JP2000170029A - Protein microfibril, its production and composite material - Google Patents

Protein microfibril, its production and composite material

Info

Publication number
JP2000170029A
JP2000170029A JP35172298A JP35172298A JP2000170029A JP 2000170029 A JP2000170029 A JP 2000170029A JP 35172298 A JP35172298 A JP 35172298A JP 35172298 A JP35172298 A JP 35172298A JP 2000170029 A JP2000170029 A JP 2000170029A
Authority
JP
Japan
Prior art keywords
fiber
aqueous solution
microfibrils
fibers
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35172298A
Other languages
Japanese (ja)
Other versions
JP2981555B1 (en
Inventor
Hiroshi Kato
弘 加藤
Shoji Hayasaka
昭二 早坂
Masuhiro Tsukada
益裕 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Natl Inst Of Sericultural & En
National Institute of Sericultural and Entomological Science
Original Assignee
Natl Inst Of Sericultural & En
National Institute of Sericultural and Entomological Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natl Inst Of Sericultural & En, National Institute of Sericultural and Entomological Science filed Critical Natl Inst Of Sericultural & En
Priority to JP35172298A priority Critical patent/JP2981555B1/en
Application granted granted Critical
Publication of JP2981555B1 publication Critical patent/JP2981555B1/en
Publication of JP2000170029A publication Critical patent/JP2000170029A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce protein microfibrils having easy twistability, excellent in flexibility, touch and gloss and useful for a composite material, etc., by carrying out a bead impact crushing treatment of dispersed natural protein fibers and finely splitting the fibers even in the longitudinal direction parallel to the fiber axis. SOLUTION: Natural protein fibers such as a silk yarn are treated with an aqueous solution of an alkali containing an alkaline agent or treated with an aqueous solution of a neutral salt at a pH regulated with the alkaline agent to swell the fibers and provide a state in which the fibrous structure is somewhat relaxed. The resultant fibers are dispersed in an aqueous solution and prescribed vibration and shear stress are applied to the dispersed natural protein fibers. For example, an impact crushing treatment with beads is performed under conditions of 0.2-1 mmϕ beads diameter, 5-50 min impact treating time and >=50 Hz frequency of the beads vibration to subject the fibers to not only cutting in the transverse direction perpendicular to the fiber axis of the fibers but also fine splitting even in the longitudinal direction parallel to the fiber axis. Thereby, protein microfibrils are produced. Furthermore, the protein microfibrils are preferably contained in a polymeric substance to prepare a composite material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、天然蛋白質繊維か
らその構成成分であるミクロフィブリルを開裂(分繊ま
たは微細化)させて蛋白質ミクロフィブリルを製造する
方法、得られた蛋白質ミクロフィブリル、および該蛋白
質ミクロフィブリルを含有する複合素材に関するもので
ある。この蛋白質ミクロフィブリルは衣料分野のみなら
ず非衣料分野で利用され得る。
[0001] The present invention relates to a method for producing protein microfibrils by cleaving (separating or refining) the microfibrils, which are constituents thereof, from natural protein fibers, the obtained protein microfibrils, and the method for producing the protein microfibrils. The present invention relates to a composite material containing protein microfibrils. This protein microfibril can be used not only in the garment field but also in the non-clothing field.

【0002】[0002]

【従来の技術】超微細繊維は、衣料分野ならびに非衣料
分野の先端素材として利用されている。特に有機高分子
素材の微細繊維化技術の進展は著しく、得られた微細繊
維は医用材料として積極的に利用が図られているが、天
然蛋白質を素材とする微細繊維化の技術は遅れている。
2. Description of the Related Art Ultrafine fibers are used as advanced materials in the field of clothing and non-clothing. In particular, the technology for making fine fibers from organic polymer materials is remarkable, and the obtained fine fibers are being actively used as medical materials, but the technology for making fine fibers from natural proteins is behind. .

【0003】まず、有機高分子と天然蛋白質の微細繊維
化の現状について述べる。超微細繊維は太い繊維とは全
く異なる機能特性を持つことから、各種の産業資材とし
ての利用が進んでいる。有機高分子を素材として約0.
00001デニールの超微細繊維が製造されている。例
えば、ポリエステル繊維であれば直径が0.1ミクロン
のものまで可能であり、この太さは0.0000975
デニールに相当する。こうした超微細繊維を製造する方
法には様々あるが、有機高分子を対象として開発された
もののうちから主要なものを、以下、2、3列挙する。 合成高分子の超微細繊維は「高分子相互配列体繊維」
紡糸法により製造できる。海島(うみしま)構造を持つ
特殊な紡糸用の口金により、1本の繊維の中に何千本も
の繊維が詰まった繊維の製造が可能となる。こうした方
法で製造した素材はスエード調新素材に利用されてい
る。 剥離型複合繊維:多数に分割した繊維流をつくり、そ
の後交互に張り合わせ状の繊維とする。この方法は、分
割の数に限度があり、極端に扁平化できないので極端に
細いものはできないという問題がある。 フラッシュ紡糸製布法:ポリマー溶液を高温高圧にし
てノズルから噴出させ、超微細繊維の網状糸条を製造す
る。
[0003] First, the current state of fine fibers of organic polymers and natural proteins will be described. Since ultrafine fibers have completely different functional characteristics from thick fibers, utilization as various industrial materials is progressing. Approx.
Ultra fine fibers of 00001 denier have been produced. For example, a polyester fiber can have a diameter of up to 0.1 micron and a thickness of 0.0000975.
Equivalent to denier. Although there are various methods for producing such ultrafine fibers, the main ones among those developed for organic polymers are listed below. Synthetic polymer ultra-fine fibers are "polymer inter-array fibers"
It can be manufactured by a spinning method. A special spinneret having a sea-island (Umishima) structure enables the production of fibers in which one fiber is packed with thousands of fibers. Materials manufactured in this way are used for new suede-like materials. Peelable conjugate fiber: A multiplicity of split fiber streams are formed, and then alternately laminated. This method has a problem in that the number of divisions is limited and extremely flattening cannot be performed because extremely flattening cannot be performed. Flash spinning method: A polymer solution is ejected from a nozzle at a high temperature and a high pressure to produce a net yarn of ultrafine fibers.

【0004】天然蛋白質繊維である羊毛や絹糸がしなや
かで風合い感がよいのは、素材を構成するアミノ酸残基
が多様であること、ならびにその配列順位が複雑である
ことに起因する。また、天然繊維を構成する微細構造が
複雑であるためでもある。羊毛は、ミクロフィブリルか
ら構成されており、また、絹糸は直径が100〜300
Åのミクロフィブリルから構成されている。約1000
本のミクロフィブリルが集まってフィブリルが出来上が
っているのが絹糸である。コラーゲン繊維も同様であ
り、直径1〜4μmのコラーゲン繊維は、0.08μm
のミクロフィブリルから形成され、それが集合して直径
40μmの繊維束を形成している。したがって、天然蛋
白質繊維から、その構成単位であるミクロフィブリルを
製造するには、羊毛や絹糸を構成する繊維構造を取る最
も微細な単位のミクロフィブリルを開裂させれば良いは
ずである。しかし、ミクロフィブリル間の水素結合が極
めて強いため通常の方法では効率よく開裂することが不
可能であった。
[0004] Natural protein fibers such as wool and silk yarn are supple and have a good feeling due to the variety of amino acid residues constituting the material and the complicated sequence of the amino acid residues. Another reason is that the fine structure of the natural fiber is complicated. Wool is composed of microfibrils, and silk has a diameter of 100-300.
ミ ク ロ is composed of microfibrils. About 1000
It is silk thread that the microfibrils of the book gather and fibrils are completed. The same is true for collagen fibers. A collagen fiber having a diameter of 1 to 4 μm is 0.08 μm.
Of microfibrils, which assemble to form a fiber bundle having a diameter of 40 μm. Therefore, in order to produce microfibrils, which are constitutional units thereof, from natural protein fibers, it is necessary to cleave the finest microfibrils having a fiber structure constituting wool or silk thread. However, since the hydrogen bonds between microfibrils are extremely strong, it has not been possible to efficiently cleave them by a usual method.

【0005】従来、絹糸をアルカリ水溶液に浸漬して十
分に膨潤させ、これを強く摩擦すると顕微鏡観察でフィ
ブリル構造が確認されることは知られていた。フィブリ
ルあるいは絹蛋白質は、絹蛋白質分子からなっている。
基本的な分子骨格は、アミノ酸の脱水結合により生じる
アミド結合(−CONH−)の繰り返し単位から構成さ
れている。基本骨格中のCO、NH基が近接分子鎖間の
CO、NH基と水素結合で結ばれている。フィブリル間
には、このように水素結合が形成されているため、フィ
ブリルを開裂させることは不可能に近かった。まして、
そのフィブリルを利用する研究は著しく遅れていた。特
公昭58−58449号公報には、銅−エチレンジアミ
ン水溶液あるいは臭化リチウムなどの中性塩水溶液中に
絹糸を溶解させ、これに機械的な剪断力、剪応力を加え
てフィブロイン分子を凝固・沈殿・結晶化させ、その後
脱水・乾燥させることによって微粉末状の絹フィブロイ
ンを製造する方法が開示されている。この方法では、調
製できる絹フィブロインの中に中性塩が混在してしま
い、純度の高い絹フィブロインを効率的に得ることは困
難であるという欠点がある。また、絹フィブロインを一
旦溶解させる方法を採るため、絹糸に特徴的な繊維構造
が失われてしまい、分子形態がランダムコイル状態に変
わってしまうという問題があった。
Hitherto, it has been known that when a silk thread is immersed in an aqueous alkali solution to sufficiently swell, and this is strongly rubbed, a fibril structure is confirmed by microscopic observation. Fibrils or silk proteins consist of silk protein molecules.
The basic molecular skeleton is composed of repeating units of an amide bond (—CONH—) generated by a dehydration bond of an amino acid. The CO and NH groups in the basic skeleton are connected by hydrogen bonds to the CO and NH groups between adjacent molecular chains. Due to the formation of hydrogen bonds between the fibrils, it was almost impossible to cleave the fibrils. not to mention,
Studies utilizing the fibrils have been significantly delayed. Japanese Patent Publication No. 58-58449 discloses that a silk thread is dissolved in a copper-ethylenediamine aqueous solution or a neutral salt aqueous solution such as lithium bromide, and a mechanical shearing force and a shearing stress are applied thereto to coagulate and precipitate fibroin molecules. A method for producing fine powdered silk fibroin by crystallization, followed by dehydration and drying is disclosed. This method has a disadvantage that neutral salts are mixed in the silk fibroin that can be prepared, and it is difficult to efficiently obtain high-purity silk fibroin. Further, since the method of once dissolving the silk fibroin is employed, there is a problem that the fiber structure characteristic of the silk thread is lost, and the molecular form is changed to a random coil state.

