claim 7, according to claim 6,
In addition to the effects of the invention, it is difficult to vaporize the fuel that is injected into the combustion chamber during the compression stroke and becomes a liquid film on the piston crown surface during the compression stroke when the engine is cold even during the stratified combustion operation. As a result, combustion instability, generation of unburned HC and smoke, and accumulation of deposits become problems. However, the lower the oil temperature, the longer the period from the fuel injection end time to the pressurized air injection end time. It is possible to promote the vaporization of the deposited fuel, thereby stabilizing stratified combustion and improving exhaust properties.

【0028】他方、油水温が十分に高まって暖機完了状
態になると、前述とは逆に燃料噴射終了時期から加圧エ
ア噴射終了時期までの期間が短くされるので、混合気の
成層化を阻害しない適切な筒内流動とすることができ
る。
On the other hand, when the temperature of the oil water is sufficiently increased to complete the warm-up, the period from the fuel injection end time to the pressurized air injection end time is shortened, and the stratification of the air-fuel mixture is hindered. No appropriate in-cylinder flow can be achieved.

【0029】請求項8に記載の発明によれば、請求項1
〜7の発明の効果に加えて、均質燃焼運転時に、圧縮行
程中には燃焼室内に加圧エアのみを噴射させるため、吸
気行程で生成された筒内流動を圧縮行程で加圧エアの噴
射により均質燃焼に最適な筒内流動強さになるように強
化調整することができて、安定した均質燃焼を行わせる
ことができる。
According to the invention described in claim 8, claim 1 is provided.
In addition to the effects of the present invention, during the homogeneous combustion operation, only the pressurized air is injected into the combustion chamber during the compression stroke, so that the in-cylinder flow generated in the intake stroke is injected into the compression stroke by the compressed air. Thereby, the in-cylinder flow strength can be strengthened and adjusted to be optimum for homogeneous combustion, and stable homogeneous combustion can be performed.

【0030】請求項9に記載の発明によれば、請求項8
の発明の効果に加えて、均質燃焼運転時に、運転条件を
表す主要なパラメータである機関回転数,負荷,および
油水温の検出信号に基づいて、圧縮行程中に噴射される
加圧エアの噴射期間を運転条件に合わせて細かく適切に
可変制御することができて、より一層安定した均質燃焼
を行わせることができる。
According to the invention of claim 9, according to claim 8,
In addition to the effects of the invention, injection of pressurized air injected during the compression stroke during homogeneous combustion operation is performed based on detection signals of the engine speed, load, and oil temperature, which are main parameters representing operating conditions. The period can be finely and appropriately variably controlled in accordance with the operating conditions, so that more stable homogeneous combustion can be performed.

【0031】請求項10に記載の発明によれば、請求項
9の発明の効果に加えて、通常、均質燃焼運転時でも機
関の負荷が高い場合には、吸気行程で燃焼室内に噴射さ
れる燃料量が多く、吸気行程で生成される筒内流動だけ
では良好な均質混合気の形成が不十分となってしまう
が、機関負荷が増大するほど加圧エアの噴射期間が長く
なるように制御されるため、機関負荷が高い運転時であ
っても混合気の均質化に適切な強い筒内流動が得られて
安定した均質燃焼を行わせるこができる。
According to the tenth aspect of the present invention, in addition to the effect of the ninth aspect of the present invention, normally, when the engine load is high even during the homogeneous combustion operation, the fuel is injected into the combustion chamber in the intake stroke. Although the amount of fuel is large and the flow in the cylinder generated during the intake stroke alone does not form a good homogeneous mixture, control is performed so that the injection period of pressurized air becomes longer as the engine load increases. Therefore, even during operation with a high engine load, a strong in-cylinder flow suitable for homogenizing the air-fuel mixture is obtained, and stable homogeneous combustion can be performed.

【0032】他方、機関負荷が低い場合には、吸気行程
で燃焼室内に噴射される燃料量が少なく、吸気行程で生
成される筒内流動で良好な均質混合気の形成が行われる
が、この機関負荷が低い場合には前述とは逆に加圧エア
の噴射期間が短くされるので、筒内流動が強くなりすぎ
て燃焼火炎が吹き消えるのを回避できる適切な筒内流動
とすることができる。
On the other hand, when the engine load is low, the amount of fuel injected into the combustion chamber during the intake stroke is small, and a good homogeneous mixture is formed by the in-cylinder flow generated during the intake stroke. When the engine load is low, the injection period of the pressurized air is shortened contrary to the above, so that an appropriate in-cylinder flow that can prevent the in-cylinder flow from becoming too strong and the combustion flame from blowing out can be avoided. .

【0033】[0033]

【発明の実施の形態】以下、本発明の実施形態を図面と
共に詳細する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0034】図1において、1はシリンダブロック、2
はピストン、3はシリンダヘッド、4はこれらシリンダ
ブロック1とピストン2およびシリンダヘッド3とで形
成された燃焼室を示す。
In FIG. 1, 1 is a cylinder block, 2
Represents a piston, 3 represents a cylinder head, and 4 represents a combustion chamber formed by the cylinder block 1, the piston 2 and the cylinder head 3.

【0035】シリンダヘッド3には吸気弁5により開閉
される吸気ポート6、および排気弁7により開閉される
排気ポート8を設けてあると共に、燃焼室4のほぼ中心
に臨む位置に点火プラグ9を配設してある。
The cylinder head 3 is provided with an intake port 6 opened and closed by an intake valve 5 and an exhaust port 8 opened and closed by an exhaust valve 7, and a spark plug 9 is provided at a position facing substantially the center of the combustion chamber 4. It is arranged.

【0036】燃焼室4の周側部には吸気弁4の近傍位置
に、燃料を直接燃焼室4に噴射する燃料噴射弁10を配
設してある。
A fuel injection valve 10 for directly injecting fuel into the combustion chamber 4 is provided near the intake valve 4 on the peripheral side of the combustion chamber 4.

【0037】この燃料噴射弁10として燃料と加圧エア
とを個別に噴射可能な2流体式の燃料噴射弁が用いられ
ており、制御装置としてのエンジンコントロールユニッ
ト11の出力信号によって後述するように作動制御され
る。
As the fuel injection valve 10, a two-fluid fuel injection valve capable of separately injecting fuel and pressurized air is used. As will be described later, an output signal of an engine control unit 11 as a control device is used. The operation is controlled.