【0006】また、従来法として、絹糸をアルカリ水溶
液で処理して膨潤させ、しかる後に粉末化装置により大
きさ5μm程度にまで粉末化させる方法が知られてい
る。この方法によれば、絹糸を構成するミクロフィブリ
ルがランダムに切断されて全体として粉末状態になるだ
けで、ミクロフィブリルが繊維軸と平行の方向に規則正
しく開裂できないという欠点があり、得られたものは、
繊維を機械的に開裂した状態で細繊維化されたものに過
ぎず、繊維構造を持つミクロフィブリルでないため、利
用上好ましくないという欠点があった。特許第1557
142号には、絹フィブロイン繊維を中性塩水溶液中に
分散して絹フィブロイン分散液となし、これをセルロー
ス製の透析膜に入れ、純水と置換してできる絹フィブロ
イン水溶液にキモトリプシンを作用させて、絹フィブロ
イン分子を加水分解させ、沈殿する分画、あるいは上清
を凍結乾燥することで、2〜3μmの超微粉末を得る方
法が開示されている。この方法では、絹フィブロインの
結晶領域あるいは非結晶領域に対応した微細な粉末が得
られるが、サンプルはいずれも繊維構造を持たない分画
である。すなわち、この特許第1557142号記載の
製造技術では、繊維軸に対して縦方向や横方向という繊
維状の形態の区別が全くないものしか得られない。
Further, as a conventional method, a method is known in which a silk thread is treated with an alkaline aqueous solution to swell, and then powdered to a size of about 5 μm by a powdering device. According to this method, the microfibrils constituting the silk thread are cut at random and are merely in a powder state as a whole, but there is a disadvantage that the microfibrils cannot be cleaved regularly in a direction parallel to the fiber axis. ,
There is a drawback that the fiber is merely a fine fiber in a state in which the fiber is mechanically cleaved, and is not a microfibril having a fiber structure, which is not preferable in use. Patent No. 1557
In No. 142, silk fibroin fiber was dispersed in a neutral salt aqueous solution to form a silk fibroin dispersion, which was put into a cellulose dialysis membrane, and chymotrypsin was allowed to act on a silk fibroin aqueous solution formed by replacing with pure water. Thus, a method is disclosed in which a silk fibroin molecule is hydrolyzed and a fraction that precipitates or a supernatant is freeze-dried to obtain an ultrafine powder of 2 to 3 μm. In this method, a fine powder corresponding to the crystalline region or the non-crystalline region of silk fibroin is obtained, but each sample is a fraction having no fiber structure. In other words, according to the manufacturing technique described in Japanese Patent No. 1557142, only those having no distinction in the fibrous form such as the vertical direction and the horizontal direction with respect to the fiber axis can be obtained.

【0007】[0007]

【発明が解決しようとする課題】前記したように、例え
ば、絹蛋白質の微粉末を製造するため、絹蛋白質繊維を
粉末化装置により機械的に粉砕すると、繊維軸方向と垂
直な方向にランダムに切断されるだけに過ぎず、繊維を
構成する構成単位のミクロフィブリルを得ることはでき
ないという問題があった。この場合、得られる0.2〜
0.5μmの太さの微細繊維は絹糸の構成単位が開裂し
たものではなかった。従来法では、どのように工夫して
も分子配向性を持ったミクロフィブリルを製造すること
は不可能であった。このため、太い蛋白質繊維から0.
2〜0.5μmのミクロフィブリルを効率的に、経済的
に、かつ取り扱いが容易な方法で製造できる技術開発が
望まれている。本発明は、上記の種々の問題を解決し、
天然生体蛋白質繊維を単に繊維軸に垂直の横方向で切断
するのみならず、繊維軸と平行な縦方向にも細かく開裂
させることで、天然生体蛋白質繊維を構成するミクロフ
ィブリルを効率的、経済的に製造する方法および得られ
たミクロフィブリルならびにこれらミクロフィブリルを
含む複合素材を提供することを課題とする。
As described above, for example, in order to produce a fine powder of silk protein, when the silk protein fiber is mechanically pulverized by a pulverizer, it is randomly generated in a direction perpendicular to the fiber axis direction. There has been a problem that the microfibrils of the constituent units constituting the fiber cannot be obtained only by cutting. In this case, the obtained 0.2-
The fine fibers having a thickness of 0.5 μm were not those in which the constituent units of the silk thread were cleaved. With the conventional method, it has been impossible to produce microfibrils having molecular orientation no matter how devised. For this reason, 0.1% of thick protein fiber is used.
There is a demand for the development of a technology that can efficiently, economically, and easily handle microfibrils of 2 to 0.5 μm. The present invention solves the various problems described above,
By cutting natural bioprotein fibers not only in the horizontal direction perpendicular to the fiber axis but also finely in the vertical direction parallel to the fiber axis, the microfibrils constituting the natural bioprotein fibers can be efficiently and economically cut. It is another object of the present invention to provide a method for producing a microfibril, a resulting microfibril, and a composite material containing the microfibril.

【0008】[0008]

【課題を解決するための手段】本発明のミクロフィブリ
ル製造方法によれば、天然蛋白質繊維を、アルカリ剤を
含むアルカリ水溶液により処理し、またはアルカリ剤で
pHを調整した中性塩水溶液により処理し、該繊維を膨
潤させ、繊維構造が若干弛緩した状態にして、該水溶液
に分散せしめ、この分散した天然蛋白質繊維に対して、
一定の振動とずり応力を与えるビーズ衝撃破砕処理を行
うことにより、該繊維の繊維軸と垂直な横方向の切断の
みならず該繊維軸と平行な縦方向にも細かく開裂された
ミクロフィブリルが得られる。ここで、繊維構造が若干
弛緩した状態とは、ビーズ衝撃破砕処理に際してミクロ
フィブリルが開裂し易い状態にあることを意味し、フィ
ブロイン繊維の強度が、凡そ50%程度以下に低下した
状態にあることである。アルカリ水溶液処理に用いるこ
とができるアルカリ剤としては公知のものが利用可能で
ある。例えば、水酸化カリウム(以下、KOHと略記す
ることもある)、水酸化ナトリウム、炭酸ナトリウムな
どのアルカリ剤が例示できる。また、pH調整のために
用いるアルカリ剤は上記アルカリ剤と同じものが例示で
き、pHの調整された中性塩水溶液の処理に用いること
ができる中性塩水溶液としては、臭化リチウム、塩化カ
ルシウム、炭酸カルシウム、硝酸カルシウム、チオシア
ン酸リチウム、硝酸カリウムなどの少なくとも1種を含
む濃厚水溶液が例示できる。なかでも、ミクロフィブリ
ルを効果的に開裂させるには臭化リチウムとチオシアン
酸リチウムが好ましい。
According to the method for producing microfibrils of the present invention, natural protein fibers are treated with an aqueous alkaline solution containing an alkaline agent, or treated with an aqueous neutral salt solution whose pH has been adjusted with an alkaline agent. Swelling the fiber, leaving the fiber structure in a slightly relaxed state, dispersing in the aqueous solution, with respect to the dispersed natural protein fiber,
By performing bead impact crushing treatment that applies constant vibration and shear stress, microfibrils finely cleaved not only in the transverse direction perpendicular to the fiber axis of the fiber but also in the vertical direction parallel to the fiber axis are obtained. Can be Here, the state in which the fiber structure is slightly relaxed means that the microfibrils are in a state in which the microfibrils are easily broken during the bead impact crushing treatment, and the state in which the strength of the fibroin fibers is reduced to about 50% or less. It is. Known alkaline agents that can be used in the alkaline aqueous solution treatment can be used. For example, alkali agents such as potassium hydroxide (hereinafter sometimes abbreviated as KOH), sodium hydroxide and sodium carbonate can be exemplified. Examples of the alkaline agent used for adjusting the pH include the same alkaline agents as those described above. Examples of the neutral salt aqueous solution that can be used for the treatment of the pH-adjusted neutral salt aqueous solution include lithium bromide and calcium chloride. And a concentrated aqueous solution containing at least one of calcium carbonate, calcium nitrate, lithium thiocyanate and potassium nitrate. Among them, lithium bromide and lithium thiocyanate are preferred for effectively cleaving microfibrils.