【0038】エンジンコントロールユニット11には、
吸気ポート6に連なる吸気通路12に設けたエアフロー
メータ13により検出される空気量信号,エアフローメ
ータ13の下流のスロットルバルブ14に設けたスロッ
トルセンサにより検出される負荷信号,クランク角セン
サにより検出される回転数信号,温度センサにより検出
される油水温信号等が入力され(スロットルセンサ,ク
ランク角センサ,温度センサは何れも図示省略)、これ
ら各種センサの検出信号にもとづいて、エンジンコント
ロールユニット11により点火プラグ9や燃料噴射弁1
0および図外の動弁装置等を総合的に作動制御するよう
にしてある。
The engine control unit 11 includes:
An air amount signal detected by an air flow meter 13 provided in an intake passage 12 connected to the intake port 6, a load signal detected by a throttle sensor provided in a throttle valve 14 downstream of the air flow meter 13, and a crank angle sensor. A rotation speed signal, an oil / water temperature signal detected by a temperature sensor, and the like are input (all of the throttle sensor, crank angle sensor, and temperature sensor are not shown), and ignition is performed by the engine control unit 11 based on the detection signals of these various sensors. Plug 9 and fuel injector 1
0 and a valve operating device (not shown) are comprehensively controlled.

【0039】燃料噴射弁10に加圧エアを供給する加圧
エア通路15は前記吸気通路12に連通し、該吸気通路
12より取り入れた空気を加圧エア通路15に設けたエ
アポンプ16およびエアポンプ16をバイパスするバイ
パス通路17に設けた空気圧レギレータ18によって加
圧および圧力調整して燃料噴射弁10に供給する。
A pressurized air passage 15 for supplying pressurized air to the fuel injection valve 10 communicates with the intake passage 12, and an air pump 16 and an air pump 16 provided in the pressurized air passage 15 with air taken in from the intake passage 12. Is supplied to the fuel injection valve 10 after being pressurized and pressure-adjusted by an air pressure regulator 18 provided in a bypass passage 17 for bypassing the fuel injection valve.

【0040】後述するように機関の圧縮行程中に筒内圧
に逆らって燃焼室4に加圧エアを噴射するためには、燃
料噴射弁10に供給される加圧エアは1MPa以上の空
気圧に調整される。
As described later, in order to inject pressurized air into the combustion chamber 4 against the in-cylinder pressure during the compression stroke of the engine, the pressurized air supplied to the fuel injection valve 10 is adjusted to an air pressure of 1 MPa or more. Is done.

【0041】ここで、前記加圧エア通路15は吸気通路
12のエアフローメータ13とスロットルバルブ14と
の間に連通し、吸気ポート6から供給される空気量と燃
料噴射弁10より噴射される空気量との合計をエアフロ
ーメータ13で検出して空燃比制御を適正に行えるよう
にしてある。
Here, the pressurized air passage 15 is communicated between the air flow meter 13 and the throttle valve 14 in the intake passage 12, and the amount of air supplied from the intake port 6 and the air injected from the fuel injection valve 10. The total amount is detected by the air flow meter 13 so that the air-fuel ratio control can be appropriately performed.

【0042】前記吸気ポート6は吸気行程で燃焼室4に
吸入された空気流に所要の旋回流、例えば順タンブル流
を形成し得るように所定の傾き角度に設定してある一
方、燃料噴射弁10は前記吸気行程で生成される筒内流
動の流れとほぼ同じ向きに加圧エアを噴射し得る取付角
度に設定してある。
The intake port 6 is set at a predetermined inclination angle so that a required swirling flow, for example, a forward tumble flow, can be formed in the air flow sucked into the combustion chamber 4 during the intake stroke. Reference numeral 10 is set to an attachment angle at which the pressurized air can be injected in substantially the same direction as the flow of the in-cylinder flow generated in the intake stroke.

【0043】成層燃焼運転時には機関の圧縮行程中に燃
料噴射弁10から、吸気行程で生成された筒内流動に向
けて燃料を直接燃焼室4に噴射することによって混合気
を成層化し、点火プラグ9により火花着火して成層燃焼
を行わせる一方、均質燃焼運転時には機関の吸気行程中
に燃料噴射弁10より燃料を直接燃焼室4に噴射するこ
とにより混合気を均質化させ、点火プラグ9により火花
着火して均質燃焼を行わせる。
During stratified charge combustion operation, the fuel mixture is stratified by injecting fuel directly into the combustion chamber 4 from the fuel injection valve 10 toward the in-cylinder flow generated during the intake stroke during the compression stroke of the engine. In the homogeneous combustion operation, fuel is injected directly from the fuel injection valve 10 into the combustion chamber 4 during the intake stroke of the engine to homogenize the air-fuel mixture. Spark ignition causes homogeneous combustion.

【0044】エンジンコントロールユニット11には加
圧エア噴射期間可変手段11Aと、加圧エア噴射時期可
変手段11Bとがソフトウエア的に構成されていて、燃
料噴射弁10から加圧エアが例えば燃料噴射と同時又は
若干遅れて噴射される他、成層燃焼運転時および均質燃
焼運転時に、それぞれの運転条件に応じて加圧エアの噴
射パルス信号を変化させて噴射時期と噴射期間とが可変
制御される。
The engine control unit 11 includes a pressurized air injection period variable means 11A and a pressurized air injection timing variable means 11B in the form of software. In addition, the injection timing and the injection period are variably controlled by changing the injection pulse signal of the pressurized air according to the respective operating conditions during the stratified combustion operation and the homogeneous combustion operation. .

【0045】前述の機関運転条件を示す信号としては、
運転条件を表す主要なパラメータである機関の回転数,
負荷,および油水温の各検出信号が用いられ、これらの
各検出信号に基づいて加圧エアの噴射時期と噴射期間と
を、運転条件に合わせて細かく可変制御して適切な筒内
流動を形成できるようにして、成層燃焼および均質燃焼
をそれぞれの運転条件に応じて安定して行わせるように
している。
The signals indicating the engine operating conditions described above include:
The main parameters representing operating conditions, the engine speed,
Each detection signal of load and oil temperature is used, and based on these detection signals, the injection timing and injection period of the pressurized air are finely variably controlled according to the operating conditions to form an appropriate in-cylinder flow. In this way, stratified combustion and homogeneous combustion are stably performed according to the respective operating conditions.

【0046】これを具体的に説明すると、前記エンジン
コントロールユニット11の加圧エア噴射期間可変手段
11Aおよび加圧エア噴射時期可変手段11Bには、例
えば図2に示す成層燃焼運転時における加圧エア噴射の
制御マップと、図3に示す均質燃焼運転時における加圧
エア噴射の制御マップがメモリされている。
More specifically, the pressurized air injection period variable means 11A and the pressurized air injection timing variable means 11B of the engine control unit 11 are provided with, for example, the compressed air injection during the stratified combustion operation shown in FIG. A control map for injection and a control map for pressurized air injection during the homogeneous combustion operation shown in FIG. 3 are stored in memory.

【0047】成層燃焼運転と均質燃焼運転の判断として
は、一般的に機関の高回転,高負荷域は均質燃焼運転で
ないと成立しないことから、図2,3の各マップに示さ
れるように機関の回転数−負荷により成層燃焼運転領域
と均質燃焼運転領域とを区分けしている。
The stratified charge combustion operation and the homogeneous charge combustion operation are generally determined only in the high speed and high load regions of the engine unless the combustion operation is homogeneous. Therefore, as shown in the maps of FIGS. The stratified combustion operation region and the homogeneous combustion operation region are distinguished by the number of revolutions and the load.

【0048】図2に示すマップにおいて、成層燃焼運転
領域では機関回転数が低くなるほど前記加圧エアの噴射
開始から噴射終了までの噴射期間が長くなり、また、負
荷が増大するほど加圧エアの前記噴射期間が長くなるよ
うに設定してある。
In the map shown in FIG. 2, in the stratified charge combustion operation region, the lower the engine speed, the longer the injection period from the start of injection of the pressurized air to the end of the injection. The injection period is set to be long.

【0049】図3に示すマップにおいて、均質燃焼運転
領域では機関負荷が増大するほど前記加圧エアの噴射開
始から噴射終了までの噴射期間が長くなるように設定し
てある。
In the map shown in FIG. 3, the injection period from the start of injection of the pressurized air to the end of the injection is set longer as the engine load increases in the homogeneous combustion operation region.

【0050】これら成層燃焼運転時および均質燃焼運転
時における加圧エア噴射期間は、油水温の変化に応じて
前記各マップで示された回転数−負荷により求められた
基本噴射期間(パルス幅)と所定の油水温補正係数との
積により補正計算されて、図4に示すように油水温が低
いほど噴射期間が長くなるようにしてある。
The pressurized air injection period during the stratified combustion operation and the homogeneous combustion operation is the basic injection period (pulse width) determined by the rotation speed-load shown in each of the above maps according to the change in the oil temperature. And a predetermined oil water temperature correction coefficient, so that the injection period becomes longer as the oil water temperature is lower, as shown in FIG.

【0051】一方、成層燃焼運転時および均質燃焼運転
時における加圧エアの噴射時期はエンジンコントロール
ユニット11の加圧エア噴射時期可変手段11Bによっ
て前記図2および図3のマップに基づいて制御される
が、均質燃焼運転時には、圧縮行程中にも燃焼室4内に
加圧エアのみを噴射させるようにしてある。
On the other hand, the injection timing of the compressed air during the stratified combustion operation and the homogeneous combustion operation is controlled by the compressed air injection timing variable means 11B of the engine control unit 11 based on the maps shown in FIGS. However, during the homogeneous combustion operation, only the pressurized air is injected into the combustion chamber 4 even during the compression stroke.

【0052】また、加圧エアの噴射終了時期は燃料の噴
射終了時期よりも後に設定されるが、油水温の変化に応
じて例えば図5に示すように機関の油水温が低いほど燃
料噴射終了時期から加圧エア噴射終了時期までの期間が
長くなるようにしてある。この図5では成層燃焼運転時
における油水温変化に対する加圧エア噴射終了期の変化
状態を示しているが、均質燃焼運転時においても同様の
制御が行われるようにしてもよい。
The injection end time of the pressurized air is set later than the injection end time of the fuel. However, as shown in FIG. 5, for example, as shown in FIG. The period from the timing to the end time of the pressurized air injection is made longer. Although FIG. 5 shows the change state of the pressurized air injection termination period with respect to the oil water temperature change during the stratified combustion operation, the same control may be performed also during the homogeneous combustion operation.

【0053】図6は前述したエンジンコントロールユニ
ット11による加圧エアの噴射制御動作を示すフローチ
ャートである。
FIG. 6 is a flowchart showing the operation of controlling the injection of pressurized air by the engine control unit 11 described above.

【0054】図6において、ステップS1で機関の回転
数信号,負荷信号,油水温信号,および空気量信号を読
み込み、これら各種の入力信号に基づいてステップS2
で成層燃焼運転条件か均質燃焼運転条件かを判断する。
Referring to FIG. 6, in step S1, an engine speed signal, a load signal, an oil / water temperature signal, and an air amount signal are read, and based on these various input signals, a step S2 is executed.
To determine whether the operation is in stratified combustion or in homogeneous combustion.

【0055】ステップS2で成層燃焼運転条件と判定さ
れると、ステップS3へ進んで圧縮行程中に燃料噴射を
行う成層燃焼運転モードで運転される。この成層燃焼運
転モードでは次のステップS4で前記回転数信号,負荷
信号,および油水温信号に基づいて図2に示したマップ
および油水温による加圧エア噴射期間の補正計算(図4
参照)により加圧エアの噴射期間が設定されると同時
に、ステップS5で前記回転数信号,負荷信号,および
油水温信号に基づいて図2に示したマップおよび油水温
による加圧エア噴射終了時期の補正計算(図5参照)に
より加圧エアの噴射時期が設定され、圧縮行程中に燃料
噴射弁10より燃料と共に、その時の運転条件に最適な
噴射期間と噴射時期で加圧エアが燃焼室4内に噴射され
る。
If it is determined in step S2 that the stratified charge combustion operation condition is satisfied, the routine proceeds to step S3, in which the engine is operated in a stratified charge combustion operation mode in which fuel is injected during the compression stroke. In the stratified combustion operation mode, in the next step S4, the map shown in FIG. 2 and the correction calculation of the pressurized air injection period based on the oil water temperature based on the rotation speed signal, the load signal, and the oil water temperature signal (FIG.
At the same time as setting the injection period of the pressurized air at step S5, based on the rotation speed signal, the load signal, and the oil water temperature signal, the map shown in FIG. (See FIG. 5), the injection timing of the compressed air is set. During the compression stroke, the fuel is injected from the fuel injection valve 10 and the compressed air is injected into the combustion chamber in an injection period and an injection timing that are optimal for the operating conditions at that time. 4 is injected.

【0056】ステップS2で運転状態が成層燃焼運転条
件下になく均質燃焼運転条件と判定されると、ステップ
S6へ進んで吸気行程中に燃料噴射を行う均質燃焼運転
モードで運転される。
If it is determined in step S2 that the operation state is not the stratified combustion operation condition but is the homogeneous combustion operation condition, the flow advances to step S6 to operate in the homogeneous combustion operation mode in which fuel is injected during the intake stroke.