【0009】アルカリ水溶液の濃度は、好ましくは1.
0〜5.0%、より好ましくは1.5〜5.0%であ
る。アルカリ濃度が1.0%未満であると、蛋白質繊維
が膨潤し難く、後でビーズ衝撃破砕処理をしてもミクロ
フィブリルが開裂する効率は低い。アルカリ濃度が5.
0%を超えると蛋白質繊維の膨潤が進みすぎて、溶解し
てしまいミクロフィブリルが調製できない。アルカリ処
理温度は、30〜80℃、好ましくは40〜55℃、よ
り好ましくは50〜55℃であり、アルカリ処理時間
は、5〜20時間、好ましくは5〜15時間である。こ
のアルカリ処理工程でホモジナイザー処理は行わなくて
も良いが、蛋白質繊維からミクロフィブリルを開裂させ
る効率を高めるためにはこのホモジナイザー処理は有効
である。アルカリ処理を終えた後、繊維状サンプルは水
洗いを十分に行い、必要により酸性薬剤で中和する。
The concentration of the aqueous alkali solution is preferably 1.
It is 0-5.0%, more preferably 1.5-5.0%. If the alkali concentration is less than 1.0%, the protein fibers are unlikely to swell, and the efficiency of microfibril cleavage is low even if the beads are subjected to impact crushing. The alkali concentration is 5.
If it exceeds 0%, the swelling of the protein fiber proceeds too much and dissolves, making it impossible to prepare microfibrils. The alkali treatment temperature is 30 to 80C, preferably 40 to 55C, more preferably 50 to 55C, and the alkali treatment time is 5 to 20 hours, preferably 5 to 15 hours. The homogenizer treatment may not be performed in the alkali treatment step, but the homogenizer treatment is effective for increasing the efficiency of cleaving microfibrils from protein fibers. After the alkali treatment, the fibrous sample is sufficiently washed with water, and if necessary, neutralized with an acidic chemical.

【0010】中性塩水溶液の濃度は、4M以上、好まし
くは4〜8M、より好ましくは5〜6Mである。中性塩
濃度が4M未満であると蛋白質繊維が充分に膨潤せず、
後でビーズ衝撃破砕処理をしてもミクロフィブリルが開
裂する効率は低く、8Mを超えると蛋白質繊維(フィブ
ロイン繊維)は収縮し、そして溶解してしまいミクロフ
ィブリルが調製できない。この中性塩処理は、アルカリ
剤でpHを9以上に調整した、濃度が4M以上の中性塩
水溶液を用いて、処理温度が10℃以上、処理時間が5
〜20分で実施されることが望ましい。アルカリ処理の
場合と同様に、この中性塩処理工程でもホモジナイザー
処理は行わなくて良いが、蛋白質繊維からミクロフィブ
リルを開裂させる効率を高めるためにはこのホモジナイ
ザー処理は有効である。
The concentration of the aqueous neutral salt solution is 4 M or more, preferably 4 to 8 M, more preferably 5 to 6 M. If the neutral salt concentration is less than 4M, the protein fibers do not swell sufficiently,
Even if bead impact crushing is performed later, the efficiency of microfibril cleavage is low. If it exceeds 8 M, protein fibers (fibroin fibers) shrink and dissolve, and microfibrils cannot be prepared. This neutral salt treatment is performed by using a neutral salt aqueous solution having a pH adjusted to 9 or more with an alkali agent and having a concentration of 4 M or more at a treatment temperature of 10 ° C. or more and a treatment time of 5 minutes.
Desirably, it takes about 20 minutes. As in the case of the alkali treatment, the homogenizer treatment does not need to be performed in this neutral salt treatment step, but the homogenizer treatment is effective for increasing the efficiency of cleaving microfibrils from protein fibers.

【0011】前記処理により膨潤されて分散状態にある
蛋白質繊維を、振動するビーズと接触させること(以
後、ビーズ衝撃破砕処理という)によって、各蛋白質繊
維はビーズ間の衝撃で多数のミクロフィブリルに細かく
開裂、粉砕される。このビーズ衝撃破砕処理は、ビーズ
の振動周波数、衝撃処理時間、ビーズ直径によって大き
く変化する。ビーズ直径は小さすぎても大きすぎても蛋
白質繊維からミクロフィブリルを得ることは困難である
が、通常、0.2〜1mmであればミクロフィブリル化
は可能であり、好ましくは0.2〜0.8mm、より好
ましくは0.2〜0.5mmである。ビーズ直径が、
0.2mm未満であり、また、1mmを超えると、フィ
ブリル化は困難である。処理時間は5分以上、好ましく
は10〜50分であり、処理時間を延長すればビーズ直
径は小さくても十分フィブリル化が可能である。周波数
には特に制約はなく、50Hz以上、好ましくは70〜
120Hzであるが、目的に合致するものであればこれ
に制約されることはない。ビーズ素材はガラスあるいは
石英製のビーズであり、望ましくは真球状でかつ一定の
粒径を持つガラスビーズである。なお、アルカリ水溶液
の濃度または中性塩水溶液の濃度、アルカリ水溶液また
は中性塩水溶液中での浸漬処理時間、ビーズの直径、ビ
ーズ振動の周波数、ビーズ衝撃破砕処理の時間を変える
ことでミクロフィブリルの開裂程度を制御することがで
きる。
By bringing the protein fibers swollen and dispersed in the above treatment into contact with vibrating beads (hereinafter referred to as bead impact crushing treatment), each protein fiber is finely divided into a large number of microfibrils by the impact between beads. Cleaved and crushed. This bead impact crushing treatment varies greatly depending on the vibration frequency of the beads, the impact treatment time, and the bead diameter. It is difficult to obtain microfibrils from protein fibers if the bead diameter is too small or too large, but microfibrillation is usually possible if the diameter is 0.2 to 1 mm, preferably 0.2 to 0. 0.8 mm, more preferably 0.2 to 0.5 mm. The bead diameter is
If it is less than 0.2 mm and more than 1 mm, fibrillation is difficult. The treatment time is 5 minutes or longer, preferably 10 to 50 minutes. If the treatment time is extended, sufficient fibrillation is possible even if the bead diameter is small. The frequency is not particularly limited, and is 50 Hz or more, preferably 70 to
The frequency is 120 Hz, but is not limited to this as long as it meets the purpose. The bead material is a glass or quartz bead, preferably a true spherical glass bead having a certain particle diameter. By changing the concentration of the alkaline aqueous solution or the concentration of the neutral salt aqueous solution, the immersion treatment time in the alkaline aqueous solution or the neutral salt aqueous solution, the diameter of the beads, the frequency of the bead vibration, the time of the bead impact crushing treatment, The degree of cleavage can be controlled.

【0012】[0012]

【発明の実施の形態】本発明によれば、天然蛋白質繊維
を、アルカリ剤を含む1.0〜5.0%のアルカリ水溶
液により処理し、またはアルカリ剤でpHを9以上に調
整した濃度が4M以上の中性塩水溶液により処理し、該
繊維を膨潤させ、繊維構造が若干弛緩した状態にして、
該水溶液に分散せしめ、この分散した天然蛋白質繊維に
対して、一定の振動とずり応力を与えるビーズ(0.2
〜1mmφ)衝撃破砕処理を行うことにより、該繊維の
繊維軸と垂直な横方向の切断のみならず該繊維軸と平行
な縦方向にも細かく開裂された蛋白質ミクロフィブリル
が得られる。本発明では、天然蛋白質繊維であれば公知
の繊維が利用できる。例えば、家蚕あるいは野蚕由来の
絹蛋白質繊維でも利用できるし、動物由来の羊毛などの
ケラチン繊維であってもよい。コラーゲン繊維であって
も同様に利用できる。家蚕としては Bombyx mori,Bomby
x mandarineが、野蚕としては柞蚕、天蚕、ムガ蚕、エ
リ蚕由来の野蚕絹糸が例示できる。
According to the present invention, a natural protein fiber is treated with a 1.0 to 5.0% aqueous alkali solution containing an alkali agent, or the pH of the solution is adjusted to 9 or more with an alkali agent. Treated with a 4M or more neutral salt aqueous solution to swell the fibers and make the fiber structure slightly relaxed,
The beads are dispersed in the aqueous solution and give a certain vibration and shear stress to the dispersed natural protein fibers (0.2
By performing impact crushing, protein microfibrils finely cleaved not only in the transverse direction perpendicular to the fiber axis of the fiber but also in the longitudinal direction parallel to the fiber axis can be obtained. In the present invention, known fibers can be used as long as they are natural protein fibers. For example, silk protein fibers derived from silkworms or wild silkworms can be used, and keratin fibers such as animal-derived wool may be used. Collagen fibers can be similarly used. Bombyx mori, Bomby
x mandarine, examples of wild silkworms include tussah silkworms, natural silkworms, moth silkworms, and wild silkworm silk threads derived from eri silkworms.