【0057】この均質燃焼運転モードでは次のステップ
S7で前記回転数信号,負荷信号,および油水温信号に
基づいて図3に示したマップおよび油水温による加圧エ
ア噴射期間の補正計算(図4参照)により加圧エアの噴
射期間が設定されると同時に、ステップS8で前記回転
数信号,負荷信号,および油水温信号に基づいて図3に
示したマップおよび油水温による加圧エア噴射終了時期
の補正計算(図5とほぼ同様)により加圧エアの噴射時
期が設定され、吸気行程中に燃料噴射弁10より燃料と
共にその時の運転条件に最適な噴射期間と噴射時期で加
圧エアが燃焼室4内に噴射され、かつ、圧縮行程中にも
該燃料噴射弁10より再び加圧エアのみが燃焼室4内に
噴射される。
In the homogeneous combustion operation mode, in the next step S7, the map shown in FIG. 3 and the correction calculation of the pressurized air injection period by the oil water temperature (FIG. 4) based on the rotation speed signal, the load signal and the oil water temperature signal. At the same time, the injection period of the pressurized air is set at step S8, and at the step S8, the map shown in FIG. The injection timing of the pressurized air is set by the correction calculation (approximately the same as in FIG. 5). During the intake stroke, the fuel is injected from the fuel injection valve 10 together with the fuel in the injection period and the injection timing that are optimal for the operating conditions at that time. Only the pressurized air is injected into the combustion chamber 4 again from the fuel injection valve 10 during the compression stroke.

【0058】図7は成層燃焼運転時に機関の回転数に応
じて(但し、負荷は一定とする)、機関回転数が低くな
るほど加圧エアの噴射期間が長くなるように制御される
場合における筒内流動の挙動を模式的に示している。
FIG. 7 shows a cylinder in the case where the injection period of the pressurized air is controlled so that the lower the engine speed is, the longer the injection period of the pressurized air is in accordance with the engine speed during the stratified combustion operation (the load is fixed). 4 schematically shows the behavior of internal flow.

【0059】吸気量および吸気流速は機関回転数にほぼ
比例するため、低回転時には同図の(イ)に示すように
吸気行程で生成される筒内流動は弱く、圧縮行程で噴射
される燃料との混合および混合気の点火プラグ9周りへ
の輸送性が不十分になり易い傾向にある。
Since the amount of intake air and the flow velocity of the intake air are substantially proportional to the engine speed, when the engine is running at a low speed, the in-cylinder flow generated during the intake stroke is weak as shown in FIG. And the transportability of the air-fuel mixture around the spark plug 9 tends to be insufficient.

【0060】しかしながら、燃料噴射が行われる圧縮行
程で加圧エアが噴射されることにより筒内流動が加勢さ
れ、しかも、該加圧エアの噴射期間が長くされることに
よって最終的には混合気の成層化と輸送性に適切な強い
筒内流動を形成できて安定した成層燃焼を行わせること
ができる。
However, the in-cylinder flow is energized by injecting the pressurized air during the compression stroke in which the fuel injection is performed, and the injection time of the pressurized air is ultimately increased by increasing the injection period of the compressed air. A strong in-cylinder flow suitable for stratification and transportability can be formed, and stable stratification combustion can be performed.

【0061】同図の(ロ),(ハ)に示すように機関回
転数が高回転に移行すると、吸気行程で生成される筒内
流動は高まるが、圧縮行程で噴射される加圧エアの噴射
期間は短くされるため、混合気の成層化を阻害しない適
切な筒内流動とすることができ、結果的には全ての回転
数域において、混合気の成層化および点火プラグ9周り
への混合気の輸送性に十分かつ適切な流動を与えること
ができて成層燃焼を安定化させることができる。
As shown in (b) and (c) of the drawing, when the engine speed shifts to a high speed, the in-cylinder flow generated in the intake stroke increases, but the pressure of the compressed air injected in the compression stroke increases. Since the injection period is shortened, an appropriate in-cylinder flow that does not hinder the stratification of the air-fuel mixture can be obtained. Sufficient and appropriate flow can be given to the gas transportability, and the stratified combustion can be stabilized.

【0062】図8は成層燃焼運転時に機関の負荷に応じ
て、機関負荷が増大するほど加圧エアの噴射期間が長く
なるように制御される場合(但し、回転数は一定とす
る)における筒内流動および混合気形成の挙動を模式的
に示している。
FIG. 8 shows a cylinder in the case where the injection period of the pressurized air is controlled to be longer as the engine load increases in accordance with the load of the engine during the stratified combustion operation (however, the rotation speed is fixed). 4 schematically shows the behavior of internal flow and mixture formation.

【0063】燃料噴射量は機関負荷にほぼ比例するた
め、低負荷時には同図の(イ)に示すように圧縮行程中
に燃焼室4内に噴射される燃料量が少なく、吸気行程で
生成される筒内流動で良好な混合気形成が行われ、従っ
て、筒内流動の強化はさほど必要ではないが、この低負
荷時には加圧エアの噴射期間は短く、従って、混合気の
成層化を阻害しない程度に筒内流動を調節できる。
Since the fuel injection amount is substantially proportional to the engine load, when the load is low, the amount of fuel injected into the combustion chamber 4 during the compression stroke is small as shown in FIG. Although good mixture formation is achieved by the in-cylinder flow, it is not necessary to enhance the in-cylinder flow.However, at this low load, the injection period of the pressurized air is short, thus hindering the stratification of the mixture. The in-cylinder flow can be adjusted to the extent that it does not occur.

【0064】同図の(ロ),(ハ)に示すように機関が
高負荷に移行すると、圧縮行程で燃焼室4内に噴射され
る燃料量が多くなり、吸気行程で生成される筒内流動だ
けでは良好な混合気形成が不十分となり易い傾向とな
る。
When the engine shifts to a high load as shown in (b) and (c), the amount of fuel injected into the combustion chamber 4 during the compression stroke increases, and the in-cylinder generated during the intake stroke increases. Flow alone tends to result in insufficient formation of a good mixture.

【0065】しかしながら、機関負荷が増大するほど前
記加圧エアの噴射期間が長くされることにより筒内流動
がより強化されるため、機関負荷が高い運転時にも混合
気の成層化に適切な筒内流動にして安定した成層燃焼を
行わせることができる。
However, as the engine load increases, the in-cylinder flow is further enhanced by lengthening the injection period of the pressurized air, so that even when the engine load is high, a cylinder suitable for stratification of the air-fuel mixture is used. It is possible to perform stable stratified combustion by making the internal flow.

【0066】図9は成層燃焼運転時に油水温に応じて、
油水温が低いほど加圧エアの噴射期間が長くなるように
制御される場合における筒内流動の挙動を模式的に示し
ている。
FIG. 9 shows the relationship between the temperature of the oil and the water during the stratified charge combustion operation.
4 schematically shows the behavior of the in-cylinder flow in the case where the injection period of the pressurized air is controlled to be longer as the oil water temperature is lower.

【0067】成層燃焼運転時でも油水温が低く機関が暖
機未完了状態にある時は、同図の(イ)に示すように圧
縮行程で燃焼室4内へ燃料が噴射されてピストン2の冠
面に付着すると、燃料の気化が困難で該ピストン冠面に
液膜状に付着し、燃焼の不安定化および未燃HC,スモ
ークの発生やデポジットの堆積が問題となるが、油水温
が低いほど圧縮行程で噴射される加圧エアの噴射期間が
長くされるため、筒内流動が強化されて前記ピストン冠
面に付着した燃料Fの気化を促進させて、成層燃焼の安
定化と排気性状の改善とを行わせることができる。
When the oil temperature is low and the engine is not yet fully warmed up even during the stratified charge combustion operation, fuel is injected into the combustion chamber 4 in the compression stroke as shown in FIG. If it adheres to the crown surface, it is difficult to vaporize the fuel and adheres to the piston crown surface in the form of a liquid film, causing instability of combustion, generation of unburned HC and smoke, and accumulation of deposits. The lower the pressure, the longer the injection period of the pressurized air injected in the compression stroke, so that the in-cylinder flow is enhanced to promote the vaporization of the fuel F attached to the piston crown surface, thereby stabilizing stratified combustion and exhausting. Improvement of properties can be performed.

【0068】同図の(ロ),(ハ)に示すように油水温
が上昇して暖機完了状態になるにつれて、ピストン冠面
に付着する燃料Fの気化が良好に行われるようになる
が、この場合前述とは逆に加圧エアの噴射期間が短くさ
れるため、混合気の成層化を阻害しない程度に筒内流動
を調節できる。
As shown in (b) and (c) in the figure, as the oil water temperature rises and the warm-up is completed, the fuel F adhering to the piston crown surface is vaporized satisfactorily. In this case, on the contrary, since the injection period of the pressurized air is shortened, the in-cylinder flow can be adjusted to the extent that stratification of the air-fuel mixture is not hindered.

【0069】ここで、前述の各成層燃焼運転状態にあっ
ても、圧縮行程で燃料と共に噴射される加圧エアの噴射
終了時期が、燃料の噴射時期よりも後に設定されている
ため、燃料噴射弁10のノズル孔内の残留燃料除去対策
を行うことができる。
Here, even in each of the above-mentioned stratified charge combustion operation states, since the injection end timing of the compressed air injected together with the fuel in the compression stroke is set after the fuel injection timing, the fuel injection A measure for removing residual fuel in the nozzle hole of the valve 10 can be taken.

【0070】これを、図10によって説明すると、同図
の(イ)に示すように圧縮行程で燃料の噴射終了時期と
加圧エアの噴射終了時期とがほぼ同時であった場合、燃
料噴射弁10のノズル孔10aから燃料と加圧エアとが
噴射された後に、該ノズル孔10a内には燃料Fが液膜
状に付着残留し、これがノズル孔10aの出口で次第に
炭化してデポジットが発生する傾向となる。
This will be described with reference to FIG. 10. When the fuel injection ending time and the pressurized air injection ending time are almost the same in the compression stroke as shown in FIG. After fuel and pressurized air are injected from the 10 nozzle holes 10a, the fuel F adheres and remains in a liquid film form in the nozzle holes 10a, and this is gradually carbonized at the outlet of the nozzle holes 10a to generate a deposit. Tend to be.

【0071】ところが同図の(ロ)に示すように圧縮行
程で噴射される加圧エアの噴射終了時期が、燃料の噴射
終了時期よりも後に設定されているため、燃料噴射弁1
0のノズル孔10aから燃料と加圧エアとが噴射され、
燃料噴射が停止されてノズル孔10a内に燃料が液膜状
に付着しても、この付着残留燃料は噴射が継続される加
圧エアによってノズル孔10a外へ吹き飛ばされ、ノズ
ル孔10aの内面および出口付近を常にきれいに保つこ
とができる。
However, as shown in (b) of the figure, the injection end timing of the pressurized air injected in the compression stroke is set after the fuel injection end timing.
Fuel and pressurized air are injected from the 0 nozzle hole 10a,
Even if the fuel injection is stopped and the fuel adheres to the nozzle hole 10a in the form of a liquid film, the adhered residual fuel is blown out of the nozzle hole 10a by the pressurized air that continues to be injected, and the inner surface of the nozzle hole 10a and The area around the exit can always be kept clean.

【0072】この結果、ノズル先端のデポジット付着を
回避して燃料の噴霧形状を安定化させ、機関の安定性を
向上することができる。
As a result, it is possible to stabilize the spray shape of the fuel by avoiding the deposit at the nozzle tip, thereby improving the stability of the engine.

【0073】この加圧エアの噴射終了時期は油水温に応
じて制御されるため、成層燃焼の安定化と排気性状の改
善とをより効果的に行わせることができる。
Since the end time of the injection of the pressurized air is controlled in accordance with the oil water temperature, the stratified combustion can be stabilized and the exhaust properties can be improved more effectively.

【0074】図11は成層燃焼運転時に、油水温が低い
ほど燃料噴射終了時期から加圧エア噴射終了時期までの
期間が長くなるように制御される場合における筒内流動
の挙動を模式的に示している。
FIG. 11 schematically shows the behavior of the in-cylinder flow in the case where the period from the fuel injection end time to the pressurized air injection end time is controlled to be longer as the oil water temperature is lower during the stratified charge combustion operation. ing.

【0075】油水温が低く機関が暖機未完了状態にある
時は前述したように圧縮行程で噴射されてピストン冠面
に付着した燃料の気化が不十分となって、燃焼の不安定
化および排気性状の悪化を誘発してしまうが、このよう
な油水温が低い状態時では図11の(イ)に示すように
燃料噴射終了時期から加圧エア噴射終了時期までの期間
が長くなるため、ピストン2の冠面に液膜状に付着した
燃料Fの気化を促進させることができて、成層燃焼の安
定化と排気性状の改善とを行わせることができる。
When the temperature of the oil water is low and the engine is not yet warmed up, as described above, the fuel injected during the compression stroke and vaporized on the piston crown surface becomes insufficiently vaporized, resulting in unstable combustion and Although the deterioration of the exhaust characteristics is induced, when the oil water temperature is low, the period from the fuel injection end time to the pressurized air injection end time becomes long as shown in FIG. The vaporization of the fuel F attached to the crown surface of the piston 2 in the form of a liquid film can be promoted, and the stratified combustion can be stabilized and the exhaust properties can be improved.