【0013】蛋白質繊維を膨潤させるためのアルカリ剤
としては、一般に、上記したように、公知のアルカリ
を、所定の濃度、所定の処理温度および処理時間で用い
ることができるが、羊毛や家蚕絹糸よりも耐アルカリ性
に優れた柞蚕絹糸、エリ蚕絹糸、ムガ蚕絹糸などの野蚕
絹糸の場合は、アルカリ濃度は高めに設定する必要があ
る。例えば、50℃のKOH水溶液中に10〜12時間
浸漬するという条件では、羊毛の場合には少なくとも1
〜1.5%のKOH水溶液、家蚕絹糸の場合には少なく
とも1〜2.5%KOH水溶液で充分であるのに対し
て、野蚕絹糸の場合には2.2〜4.8%のKOH水溶
液が必要である。中性塩としては、上記したような化合
物を使用できるが、蛋白質繊維からミクロフィブリルを
開裂させるための濃度は処理温度によって異なるが、室
温処理ならば4M以上の濃度が必要である。
As the alkali agent for swelling the protein fibers, generally, as described above, a known alkali can be used at a predetermined concentration, a predetermined processing temperature and a predetermined processing time. Also, in the case of wild silks such as tussah silk, Eri silk, and helmet silk which are excellent in alkali resistance, the alkali concentration needs to be set higher. For example, under the condition of immersion in a 50 ° C. aqueous KOH solution for 10 to 12 hours, at least 1 wool is used for wool.
1.51.5% KOH aqueous solution, for silkworm silk, at least 1-2.5% KOH aqueous solution is sufficient, whereas for wild silkworm silk, 2.2-4.8% KOH aqueous solution is necessary. As the neutral salt, the above-mentioned compounds can be used. The concentration for cleaving the microfibrils from the protein fiber varies depending on the treatment temperature, but a concentration of 4 M or more is required for the treatment at room temperature.

【0014】本発明の方法で蛋白質繊維から開裂させた
ミクロフィブリルは通常水分散液中で得られる。従っ
て、該分散液から遠心処理、デカンテーション法等で分
散液中のミクロフィブリルを分取し、これをシート状に
集積させれば不織布状のフィブリルシートが調製でき
る。さらに、ポリビニールアルコール(PVA)や家蚕
絹フィブロインなどの高分子物質水溶液または分散液に
本発明のミクロフィブリルを分散させたものをポリエチ
レン膜上に広げて蒸発乾固させれば、ミクロフィブリル
を含んだ絹フィブロイン膜が得られる。あるいは、ミク
ロフィブリルを含んだ高分子物質水溶液または分散液を
凍結乾燥させることでミクロフィブリルを含む粉末状の
高分子物質が調製できる。本発明の蛋白質ミクロフィブ
リルの化学構造は、開裂する前の天然蛋白質繊維の化学
構造と同一である。蛋白質繊維を構成するミクロフィブ
リルを開裂することによって調製できるミクロフィブリ
ルであるため、天然蛋白質の化学構造を持つ均一サイズ
のミクロフィブリルであるという特徴がある。
The microfibrils cleaved from protein fibers by the method of the present invention are usually obtained in an aqueous dispersion. Therefore, a non-woven fibril sheet can be prepared by collecting microfibrils in the dispersion from the dispersion by centrifugation, decantation, or the like, and accumulating them in a sheet. Further, a dispersion of the microfibrils of the present invention in an aqueous solution or dispersion of a polymer substance such as polyvinyl alcohol (PVA) or silkworm silk fibroin is spread on a polyethylene membrane and evaporated to dryness to contain microfibrils. A silk fibroin membrane is obtained. Alternatively, a powdery polymer substance containing microfibrils can be prepared by freeze-drying an aqueous solution or dispersion of the polymer substance containing microfibrils. The chemical structure of the protein microfibrils of the present invention is identical to that of the native protein fiber before cleavage. Since it is a microfibril that can be prepared by cleaving microfibrils constituting a protein fiber, it is characterized by being a uniform-sized microfibril having the chemical structure of a natural protein.

【0015】本発明のミクロフィブリルは柔軟性、タッ
チ、光沢、表面積に特徴のある化学構造と物理特性を持
つ天然素材である。このミクロフィブリルを用いて、柔
らかさ、滑らかさ、捻れやすさを有するフィブリル集合
体を調製することができ、この集合体は、単位重量あた
りの表面積が極めて広いために低分子物質の吸着担体と
して利用できる。本発明によって天然蛋白質繊維から構
成成分のミクロフィブリルを取り出す際に、アルカリ処
理時のpH、処理時間、ビーズ衝撃処理時のビーズサイ
ズと処理時の周波数を変えることでミクロフィブリルの
開裂度を変化させることが可能であると共に、ミクロフ
ィブリルの繊維長も同様に変化させることが可能であ
る。蛋白質ミクロフィブリル分散液から遠心分離法、自
然沈殿法、蒸発乾燥法(送風乾燥法など)、フィルター
による濾過法などにより水を除去してミクロフィブリル
だけを取り出すことが可能であり、その際の分離方法の
種類により、塊状、膜状、粉末状等の形の異なる素材を
調製できる。
The microfibrils of the present invention are natural materials having chemical structure and physical properties characterized by flexibility, touch, gloss, and surface area. By using this microfibril, a fibril aggregate having softness, smoothness, and easy twisting can be prepared.This aggregate has an extremely large surface area per unit weight, so that it can be used as an adsorption carrier for low molecular substances. Available. According to the present invention, the degree of microfibril cleavage is changed by changing the pH during alkali treatment, the treatment time, the bead size during bead impact treatment, and the frequency during treatment when taking out microfibrils as constituents from natural protein fibers according to the present invention. And the fiber length of the microfibrils can be varied as well. It is possible to remove only microfibrils from the protein microfibril dispersion liquid by removing water by centrifugation, spontaneous precipitation, evaporative drying (such as air drying), or filtration with a filter. Depending on the type of the method, materials having different shapes such as a lump, a film, and a powder can be prepared.

【0016】本発明のミクロフィブリルは、その柔軟な
風合い感を活かした新感覚の衣料材料として、またメガ
ネふき用の高級ワイピング材として利用できる。また、
素材が天然生体高分子であり、プラスとマイナスの電荷
を持つ両性電解質であるため低分子物質の濾過材にも応
用できる。また、ミクロフィブリルの太さを生体細胞の
スケールレベルに近づけた素材であるため、血球分離材
として有望である。本発明のミクロフィブリルを接着
剤、溶融繊維あるいは機械的方法により相互に接合する
ことにより、不織布の風合い感を持つ繊維製品を製造す
ることができる。本発明によりフィブロイン繊維から作
ったミクロフィブリルは繊維状の形態をもっているた
め、このミクロフィブリルを加工することなく、そのま
まの状態で、接着剤や溶融繊維などを使って、直接、不
織布にすることができる。本発明の蛋白質ミクロフィブ
リルは水分散液状態で得られるので、紡糸ノズルからこ
れを噴射し、この際に生ずる空気流で吹き飛ばし、コン
ベアーのスクリーン上でランダムマットを形成すること
ができる。
The microfibril of the present invention can be used as a clothing material with a new feeling utilizing its soft texture, and as a high-grade wiping material for wiping glasses. Also,
Since the material is a natural biopolymer and an amphoteric electrolyte having positive and negative charges, it can also be applied to a filter material of a low molecular substance. In addition, since the material has a microfibril thickness close to the scale level of living cells, it is promising as a blood cell separation material. By bonding the microfibrils of the present invention to each other by an adhesive, a molten fiber, or a mechanical method, a fiber product having a feeling of a nonwoven fabric can be manufactured. Since microfibrils made from fibroin fibers according to the present invention have a fibrous form, they can be directly formed into a nonwoven fabric using an adhesive or a molten fiber without processing the microfibrils as they are. it can. Since the protein microfibrils of the present invention are obtained in the form of an aqueous dispersion, they can be sprayed from a spinning nozzle and blown off by an air stream generated at this time to form a random mat on a screen of a conveyor.

【0017】合成繊維製造工程において溶融紡糸・延伸
工程を行った後、得られた合成繊維を、接着剤として合
成樹脂エマルジョンなどを含んだ本発明による蛋白質ミ
クロフィブリル水性分散液中をくぐらせると、この合成
繊維表面にミクロフィブリルが付着・固定する。かくし
て、絹蛋白質繊維から得られたミクロフィブリルの場
合、絹フィブロインの光沢、絹の吸湿・放湿性能を持
ち、かつ絹の風合い感を有する衣料素材が製造できる。
本発明のミクロフィブリルを機械的、熱的、化学的な手
段を用いて接着または交絡させて、シート状またはウェ
ブ構造を持つ不織布の製造に応用できると共に、多様な
性質や形状の製品を調製することが可能となる。また、
ミクロフィブリルを用い、製紙方法に従って湿式不織布
製品を作ることが可能である。ミクロフィブリルを接着
剤で結合させて、柔軟性とドレープ性に富む製品とする
ことが可能である。ミクロフィブリルを高圧水流で絡み
合わせ、機械的に結合させて、柔軟な不織布製品を作る
ことも可能である。また、本発明の蛋白質ミクロフィブ
リルは、低分子物質、医薬品、生理活性物質に対して強
い親和性を持つため、ミクロフィブリルを集積し不織布
化させることで、消臭性物質の担体、ろ過フィルター素
材、あるいは有効成分を含む蛋白質和紙素材として利用
できる。さらに、蛋白質ミクロフィブリルは、衣料用資
材、寝装寝具用資材、産業用資材、土木用資材、建設用
資材、農薬・園芸用資料、生体・生活関連資材、医療用
資材、衛生材料などとして利用できる。
After performing the melt-spinning / drawing step in the synthetic fiber production step, the obtained synthetic fiber is passed through an aqueous protein microfibril dispersion according to the present invention containing a synthetic resin emulsion or the like as an adhesive. Microfibrils adhere and fix to the surface of the synthetic fiber. Thus, in the case of microfibrils obtained from silk protein fibers, a clothing material having the luster of silk fibroin, the ability to absorb and release moisture of silk, and the feeling of silk can be produced.
The microfibrils of the present invention are bonded or entangled using mechanical, thermal, or chemical means to be applied to the production of non-woven fabrics having a sheet or web structure and to prepare products having various properties and shapes. It becomes possible. Also,
Using microfibrils, it is possible to make wet nonwoven products according to the papermaking process. The microfibrils can be bonded with an adhesive to provide a product with high flexibility and drapability. The microfibrils can also be entangled with a high pressure water stream and mechanically bonded to create a flexible nonwoven product. In addition, the protein microfibrils of the present invention have a strong affinity for low molecular substances, drugs, and physiologically active substances. Therefore, by accumulating microfibrils and forming a nonwoven fabric, a carrier for a deodorant substance, a filter material for filtration. Or, it can be used as a protein Japanese paper material containing an active ingredient. In addition, protein microfibrils are used as clothing materials, bedding materials, industrial materials, civil engineering materials, construction materials, agricultural and horticultural materials, living and living related materials, medical materials, and sanitary materials. it can.