【0076】他方、同図の(ロ),(ハ)に示すように
油水温が上昇して暖機完了状態になるにつれて、ピスト
ン冠面に付着する燃料Fの気化が良好に行われるように
なるが、この場合、前述とは逆に燃料噴射終了時期から
加圧エア噴射終了時期までの期間が短くされるため、混
合気の成層化を阻害しない程度に筒内流動を調節でき
る。
On the other hand, as shown in (b) and (c) of the same figure, as the oil water temperature rises and the warm-up is completed, the fuel F adhering to the piston crown surface is favorably vaporized. However, in this case, contrary to the above, since the period from the fuel injection end time to the pressurized air injection end time is shortened, the in-cylinder flow can be adjusted to the extent that stratification of the air-fuel mixture is not hindered.

【0077】図12は均質燃焼運転時における加圧エア
噴射制御による筒内流動の挙動を示している。
FIG. 12 shows the behavior of the in-cylinder flow by the pressurized air injection control during the homogeneous combustion operation.

【0078】均質燃焼運転は吸気行程中に燃料噴射を行
って混合気を均質化させるが、同図に示すように吸気行
程で燃料が噴射されると、これとほぼ同時に加圧エアも
噴射され、吸気ポート構造および加圧エア噴射により吸
気行程で生成される筒内流動で混合気の微粒化と、攪拌
による気化促進が行われる。
In the homogeneous combustion operation, the fuel mixture is injected during the intake stroke to homogenize the air-fuel mixture. However, when fuel is injected during the intake stroke as shown in FIG. The air-in-cylinder flow generated in the intake stroke by the intake port structure and the pressurized air injection causes atomization of the air-fuel mixture and promotion of vaporization by stirring.

【0079】圧縮行程に移行すると該圧縮行程中にも加
圧エアのみが噴射されるため、前記吸気行程で生成され
た筒内流動をこの圧縮行程中に噴射された加圧エアによ
り強化して、均質燃焼に最適な流動強さに調整(補正)
でき、従って、安定した均質燃焼を行わせることができ
る。
Since only the pressurized air is injected during the compression stroke during the transition to the compression stroke, the in-cylinder flow generated during the intake stroke is enhanced by the compressed air injected during the compression stroke. , Adjusted to the optimum flow strength for homogeneous combustion (correction)
Therefore, stable homogeneous combustion can be performed.

【0080】この均質燃焼運転時にあっても、前記成層
燃焼運転時と同様に加圧エアの噴射制御は機関運転の主
要パラメータである機関回転数,負荷,および油水温に
応じて適切に制御される。
Even during the homogeneous combustion operation, the injection control of the pressurized air is appropriately controlled according to the main parameters of the engine operation, such as the engine speed, the load, and the oil-water temperature, as in the stratified combustion operation. You.

【0081】図13は一例として機関負荷に応じて、負
荷が増大するほど加圧エア噴射期間が長くなるように制
御される場合(但し、回転数は一定とする)の筒内流動
の挙動を模式的に示している。
FIG. 13 shows, as an example, the behavior of the in-cylinder flow in the case where the pressurized air injection period is controlled to be longer as the load increases (provided that the rotation speed is constant) in accordance with the engine load. This is schematically shown.

【0082】前述したように燃料噴射量は機関負荷にほ
ぼ比例するため、低負荷時には同図の(イ)に示すよう
に吸気行程中に燃焼室4内に噴射される燃料量が少な
く、吸気行程で生成される筒内流動で良好な均質混合気
の形成が行われ、従って、筒内流動の強化はさほど必要
ではないが、この機関負荷が低い場合には圧縮機行程で
噴射される加圧エアの噴射期間が短くされる。
As described above, since the fuel injection amount is substantially proportional to the engine load, the amount of fuel injected into the combustion chamber 4 during the intake stroke is small when the load is low, as shown in FIG. A good homogeneous mixture is formed by the in-cylinder flow generated in the stroke, and therefore, it is not necessary to enhance the in-cylinder flow. However, when the engine load is low, the injection injected in the compressor stroke is performed. The injection period of the compressed air is shortened.

【0083】この結果、筒内流動が強くなりすぎて燃焼
火炎が吹き消えるのを回避できる程度に、適切な強さの
筒内流動とすることができる。
As a result, the in-cylinder flow having an appropriate strength can be obtained to the extent that the in-cylinder flow becomes too strong to prevent the combustion flame from blowing out.

【0084】同図の(ロ),(ハ)に示すように機関が
高負荷に移行すると、吸気行程で燃焼室4内に噴射され
る燃料量が多くなり、吸気行程で生成される筒内流動だ
けでは良好な均質混合気の形成が不十分となってしまう
が、機関負荷が増大するほど圧縮行程で噴射される加圧
エアの噴射期間が長くされる。
When the engine shifts to a high load as shown in (b) and (c), the amount of fuel injected into the combustion chamber 4 during the intake stroke increases, and the in-cylinder generated during the intake stroke increases Although the formation of a good homogeneous mixture becomes insufficient only by the flow, the injection period of the pressurized air injected in the compression stroke becomes longer as the engine load increases.

【0085】この結果、機関負荷が高い運転時であって
も混合気の均質化に適切な強い筒内流動が得られて安定
した均質燃焼を行わせることができる。
As a result, even during operation with a high engine load, a strong in-cylinder flow suitable for homogenizing the air-fuel mixture is obtained, and stable homogeneous combustion can be performed.

【0086】なお、この均質燃焼運転時には前述のよう
に吸気行程での燃料噴射後、圧縮行程では加圧エアのみ
が噴射されるため、吸気行程での加圧エア噴射の終了時
期を燃料噴射終了時期よりも後に設定しなくても、該圧
縮行程で加圧エアの噴射によりノズル孔内の残留燃料の
除去を行うことができるが、場合によって吸気行程にお
ける加圧エア噴射終了時期を燃料噴射終了時期よりも後
に設定して、ノズル孔内の残留燃料除去対策を徹底する
ようにしてもよい。
During the homogeneous combustion operation, after the fuel is injected in the intake stroke as described above, only the compressed air is injected in the compression stroke. Even if it is not set after the timing, the residual fuel in the nozzle hole can be removed by the injection of the pressurized air in the compression stroke, but the pressurized air injection end timing in the intake stroke may be changed to the fuel injection end in some cases. The timing may be set later than the timing, and the measures for removing the residual fuel in the nozzle hole may be thoroughly implemented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す系統図。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】成層燃焼運転時の加圧エア制御マップ図。FIG. 2 is a map of pressurized air control during stratified charge combustion operation.

【図3】均質燃焼運転時の加圧エア制御マップ図。FIG. 3 is a map of a pressurized air control during a homogeneous combustion operation.

【図4】油水温による加圧エア噴射補正期間のマップ
図。
FIG. 4 is a map diagram of a pressurized air injection correction period based on oil water temperature.

【図5】成層燃焼運転時の油水温による加圧エア噴射終
了時期の制御マップ図。
FIG. 5 is a control map diagram of pressurized air injection end timing based on oil water temperature during stratified charge combustion operation.

【図6】制御装置の制御動作フローチャート。FIG. 6 is a control operation flowchart of the control device.

【図7】成層燃焼運転時の回転数変化に伴う筒内流動の
挙動を示す模式図。
FIG. 7 is a schematic diagram showing the behavior of in-cylinder flow accompanying a change in the number of revolutions during stratified combustion operation.

【図8】成層燃焼運転時の負荷変化に伴う筒内流動の挙
動を示す模式図。
FIG. 8 is a schematic diagram showing the behavior of in-cylinder flow due to a load change during stratified charge combustion operation.

【図9】成層燃焼運転時の油水温変化に伴う筒内流動の
挙動を示す模式図。
FIG. 9 is a schematic diagram showing the behavior of the in-cylinder flow accompanying a change in oil water temperature during stratified charge combustion operation.

【図10】成層燃焼運転時の加圧エア噴射によるノズル
清掃状況を示す説明図。
FIG. 10 is an explanatory diagram showing a nozzle cleaning state by pressurized air injection during a stratified charge combustion operation.

【図11】成層燃焼運転時の油水温変化に伴う加圧エア
噴射終了時期制御による筒内流動の挙動を示す模式図。
FIG. 11 is a schematic diagram showing the behavior of in-cylinder flow by controlling pressurized air injection end timing according to a change in oil water temperature during stratified charge combustion operation.

【図12】均質燃焼運転時の加圧エア噴射制御による筒
内流動の挙動を示す模式図。
FIG. 12 is a schematic diagram showing the behavior of in-cylinder flow by pressurized air injection control during homogeneous combustion operation.

【図13】均質燃焼運転時の負荷変化に伴う筒内流動の
挙動を示す模式図。
FIG. 13 is a schematic diagram showing the behavior of in-cylinder flow with a load change during homogeneous combustion operation.

【符号の説明】[Explanation of symbols]

4 燃焼室 9 点火プラグ 10 燃料噴射弁 10a ノズル孔 11 制御装置 11A 噴射時期可変手段 11B 噴射期間可変手段 DESCRIPTION OF SYMBOLS 4 Combustion chamber 9 Spark plug 10 Fuel injection valve 10a Nozzle hole 11 Control device 11A Injection timing variable means 11B Injection period variable means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/02 325 F02D 41/02 325A F02M 51/00 F02M 51/00 A (72)発明者 荒井 孝之 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G023 AA02 AA04 AA18 AB03 AC05 AD03 AD09 AG01 3G066 AA02 AA05 AB02 AD12 BA02 BA16 BA17 BA23 BA32 CC46 CC48 CD28 DB08 DB09 DC01 DC04 DC05 DC09 DC11 DC14 3G092 AA01 AA06 AA09 AA10 BA06 DC06 DC07 DE03S EA01 FA01 FA15 HA01Z HA06Z HA10X HA11Z HE01Z HE08Z 3G301 HA01 HA04 HA16 JA01 JA02 JA21 LA00 LB04 MA11 MA18 PA01Z PA11Z PE01Z PE03Z PE08Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/02 325 F02D 41/02 325A F02M 51/00 F02M 51/00 A (72) Inventor Takayuki Arai Kanagawa 2F, Takaracho, Kanagawa-ku, Yokohama-shi F-term (reference) in Nissan Motor Co., Ltd. (reference) AA06 AA09 AA10 BA06 DC06 DC07 DE03S EA01 FA01 FA15 HA01Z HA06Z HA10X HA11Z HE01Z HE08Z 3G301 HA01 HA04 HA16 JA01 JA02 JA21 LA00 LB04 MA11 MA18 PA01Z PA11Z PE01Z PE03Z PE08Z