【0018】[0018]

【実施例】次に、本発明を実施例および比較例によりさ
らに詳細に説明するが、本発明はこれらの例に限定され
るものではない。なお、ミクロフィブリルの形態の観察
は光学顕微鏡ならびに偏光顕微鏡により行った。 顕微鏡観察:偏光を利用して有機化合物および無機化合
物の複屈折や光学的異方性を観察、測定する偏光顕微鏡
(ニコン工業製)を用いて、検光子と偏光子との間に得
られたミクロフィブリルを入れ、結晶性、配向性の違い
により現れた干渉色に基づいて、ミクロフィブリルの形
態と偏光性を観察した。 実施例1:フィブリル化処理 原料としての家蚕絹糸をハサミで繊維長約5mmに切断
したもの1gを秤量し、濃度の異なる50℃、200m
Lの水酸化カリウム水溶液(1.0%、1.5%、2.
0%)で15時間精錬処理した。水洗後、このサンプル
に、粒径0.5mmφのガラスビーズ約20gを混入し
て、サンプルホルダー(200mL容器)に固定後、ガ
ラスビーズ衝撃機(Edmund Buhler 社製、Vibrogen−Ze
llmuhle,Vi 4型)を用いて30分間衝撃破砕処理した。
処理したフィブリル繊維分散液を上澄み液として採取し
て下層に沈殿したガラスビーズと過別し、フィブリル繊
維を流水でよく洗浄した。また、対照として、上記ビー
ズ衝撃破砕処理のみを行わなかったサンプルも同様にし
て調製した。1.0%、1.5%、2.0%のKOH水
溶液で処理することで調製できる家蚕絹糸のミクロフィ
ブリルをニコン工業製の偏向顕微鏡で写真撮影し、形態
観察を行った。得られた写真観察結果を、図1、図2、
図3に示し、ビーズ衝撃破砕処理を行ったサンプルと行
わなかったサンプルの形状を比較した。
Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. The microfibril morphology was observed with an optical microscope and a polarizing microscope. Microscopic observation: Obtained between an analyzer and a polarizer using a polarizing microscope (manufactured by Nikon Industries) that observes and measures the birefringence and optical anisotropy of organic and inorganic compounds using polarized light. The microfibrils were placed, and the morphology and polarization of the microfibrils were observed based on the interference color that appeared due to the difference in crystallinity and orientation. Example 1: Fibrillation treatment Silkworm silk as a raw material was cut to a fiber length of about 5 mm with scissors, 1 g was weighed, and the concentration was changed to 50 ° C and 200 m.
L potassium hydroxide aqueous solution (1.0%, 1.5%, 2.
(0%) for 15 hours. After washing with water, this sample was mixed with about 20 g of glass beads having a particle diameter of 0.5 mmφ, fixed in a sample holder (200 mL container), and then subjected to a glass bead impactor (manufactured by Edmund Buhler, Vibrogen-Ze).
llmuhle, type Vi 4) for 30 minutes.
The treated fibril fiber dispersion was collected as a supernatant, separated from the glass beads precipitated in the lower layer, and the fibril fibers were thoroughly washed with running water. Further, as a control, a sample not subjected to only the bead impact crushing treatment was prepared in the same manner. Microfibrils of silkworm silk, which can be prepared by treating with 1.0%, 1.5%, and 2.0% KOH aqueous solutions, were photographed with a deflection microscope manufactured by Nikon Kogyo to observe the morphology. The obtained photograph observation results are shown in FIGS.
As shown in FIG. 3, the shapes of the sample subjected to the bead impact crushing treatment and the sample not subjected to the impact crushing were compared.

【0019】図1(A)と(B)との比較から明らかな
ように、KOH濃度1.0%で処理した場合には、ミク
ロフィブリルに開裂はするがその程度は軽微であること
が観察される。図2(A)と(B)との比較から明らか
なように、KOH濃度1.5%で処理した場合には、各
絹フィブロイン繊維は繊維軸に垂直な横方向のみならず
(繊維の切断)、繊維軸と平行な縦方向にも細かく開裂
している様子が観察される。図2(A)に示す開裂細繊
維は概ね、直径0.2μm内外、長さ2mm程度のミク
ロフィブリル形態をなしている。光学顕微鏡観察による
と、ミクロフィブリルの平均直径は0.2μmであり、
標準偏差は0.08であった。さらに、図3(A)と
(B)との比較から明らかなように、KOH濃度が2.
0%の高濃度になると、蛋白質繊維から開裂するミクロ
フィブリルはよりいっそう微細な形態となることが観察
される。
As is clear from the comparison between FIGS. 1A and 1B, when the treatment was performed at a KOH concentration of 1.0%, it was observed that the microfibrils were cleaved but the degree was slight. Is done. As is clear from the comparison between FIGS. 2 (A) and 2 (B), when the silk fibroin fiber was treated at a KOH concentration of 1.5%, not only the silk fibroin fiber but also the transverse direction perpendicular to the fiber axis (the fiber cutting) was used. ), And a finely split state is also observed in the vertical direction parallel to the fiber axis. The split fine fibers shown in FIG. 2A are generally in the form of microfibrils having a diameter of about 0.2 μm and a length of about 2 mm. According to light microscopy observation, the average diameter of the microfibrils is 0.2 μm,
The standard deviation was 0.08. Furthermore, as is clear from the comparison between FIGS. 3A and 3B, the KOH concentration was 2.
At higher concentrations of 0%, it is observed that the microfibrils cleaving from the protein fibers are in a finer form.

【0020】上記のようにして得られた開裂細繊維は、
絹繊維を銅−エチレンジアミン水溶液などの溶媒に溶解
した絹フィブロイン水溶液を凝固析出せしめ、次いで脱
水乾燥後粉砕して得られる微粉末状のもの(特公昭58
−38449号公報記載のもの)とは、形状を著しく異
にしている。 比較例1 家蚕絹糸を破砕し、構成単位のミクロフィブリルを家蚕
絹糸から簡便に開裂させるために、メノウ製の乳鉢と乳
棒を用いてミクロフィブリルの調製を試みた。家蚕絹糸
をハサミで3〜4mmに切断し、乳鉢と乳棒で力を加え
て十分に破砕させようと試みたが、繊維が扁平になるだ
けでミクロフィブリルは得られなかった。そこで、粒径
0.5mmのガラスビーズを乳鉢に1g秤量し、ハサミ
で切断した家蚕絹糸を入れ、乳棒で破砕化させたとこ
ろ、ガラスの破砕面が鋭敏なため繊維は繊維軸方向と垂
直に細かく切断された。肉眼では粉末化したように見え
るが、偏光顕微鏡で観察すると、ミクロフィブリル化は
全く起こっていなかった。次に、ガラスビーズの代わり
に砂鉄を入れて家蚕絹糸を破砕させようとしたが、砂鉄
が軟らかすぎるため、微粉末化は起こるが、ミクロフィ
ブリル化は起こらなかった。乳鉢中で、ガラスや砂鉄な
どのビーズを用いて家蚕絹糸を破砕させようとしても、
一度に多量の処理ができず、ミクロフィブリル化は起こ
らなかった。また、乳鉢での破砕処理後、粉末状試料と
ビーズとの分離を容易な方法で行うことは困難であっ
た。 実施例2:フィブリルのサイズ 家蚕絹糸を3%KOH水溶液中で12時間浸漬処理した
後、ガラスビーズ衝撃破砕装置(Edmund Buhler 社製)
でフィブリル化させた。ガラスビーズとして、直径0.
3mm、0.5mmの2種類のビーズを用いた。超音波
の周波数は75Hzであった。ガラスビーズの衝撃破砕
時間、サイズ、ビーズの種類を変えて、調製できる絹繊
維のミクロフィブリルの長さと幅(サイズ)との変化を
顕微鏡観察で評価した。得られた結果を表1に示すと共
に実施例1の観察結果もあわせて表1に示す。
The split fine fibers obtained as described above are:
An aqueous solution of silk fibroin obtained by dissolving silk fibers in a solvent such as an aqueous solution of copper-ethylenediamine is coagulated and precipitated, followed by dehydration and drying, followed by pulverization.
-38449) is significantly different in shape. Comparative Example 1 In order to crush silkworm silk and cleave the microfibrils of the constituent units easily from silkworm silk, the preparation of microfibrils was attempted using a mortar and pestle made of agate. The silkworm silk was cut into pieces of 3 to 4 mm with scissors, and an attempt was made to sufficiently break it by applying force with a mortar and pestle, but microfibrils could not be obtained because the fibers were flattened. Then, 1 g of glass beads having a particle size of 0.5 mm was weighed in a mortar, and the silkworm silk thread cut with scissors was put into the mortar and crushed with a pestle. It was cut finely. Although it looks powdery to the naked eye, microfibrillation did not occur at all when observed with a polarizing microscope. Next, an attempt was made to crush the silkworm silk by adding iron sand instead of glass beads, but the iron sand was too soft, so that fine powdering occurred, but microfibrillation did not occur. In a mortar, even if you try to break the silkworm silk using beads such as glass or iron sand,
A large amount of treatment could not be performed at once, and microfibrillation did not occur. After the crushing treatment in a mortar, it was difficult to separate the powdery sample from the beads by an easy method. Example 2: Size of fibrils Silkworm silk was immersed in a 3% KOH aqueous solution for 12 hours, and then subjected to a glass bead impact crusher (manufactured by Edmund Buhler).
To fibrillate. As glass beads, a diameter of 0.
Two types of beads of 3 mm and 0.5 mm were used. The frequency of the ultrasonic wave was 75 Hz. Changes in the length and width (size) of the microfibrils of the silk fibers that can be prepared by changing the impact crushing time, size, and type of beads of the glass beads were evaluated by microscopic observation. The obtained results are shown in Table 1 and the observation results of Example 1 are also shown in Table 1.

【0021】[0021]

【表1】 上記実施例において、衝撃破砕時間を長くすれば、フィ
ブリル化は更に進み、また、粒径0.2mmφのガラス
ビーズを用いる場合には、衝撃破砕時間を長くする必要
がある。 実施例3:絹フィブロインにミクロフィブリルを含有す
る複合材料 家蚕絹フィブロイン繊維を臭化リチウムの飽和水溶液に
入れ、60℃で20分間加熱することで絹フィブロイン
繊維を溶解し、次いでこれをセルロース製の透析膜に入
れ、純水と置換することで、濃度4%の絹フィブロイン
水溶液を調製した。この4%絹フィブロイン水溶液1.
32mLに実施例1で用いたミクロフィブリル分散液
(1.5%のKOH水溶液で処理したもの)0.68g
を加え、ガラス棒で静かに攪拌し均一の絹フィブロイン
分散液を調製した。25℃の室温でポリエチレン膜上に
この分散液を拡げ、一昼夜かけて水分を蒸発させて、ミ
クロフィブリルを含む絹フィブロイン膜を製造した。ニ
コン社製の偏光顕微鏡(POM)でこの複合材料を観察
したところ、ミクロフィブリルは絹フィブロイン膜中に
局在すること無く、均一に分布し、かつミクロフィブリ
ル同士の凝集はみられなかった。 実施例4:ミクロフィブリル含有の絹フィブロイン粉末 実施例3と同じようにして調製した4%の絹フィブロイ
ン水溶液5mLに家蚕絹糸より開裂して調製したミクロ
フィブリル分散液2.5mLを混合し、ガラス棒でゆっ
くり攪拌した後室温で20分静置した。これにエタノー
ルを3mL加え、−20℃で一旦凍結させた後、東西通
商株式会社製の凍結乾燥機(AB−3)を用い、減圧下
で10時間かけて乾燥して水分を除去し、ミクロフィブ
リルを含んだ絹フィブロイン粉末を調製した。この絹フ
ィブロイン粉末は、分子鎖が乱れたランダムコイル状分
子からなり、ミクロフィブリルはフィブリル繊維方向に
分子鎖が配向した微細構造を取り、この2種類の素材の
特性を持つ、新規の複合蛋白質素材が製造できた。 実施例5:プラスチックフィルム 絹糸を、2.5%KOH水溶液中で一昼夜処理し、さら
にガラスビーズ衝撃破砕法で開裂させて得たミクロフィ
ブリルの分散液をスチール製の「フルイ」に入れ、2時
間かけて水分を濾別した。フィルター上にはミクロフィ
ブリルのゲル状物が残った。これを自然乾燥させると膜
状のミクロフィブリル塊状物であるプラスチックフィル
ムが製造できた。 実施例6:柞蚕絹フィブリル 柞蚕絹フィブロイン繊維を、実施例2と同様に、室温
で、3%KOH水溶液中で12時間浸漬処理した後、3
0分間、0.5mm直径のガラスビーズによる衝撃破砕
処理を行って、フィブリルを開裂させた。得られた柞蚕
絹フィブロインのミクロフィブリルを偏光顕微鏡で観察
した。ミクロフィブリルの平均直径は0.3μmであ
り、測定上の標準偏差は0.08であった。 実施例7:エリ蚕絹フィブリル エリ蚕絹フィブロインを用い、実施例2と同様にしてミ
クロフィブリルを調製した。ミクロフィブリルの平均直
径は0.4μmであり、測定上の標準偏差は0.010
であった。 実施例8 羊毛を用い、実施例2と同様にして羊毛のミクロフィブ
リルを調製した。ミクロフィブリルの平均直径は0.5
μmであり、測定上の標準偏差は0.018であった。 実施例9 4Mあるいは8Mの臭化リチウム水溶液100mLに
0.5gの家蚕絹糸を入れ、これに0.5mmφのガラ
スビーズを入れてビーズ衝撃破砕処理を30分間行っ
た。処理過程で臭化リチウム水溶液は昇温し70℃にな
った。サンプルを取り出し、水洗いを十分行い、繊維形
態を顕微鏡により観察した。いずれの絹フィブロイン繊
維表面からも、微細で太さ0.3μmのミクロフィブリ
ルが数多く枝分かれしていることが観察された。 実施例10 ボーメ比重計で1.40の硝酸カリウム水溶液100m
Lに実施例9と同様に0.5gの家蚕絹糸を入れ、50
℃で30分処理して、絹糸の構造を弱める処理を行っ
た。サンプルを取り出し、水洗いした後、顕微鏡により
絹糸表面を観察した。絹フィブロイン繊維表面から、微
細で太さ0.3μmのミクロフィブリルが数多く枝分か
れしていることが観察された。 実施例11 実施例3で用いた絹フィブロイン水溶液の代わりに、水
に溶解した2.5%のポリビニルアルコール(和光純薬
工業(株)製)を用い、これにミクロフィブリル分散液
0.3gを加えた。実施例3と同様の方法で水分を蒸発
させることでミクロフィブリルを含有するポリビニルア
ルコール膜を製造した。
[Table 1] In the above embodiment, if the impact crushing time is lengthened, the fibrillation proceeds further, and if glass beads having a particle diameter of 0.2 mmφ are used, the impact crushing time needs to be lengthened. Example 3 Composite Material Containing Microfibrils in Silk Fibroin Silkworm silk fibroin fibers were placed in a saturated aqueous solution of lithium bromide and heated at 60 ° C. for 20 minutes to dissolve the silk fibroin fibers. A silk fibroin aqueous solution having a concentration of 4% was prepared by placing in a dialysis membrane and substituting with pure water. This 4% silk fibroin aqueous solution
0.68 g of the microfibril dispersion used in Example 1 (treated with 1.5% KOH aqueous solution) in 32 mL
Was added and stirred gently with a glass rod to prepare a uniform silk fibroin dispersion. This dispersion was spread on a polyethylene membrane at a room temperature of 25 ° C., and the water was evaporated overnight to produce a silk fibroin membrane containing microfibrils. Observation of the composite material with a polarization microscope (POM) manufactured by Nikon Corporation revealed that the microfibrils were not localized in the silk fibroin film, were distributed uniformly, and no aggregation of the microfibrils was observed. Example 4: Silk fibroin powder containing microfibrils 2.5 mL of a microfibril dispersion prepared by cleaving from silkworm silk was mixed with 5 mL of a 4% aqueous solution of silk fibroin prepared in the same manner as in Example 3, and a glass rod was used. , And then allowed to stand at room temperature for 20 minutes. 3 mL of ethanol was added thereto, and the mixture was once frozen at -20 ° C, and then dried under reduced pressure for 10 hours using a freeze dryer (AB-3) manufactured by Tozai Tsusho Co., Ltd. Silk fibroin powder containing fibrils was prepared. This silk fibroin powder is composed of random coil-shaped molecules with disordered molecular chains, and microfibrils have a microstructure in which the molecular chains are oriented in the direction of the fibril fibers, a novel composite protein material having the characteristics of these two types of materials. Could be manufactured. Example 5: Plastic film A silk fiber was treated in a 2.5% aqueous KOH solution for 24 hours, and the microfibril dispersion obtained by cleaving by a glass bead impact crushing method was placed in a steel "fluy" for 2 hours. Water was removed by filtration. A gel of microfibrils remained on the filter. When this was air-dried, a plastic film which was a film-like mass of microfibrils could be produced. Example 6: Tussah silk fibril Tussah silk fibroin fiber was immersed in a 3% KOH aqueous solution for 12 hours at room temperature in the same manner as in Example 2,
The fibrils were cleaved by performing an impact crushing treatment with 0.5 mm diameter glass beads for 0 minutes. The microfibrils of the obtained tussah silk fibroin were observed with a polarizing microscope. The average diameter of the microfibrils was 0.3 μm, and the standard deviation in measurement was 0.08. Example 7: Eri silkworm silk fibril Microfibrils were prepared in the same manner as in Example 2 using Eri silkworm silk fibroin. The average diameter of the microfibrils is 0.4 μm, and the standard deviation in measurement is 0.010
Met. Example 8 Wool microfibrils were prepared in the same manner as in Example 2 using wool. The average diameter of microfibrils is 0.5
μm, and the standard deviation in measurement was 0.018. Example 9 0.5 g of silkworm silk was put in 100 mL of a 4M or 8M aqueous solution of lithium bromide, glass beads of 0.5 mmφ were put therein, and a bead impact crushing treatment was performed for 30 minutes. During the treatment process, the temperature of the lithium bromide aqueous solution was raised to 70 ° C. The sample was taken out, sufficiently washed with water, and the fiber morphology was observed with a microscope. It was observed that many microfibrils of 0.3 μm in thickness were branched from the surface of each silk fibroin fiber. Example 10 100 m of an aqueous solution of potassium nitrate of 1.40 with a Baume hydrometer
L, 0.5 g of silkworm silk was put in the same manner as in Example 9, and
A treatment at 30 ° C. for 30 minutes to weaken the structure of the silk thread was performed. After the sample was taken out and washed with water, the silk thread surface was observed with a microscope. From the surface of the silk fibroin fiber, it was observed that many microfibrils of 0.3 μm in thickness were branched. Example 11 Instead of the silk fibroin aqueous solution used in Example 3, 2.5% polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in water was used, and 0.3 g of the microfibril dispersion was added thereto. added. A polyvinyl alcohol film containing microfibrils was produced by evaporating water in the same manner as in Example 3.