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室に直接燃料を噴射する燃料噴射弁
と、点火プラグとを備え、低負荷域で圧縮行程中に燃料
を噴射させて成層燃焼を行わせると共に、高負荷域で吸
気行程中に燃料を噴射させて均質燃焼を行わせるように
した筒内噴射式火花点火機関において、前記燃料噴射弁
として燃料と加圧エアとを噴射可能な2流体式の燃料噴
射弁を用いると共に、成層燃焼運転時および均質燃焼運
転時に、機関の運転条件に応じて該燃料噴射弁の加圧エ
アの噴射時期および噴射期間を可変制御する噴射時期・
期間可変手段を設けたことを特徴とする筒内噴射式火花
点火機関。
1. A fuel injection valve for injecting fuel directly into a combustion chamber, and an ignition plug, wherein stratified combustion is performed by injecting fuel during a compression stroke in a low load range, and an intake stroke in a high load range. In a direct injection type spark ignition engine in which fuel is injected to perform homogeneous combustion, a two-fluid fuel injection valve capable of injecting fuel and pressurized air is used as the fuel injection valve, In the stratified combustion operation and the homogeneous combustion operation, the injection timing for variably controlling the injection timing and injection period of the pressurized air of the fuel injection valve according to the operating conditions of the engine.
An in-cylinder injection spark ignition engine, characterized in that a variable period means is provided.
【請求項2】 噴射時期・期間可変手段が、成層燃焼運
転時に、機関回転数,負荷,および油水温に応じて、加
圧エアの噴射時期と噴射期間とを変化させるものである
ことを特徴とする請求項1に記載の筒内噴射式火花点火
機関。
2. An injection timing / period variable means for changing an injection timing and an injection period of pressurized air during stratified charge combustion operation according to an engine speed, a load, and an oil water temperature. The in-cylinder injection spark ignition engine according to claim 1, wherein:
【請求項3】 噴射時期・期間可変手段が、成層燃焼運
転時に、機関回転数が低くなるほど加圧エアの噴射期間
を長くするものであることを特徴とする請求項2に記載
の筒内噴射式火花点火機関。
3. The in-cylinder injection according to claim 2, wherein the injection timing / period variable means increases the injection period of the pressurized air as the engine speed decreases during the stratified charge combustion operation. -Type spark ignition engine.
【請求項4】 噴射時期・期間可変手段が、成層燃焼運
転時に、機関負荷が増大するほど加圧エアの噴射期間を
長くするものであることを特徴とする請求項2,3に記
載の筒内噴射式火花点火機関。
4. The cylinder according to claim 2, wherein the injection timing / period varying means extends the injection period of the pressurized air as the engine load increases during the stratified charge combustion operation. Internal injection spark ignition engine.
【請求項5】 噴射時期・期間可変手段が、成層燃焼運
転時に、油水温が低いほど加圧エアの噴射期間を長くす
るものであることを特徴とする請求項2〜4の何れかに
記載の筒内噴射式火花点火機関。
5. The injection timing / period variable means, during a stratified charge combustion operation, extends the injection period of pressurized air as the oil water temperature is lower. In-cylinder spark ignition engine.
【請求項6】 噴射時期・期間可変手段は、その加圧エ
ア噴射終了時期が燃料噴射終了時期よりも後に設定され
ていることを特徴とする請求項1〜5の何れかに記載の
筒内噴射式火花点火機関。
6. The in-cylinder according to claim 1, wherein the injection time / period variable means has a pressurized air injection end time set after the fuel injection end time. Injection spark ignition engine.
【請求項7】 噴射時期・期間可変手段は、成層燃焼運
転時に、油水温が低いほど燃料噴射終了時期から加圧エ
ア噴射終了時期までの期間を長くするものであることを
特徴とする請求項6に記載の筒内噴射式火花点火機関。
7. The injection timing / period variable means, during stratified charge combustion operation, increases the period from the fuel injection end time to the pressurized air injection end time as the oil water temperature is lower. 7. The in-cylinder injection spark ignition engine according to 6.
【請求項8】 噴射時期・期間可変手段が、均質燃焼運
転時に、圧縮行程中には燃焼室内に加圧エアのみを噴射
させるものであることを特徴とする請求項1〜7の何れ
かに記載の筒内噴射式火花点火機関。
8. The injection timing / period varying means injects only pressurized air into the combustion chamber during the compression stroke during the homogeneous combustion operation. The in-cylinder injection spark ignition engine as described in the above.
【請求項9】 噴射時期・期間可変手段が、均質燃焼運
転時に、機関回転数,負荷,および油水温に応じて、圧
縮行程中の燃焼室内への加圧エア噴射期間を変化させる
ものであることを特徴とする請求項8に記載の筒内噴射
式火花点火機関。
9. An injection timing / period variable means for varying a period of pressurized air injection into a combustion chamber during a compression stroke according to an engine speed, a load, and an oil-water temperature during a homogeneous combustion operation. The in-cylinder injection spark ignition engine according to claim 8, wherein:
【請求項10】 噴射時期・期間可変手段が、均質燃焼
運転時に、機関負荷が増大するほど加圧エア噴射期間を
長くするものであることを特徴とする請求項9に記載の
筒内噴射式火花点火機関。
10. The in-cylinder injection system according to claim 9, wherein the injection timing / period variable means extends the pressurized air injection period as the engine load increases during the homogeneous combustion operation. Spark ignition engine.
JP35344098A 1998-12-11 1998-12-11 In-cylinder injection spark ignition engine Expired - Lifetime JP3852230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35344098A JP3852230B2 (en) 1998-12-11 1998-12-11 In-cylinder injection spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35344098A JP3852230B2 (en) 1998-12-11 1998-12-11 In-cylinder injection spark ignition engine

Publications (2)

Publication Number Publication Date
JP2000179433A true JP2000179433A (en) 2000-06-27
JP3852230B2 JP3852230B2 (en) 2006-11-29

Family

ID=18430869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35344098A Expired - Lifetime JP3852230B2 (en) 1998-12-11 1998-12-11 In-cylinder injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP3852230B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564770B1 (en) * 1997-12-03 2003-05-20 Orbital Engine Company (Australia) Pty. Limited Method of injection of a fuel-gas mixture to an engine
US6647948B2 (en) * 2000-10-19 2003-11-18 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and fuel injection control method for direct injection engine
US6647949B2 (en) 2000-10-23 2003-11-18 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for direct injection engine
ES2278475A1 (en) * 2003-05-16 2007-08-01 Honda Motor Co, Ltd. Charge-injected internal combustion engine, and method of operating same
JP2018071468A (en) * 2016-10-31 2018-05-10 ダイハツ工業株式会社 Internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564770B1 (en) * 1997-12-03 2003-05-20 Orbital Engine Company (Australia) Pty. Limited Method of injection of a fuel-gas mixture to an engine
US6647948B2 (en) * 2000-10-19 2003-11-18 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and fuel injection control method for direct injection engine
US6647949B2 (en) 2000-10-23 2003-11-18 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for direct injection engine
ES2278475A1 (en) * 2003-05-16 2007-08-01 Honda Motor Co, Ltd. Charge-injected internal combustion engine, and method of operating same
JP2018071468A (en) * 2016-10-31 2018-05-10 ダイハツ工業株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP3852230B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
US6067954A (en) Direct fuel injection engine
TW399122B (en) Direct fuel injection ignition engine
US6314940B1 (en) Fuel feed system for a spark-ignition internal combustion engine and a method of operating such an internal combustion engine
JP2002206446A5 (en)
JP2002206446A (en) Internal combustion engine and fuel injection control device for the internal combustion engine
JP2001241329A (en) Cylinder fuel injection type internal combustion engine
JP2003262175A (en) Internal combustion engine
JP2000179433A (en) Spark ignition engine of fuel cylinder injection type
JP2007051549A (en) Fuel injection valve and direct injection engine provided with it
JPS61250354A (en) Spark-ignition engine
JP6568808B2 (en) Control device for fuel injection valve
JP2005113745A (en) Fuel supply device for internal combustion engine
JP2001107809A (en) Gas fuel internal combustion engine
JP2004346912A (en) Fuel injection control device for internal combustion engine
JPH05263698A (en) Fuel pressure control device of internal combustion engine of fuel injection type
JP2004036566A (en) In-cylinder gas flow swirl direction control device for internal combustion engine
JPS5924866Y2 (en) Electronically controlled fuel injection internal combustion engine
JP3030226B2 (en) Car lean burn engine
JP4415843B2 (en) Internal combustion engine
JPH07247872A (en) Compression ignition type internal combustion engine
JPH11343854A (en) In-cylinder injection type spark ignition engine
JP2000297681A (en) Compression ignition type internal combustion engine
JP4238752B2 (en) Control device for internal combustion engine
JP3844952B2 (en) Engine fuel injection control device
JP2007154693A (en) Device for controlling exhaust gas temperature of internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

EXPY Cancellation because of completion of term