【0022】[0022]

【発明の効果】本発明によれば、膨潤させたかつ繊維構
造を弛緩した状態にした天然蛋白質繊維に対してビーズ
衝撃破砕処理を行うため、該繊維の繊維軸と垂直な横方
向の切断のみならず該繊維軸と平行な方向にも細かく開
裂された蛋白質ミクロフィブリルが効率的かつ経済的に
得られる。本発明のミクロフィブリルの基本的な化学構
造と物理特性は、開裂する前の天然蛋白質繊維と同一で
あるため、本発明のミクロフィブリルは柔軟性、タッ
チ、光沢、表面積などに特徴ある天然素材である。この
ミクロフィブリルから、柔らかさ、滑らかさ、捻れやす
さを有するフィブリル集合体を各種の形態で調製するこ
とができるので、衣料分野のみならず、医薬、農薬・医
療、土木・建設などを含む広い産業分野で各種資材とし
て利用できるという利点がある。
According to the present invention, since the natural protein fiber which has been swollen and the fiber structure is relaxed is subjected to the bead impact crushing treatment, only the transverse cutting perpendicular to the fiber axis of the fiber is performed. In addition, protein microfibrils finely cleaved in a direction parallel to the fiber axis can be obtained efficiently and economically. Since the basic chemical structure and physical properties of the microfibrils of the present invention are the same as those of natural protein fibers before cleavage, the microfibrils of the present invention are natural materials characterized by flexibility, touch, gloss, surface area, etc. is there. From this microfibril, fibril aggregates having softness, smoothness, and easy twisting can be prepared in various forms, so it can be used not only in the field of clothing but also in medicine, agricultural chemicals / medical care, civil engineering / construction, etc. There is an advantage that it can be used as various materials in the industrial field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)1.0%のKOH水溶液を用いて得られ
た家蚕絹糸のミクロフィブリルの偏向顕微鏡写真(ビー
ズ衝撃破砕有り)。 (B)1.0%のKOH水溶液を用いて得られた家蚕絹
糸のミクロフィブリルの偏向顕微鏡写真(ビーズ衝撃破
砕無し)。
FIG. 1 (A) A deflection micrograph of microfibrils of silkworm silk obtained using a 1.0% KOH aqueous solution (with bead impact crushing). (B) Deflection micrograph of microfibrils of silkworm silk obtained using 1.0% KOH aqueous solution (without bead crushing).

【図2】(A)1.5%のKOH水溶液を用いて得られ
た家蚕絹糸のミクロフィブリルの偏向顕微鏡写真(ビー
ズ衝撃破砕有り)。 (B)1.5%のKOH水溶液を用いて得られた家蚕絹
糸のミクロフィブリルの偏向顕微鏡写真(ビーズ衝撃破
砕無し)。
FIG. 2 (A) A deflection micrograph of microfibrils of silkworm silk obtained using a 1.5% KOH aqueous solution (with bead impact crushing). (B) A deflection micrograph of microfibrils of silkworm silk obtained using a 1.5% KOH aqueous solution (without bead impact crushing).

【図3】(A)2.0%のKOH水溶液を用いて得られ
た家蚕絹糸のミクロフィブリルの偏向顕微鏡写真(ビー
ズ衝撃破砕有り)。 (B)2.0%のKOH水溶液を用いて得られた家蚕絹
糸のミクロフィブリルの偏向顕微鏡写真(ビーズ衝撃破
砕無し)。
FIG. 3 (A) A deflection micrograph of microfibrils of silkworm silk obtained using a 2.0% KOH aqueous solution (with impact crushing of beads). (B) Deflection micrograph of microfibrils of silkworm silk obtained using a 2.0% KOH aqueous solution (without bead impact crushing).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚田 益裕 茨城県つくば市大わし1−2 農林水産省 蚕糸・昆虫農業技術研究所内 Fターム(参考) 4L035 BB46 DD13 4L047 AA05 AA10 AA11 BA22 CC01 CC03 CC10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masuhiro Tsukada 1-2 Owashi, Tsukuba, Ibaraki Prefecture F-term in the Research Institute for Silk and Insect Agriculture, Ministry of Agriculture, Forestry and Fisheries 4L035 BB46 DD13 4L047 AA05 AA10 AA11 BA22 CC01 CC03 CC10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 繊維が膨潤されかつ繊維構造が若干弛緩
した状態にある、アルカリ水溶液または中性塩水溶液に
分散した天然蛋白質繊維に対して、一定の振動とずり応
力を与えるビーズ衝撃破砕処理を行うことにより、該繊
維の繊維軸と垂直な横方向の切断のみならず該繊維軸と
平行な縦方向にも細かく開裂させて得られる蛋白質ミク
ロフィブリル。
1. A bead impact crushing treatment for imparting constant vibration and shear stress to natural protein fibers dispersed in an aqueous alkali solution or an aqueous neutral salt solution in which the fibers are swollen and the fiber structure is slightly relaxed. A protein microfibril obtained by performing the above-mentioned process, whereby the fiber is finely cleaved not only in a transverse direction perpendicular to the fiber axis but also in a longitudinal direction parallel to the fiber axis.
【請求項2】 天然蛋白質繊維を、アルカリ剤を含むア
ルカリ水溶液により処理し、またはアルカリ剤でpHを
調整した中性塩水溶液により処理し、該繊維を膨潤さ
せ、繊維構造が若干弛緩した状態にして、該水溶液に分
散せしめ、この分散した天然蛋白質繊維に対して、一定
の振動とずり応力を与えるビーズ衝撃破砕処理を行い、
該繊維の繊維軸と垂直な横方向の切断のみならず該繊維
軸と平行な縦方向にも細かく開裂させて、ミクロフィブ
リルを得ることを特徴とする蛋白質ミクロフィブリルの
製造方法。
2. The natural protein fiber is treated with an alkaline aqueous solution containing an alkaline agent or a neutral salt aqueous solution whose pH has been adjusted with an alkaline agent to swell the fiber and bring the fiber structure into a slightly relaxed state. Then, dispersed in the aqueous solution, and subjected to a bead impact crushing treatment to give a constant vibration and shear stress to the dispersed natural protein fiber,
A method for producing protein microfibrils, wherein microfibrils are obtained not only by cutting the fibers in the horizontal direction perpendicular to the fiber axis but also finely in the vertical direction parallel to the fiber axes.
【請求項3】 前記アルカリ水溶液による処理は、1.
0〜5.0%のアルカリ水溶液を用いて行われ、また、
前記中性塩水溶液による処理は、アルカリ剤でpHを9
以上に調整した、濃度が4M以上の中性塩水溶液を用い
て行われることを特徴とする請求項2記載の蛋白質ミク
ロフィブリルの製造方法。
3. The treatment with the alkaline aqueous solution includes the following steps:
The reaction is performed using a 0 to 5.0% aqueous alkali solution,
In the treatment with the neutral salt aqueous solution, the pH is adjusted to 9 with an alkaline agent.
3. The method for producing protein microfibrils according to claim 2, wherein the production is performed using a neutral salt aqueous solution having a concentration of 4 M or more adjusted as described above.
【請求項4】 前記ビーズ衝撃破砕処理は、ビーズ直径
が0.2〜1mmφ、衝撃処理時間が5〜50分、ビー
ズ振動の周波数が50Hz以上である条件下で行われる
ことを特徴とする請求項2または3記載の蛋白質ミクロ
フィブリルの製造方法。
4. The bead impact crushing treatment is performed under the conditions that the bead diameter is 0.2 to 1 mmφ, the impact treatment time is 5 to 50 minutes, and the frequency of bead vibration is 50 Hz or more. Item 4. The method for producing a protein microfibril according to item 2 or 3.
【請求項5】 天然蛋白質繊維を、アルカリ剤を含むア
ルカリ水溶液により処理し、またはアルカリ剤でpHを
調整した中性塩水溶液により処理し、該繊維を膨潤さ
せ、繊維構造が若干弛緩した状態にして、該水溶液に分
散せしめ、この分散した天然蛋白質繊維に対して、一定
の振動とずり応力を与えるビーズ衝撃破砕処理を行い、
該繊維の繊維軸と垂直な横方向の切断のみならず該繊維
軸と平行な縦方向にも細かく開裂させて、ミクロフィブ
リルを得る際に、該アルカリ水溶液の濃度もしくは中性
塩水溶液の濃度、該アルカリ水溶液もしくは中性塩水溶
液への浸漬処理時間、該ビーズ衝撃破砕処理におけるビ
ーズの直径、ビーズ振動の周波数、ビーズ衝撃破砕処理
時間を変えることでミクロフィブリルの開裂の程度を制
御することを特徴とする蛋白質ミクロフィブリルの製造
方法。
5. The natural protein fiber is treated with an alkaline aqueous solution containing an alkaline agent, or treated with a neutral salt aqueous solution whose pH has been adjusted with an alkaline agent to swell the fiber and bring the fiber structure into a slightly relaxed state. Then, dispersed in the aqueous solution, and subjected to a bead impact crushing treatment to give a constant vibration and shear stress to the dispersed natural protein fiber,
Not only the transverse cutting perpendicular to the fiber axis of the fiber but also the longitudinal direction parallel to the fiber axis is finely cleaved to obtain microfibrils, the concentration of the alkaline aqueous solution or the concentration of the neutral salt aqueous solution, The degree of microfibril cleavage is controlled by changing the immersion treatment time in the alkaline aqueous solution or neutral salt aqueous solution, the diameter of the beads in the bead impact crushing treatment, the frequency of bead vibration, and the bead impact crushing treatment time. A method for producing a protein microfibril.
【請求項6】 高分子物質中に、前記請求項2〜5のい
ずれかに記載の方法に従って得られた蛋白質ミクロフィ
ブリルを含んでなることを特徴とする複合素材。
6. A composite material comprising, in a polymeric substance, protein microfibrils obtained according to the method according to any one of claims 2 to 5.
JP35172298A 1998-12-10 1998-12-10 Protein microfibril, method for producing the same, and composite material Expired - Lifetime JP2981555B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35172298A JP2981555B1 (en) 1998-12-10 1998-12-10 Protein microfibril, method for producing the same, and composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35172298A JP2981555B1 (en) 1998-12-10 1998-12-10 Protein microfibril, method for producing the same, and composite material

Publications (2)

Publication Number Publication Date
JP2981555B1 JP2981555B1 (en) 1999-11-22
JP2000170029A true JP2000170029A (en) 2000-06-20

Family

ID=18419181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35172298A Expired - Lifetime JP2981555B1 (en) 1998-12-10 1998-12-10 Protein microfibril, method for producing the same, and composite material

Country Status (1)

Country Link
JP (1) JP2981555B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072937A1 (en) * 2001-03-14 2002-09-19 Japan As Represented By President Of Tokyo University Of Agriculture And Technology Non-woven fabric comprising ultra-fine fiber of silk fibroin and/or silk-like material, and method for production thereof
WO2008004356A1 (en) * 2006-07-04 2008-01-10 National University Corporation Tokyo University Of Agriculture And Technology Spinning solution composition, process for producing regenerated silk fiber using the composition, and regenerated silk fiber produced by the process
JP2009174111A (en) * 2007-12-28 2009-08-06 Ist Corp Branched protein fiber, method for producing the same, floccular matter, branched protein fiber spun yarn, branched protein fiber-containing spun yarn, fabric, and nonwoven fabric
JP2011521020A (en) * 2008-04-30 2011-07-21 オルソックスリミテッド Implantable materials and methods for their preparation
WO2013152265A1 (en) * 2012-04-06 2013-10-10 Trustees Of Tufts College Methods of producing and using silk microfibers
KR101790353B1 (en) * 2009-03-30 2017-10-25 파이버린 테크놀로지스 리미티드 Process for the production of nano-fibrillar cellulose gels
US10053817B2 (en) 2010-04-27 2018-08-21 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US10301774B2 (en) 2009-03-30 2019-05-28 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
US10577469B2 (en) 2015-10-14 2020-03-03 Fiberlean Technologies Limited 3D-formable sheet material
US11155697B2 (en) 2010-04-27 2021-10-26 Fiberlean Technologies Limited Process for the production of gel-based composite materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666995B (en) * 2021-08-25 2024-01-23 浙江大学 Method for preparing native tussah silk fibroin powder
CN114457447B (en) * 2022-01-17 2023-12-19 浙江大学 Green and scalable silk fibroin nanofiber preparation method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072937A1 (en) * 2001-03-14 2002-09-19 Japan As Represented By President Of Tokyo University Of Agriculture And Technology Non-woven fabric comprising ultra-fine fiber of silk fibroin and/or silk-like material, and method for production thereof
CN100346019C (en) * 2001-03-14 2007-10-31 东京农工大学长代表的日本国 Syperfine fiber nonwoven fabric comprising silk and /or silk_like material and its manufacturing method
WO2008004356A1 (en) * 2006-07-04 2008-01-10 National University Corporation Tokyo University Of Agriculture And Technology Spinning solution composition, process for producing regenerated silk fiber using the composition, and regenerated silk fiber produced by the process
JP4945768B2 (en) * 2006-07-04 2012-06-06 国立大学法人東京農工大学 Spinning liquid composition, method for producing regenerated silk fiber using the same, and regenerated silk fiber obtained by the production method
US8348974B2 (en) 2006-07-04 2013-01-08 National University Corporation Tokyo University Of Agriculture And Technology Spinning solution composition, process for producing regenerated silk fiber using the composition, and regenerated silk fiber produced by the process
JP2009174111A (en) * 2007-12-28 2009-08-06 Ist Corp Branched protein fiber, method for producing the same, floccular matter, branched protein fiber spun yarn, branched protein fiber-containing spun yarn, fabric, and nonwoven fabric
JP2011521020A (en) * 2008-04-30 2011-07-21 オルソックスリミテッド Implantable materials and methods for their preparation
KR101790353B1 (en) * 2009-03-30 2017-10-25 파이버린 테크놀로지스 리미티드 Process for the production of nano-fibrillar cellulose gels
US10975242B2 (en) 2009-03-30 2021-04-13 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
KR101830564B1 (en) 2009-03-30 2018-02-20 파이버린 테크놀로지스 리미티드 Process for the production of nano-fibrillar cellulose gels
US10294371B2 (en) 2009-03-30 2019-05-21 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US10301774B2 (en) 2009-03-30 2019-05-28 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
US10982387B2 (en) 2009-03-30 2021-04-20 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
US11155697B2 (en) 2010-04-27 2021-10-26 Fiberlean Technologies Limited Process for the production of gel-based composite materials
US10053817B2 (en) 2010-04-27 2018-08-21 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US10100467B2 (en) 2010-04-27 2018-10-16 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US10633796B2 (en) 2010-04-27 2020-04-28 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US9925301B2 (en) 2012-04-06 2018-03-27 Trustees Of Tufts College Methods of producing and using silk microfibers
WO2013152265A1 (en) * 2012-04-06 2013-10-10 Trustees Of Tufts College Methods of producing and using silk microfibers
US10577469B2 (en) 2015-10-14 2020-03-03 Fiberlean Technologies Limited 3D-formable sheet material
US11384210B2 (en) 2015-10-14 2022-07-12 Fiberlean Technologies Limited 3-D formable sheet material
US11932740B2 (en) 2015-10-14 2024-03-19 Fiberlean Technologies Limited 3D-formable sheet material

Also Published As

Publication number Publication date
JP2981555B1 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
Zoccola et al. Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends
RU2255945C2 (en) Polymeric composition, molded articles and method for their making
JP2981555B1 (en) Protein microfibril, method for producing the same, and composite material
Freddi et al. Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide
JP5298316B2 (en) Silk nanofiber and silk composite nanofiber derived from aquatic insects, and method for producing the same
CZ2012306A3 (en) Process for preparing microfibers, process for preparing wound covers, wound covers per se and apparatus for preparing the microfibers ong
Cao et al. Continuous high-content keratin fibers with balanced properties derived from wool waste
Hu et al. Preparation of natural multicompatible silk nanofibers by green deep eutectic solvent treatment
US9695215B2 (en) Method for producing fibroin powder from silk products or filaments
Shankar et al. Electrospinning of soy protein fibers and their compatibility with synthetic polymers
CN111868314B (en) Re-used lyocell for lyocell process
EP1116743B1 (en) Process for producing ultrafine crystalline silk
WO2017192227A1 (en) Silk nanofibrils and uses thereof
Lee et al. Fabrication of nanofibers using fibroin regenerated by recycling waste silk selvage
Deng et al. Tendon-inspired fibers from liquid crystalline collagen as the pre-oriented bioink
JP2015093857A (en) Water-insoluble silk protein
Sasithorn et al. Effect of calcium chloride on electrospinning of silk fibroin nanofibres
Abdu et al. Selected natural fibers and their electrospinning
Khan et al. Electrospun silk sericin nanofibers for biomedical applications
CN114656680A (en) Super-elastic silk fibroin micro-nano hybrid fiber aerogel and preparation method and application thereof
Koliada et al. Characterisation of electrospun fibers made of PVA or PVAc and collagen derivative
KR20010097226A (en) A method of preparing chitosan non-woven fabric of softness and flexibility for medical care
Sasithorn et al. Preparation of Silk Fibroin Nanofibres by Needleless Electrospinning using Formic Acid-Calcium Chloride as the Solvent
DE19841649A1 (en) Production of solutions of fibrillar proteins, especially silk, comprises dissolving the protein in N-methylmorpholine N-oxide
Hu et al. Collagen Fibers

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term