JP2000169921A - Hydrogen storage material and its production - Google Patents

Hydrogen storage material and its production

Info

Publication number
JP2000169921A
JP2000169921A JP10376209A JP37620998A JP2000169921A JP 2000169921 A JP2000169921 A JP 2000169921A JP 10376209 A JP10376209 A JP 10376209A JP 37620998 A JP37620998 A JP 37620998A JP 2000169921 A JP2000169921 A JP 2000169921A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
powder
weight
inevitable impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10376209A
Other languages
Japanese (ja)
Inventor
Iwane Nagase
石根 長瀬
Takasumi Shimizu
孝純 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10376209A priority Critical patent/JP2000169921A/en
Publication of JP2000169921A publication Critical patent/JP2000169921A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy material having a large hydrogen storage capacity and excellent in shape retention by mixing a Zr-V alloy powder contg. Zr of a specified ratio with inevitable impurities and Ni powder contg. inevitable impurities in a specified ratio. SOLUTION: Zr and V are blended, and this blend is melted and solidified to produce a Zr-V alloy contg. 50 to 95 wt.% Zr with inevitable impurities, which is subjected to hydropulverizing and is classified to obtain Zr-V alloy powder of about <=150 μm particle size. This Zr-V alloy powder of 65 to 75 wt.% and 25 to 35 wt.% Ni powder contg. inevitable impurities as a buffering material are mixed, to which about 0.05 to 1.0 wt.% zinc stearate as a lubricating material and about 1 to 5 wt.% polytetrafluoroethylene as a binding material are added and mixed, and this mixture is subjected to press molding. This molded body is put into a heat treating furnace in a vacuum or in an inert gas atmosphere and is sintered at a prescribed temp. for a prescribed time, and the polytetrafluoroethylene and zinc stearate are evaporated away, by which the hydrogen occluding material is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵材に関す
るものである。さらに詳しくは、水素吸蔵材として吸蔵
能が優れ、且つ吸蔵放出サイクルを繰り返しても形状が
崩れにくい水素吸蔵材に関する発明である。
[0001] The present invention relates to a hydrogen storage material. More specifically, the present invention relates to a hydrogen storage material having excellent storage capacity as a hydrogen storage material and having a shape that is not easily deformed even after repeated storage and release cycles.

【0002】[0002]

【従来の技術】近年、水素吸蔵合金は水素貯蔵体として
注目されており、大きな水素吸蔵量を持つ水素吸蔵合金
の開発が進められている。この水素吸蔵合金について
は、その特性・性能が組成、結晶構造、さらには製造方
法に大きく依存することから、新しい合金の開発に際
し、これらの諸点について多面的に検討されている。
2. Description of the Related Art In recent years, hydrogen storage alloys have attracted attention as hydrogen storage media, and the development of hydrogen storage alloys having a large hydrogen storage capacity has been promoted. Since the properties and performance of this hydrogen storage alloy greatly depend on its composition, crystal structure, and production method, various aspects of these points have been studied in the development of a new alloy.

【0003】これまでにも各種の工夫、改善が提案され
ているが、通常は、各種の水素吸蔵合金の構成元素成分
を高温溶解し、これを冷却した後に合金塊を粉砕し、粉
末として水素吸蔵用途に用いている。
[0003] Various devices and improvements have been proposed so far. Usually, the constituent elements of various hydrogen-absorbing alloys are melted at a high temperature, and after cooling, alloy lumps are pulverized to obtain hydrogen powder as powder. Used for occlusion purposes.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これま
での水素吸蔵合金では、その多くのものが水素吸蔵体と
して水素吸蔵量は大きいが、形状が粉末、もしくは粉末
そのものを成型しているため、水素吸蔵放出サイクルを
繰り返すと合金粉末が膨張し、形状が崩れ微粉化し、フ
ィルター等が詰まったり、試料容器内に分散してしまう
ものがほとんどであった。
However, most of the conventional hydrogen storage alloys have a large hydrogen storage capacity as a hydrogen storage body, but because the shape is a powder or a powder itself, the hydrogen storage alloy has a large hydrogen storage capacity. When the occlusion-release cycle was repeated, the alloy powder expanded, the shape was broken, and the powder became fine, and most of the alloy powder clogged the filter or the like and dispersed in the sample container.

【0005】本発明は以上の様な従来技術の問題を鑑
み、これらの欠点を解消して、水素吸蔵量が大きく、且
つ、これまで欠点とされていた形状保持性にも優れた水
素吸蔵合金材を提供することを目的としている。
In view of the above problems of the prior art, the present invention solves these disadvantages, and provides a hydrogen storage alloy which has a large hydrogen storage capacity and excellent shape retention which has been regarded as a defect. It is intended to provide materials.

【0006】[0006]

【課題を解決するための手段】本発明に係わる水素吸蔵
材は、請求項1に記載しているように、Zr:50〜9
5重量%の不可避的不純物を含むZr−V合金粉と不可
避的不純物を含むNi粉を混合したことを特徴としてい
る。
The hydrogen storage material according to the present invention has a Zr of 50 to 9 as described in claim 1.
It is characterized in that Zr-V alloy powder containing unavoidable impurities of 5% by weight and Ni powder containing unavoidable impurities are mixed.

【0007】そして、本発明に係わる水素吸蔵材の実施
様態においては、請求項2に記載しているように、Zr
−V合金粉が65〜75重量%でNi粉が25〜35重
量%であることを特徴としている。
In the embodiment of the hydrogen storage material according to the present invention, as described in claim 2, Zr
-V alloy powder is 65 to 75% by weight and Ni powder is 25 to 35% by weight.

【0008】また、本発明に係わる水素吸蔵材の製造方
法は、請求項3に記載しているように、Zr−V合金を
溶解、及び凝固し、水素化粉砕した後、Ni粉と混合
し、プレス成型、及び焼結を行うことを特徴としてい
る。
According to a third aspect of the present invention, there is provided a method for producing a hydrogen storage material, comprising: dissolving and solidifying a Zr-V alloy; , Press molding, and sintering.

【0009】[0009]

【発明の実施の形態】本発明は、Zr:50〜95重量
%の不可避的不純物を含むZr−V合金粉(水素吸蔵合
金)と不可避的不純物を含むNi粉(緩衝材)を混合し
たことを特徴とする水素吸蔵材に関するものである。こ
の組成にすることにより、水素吸蔵材として吸蔵能が優
れ、且つ吸蔵放出サイクルを繰り返しても形状が崩れに
くい水素吸蔵材を製造することが可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method of mixing Zr-V alloy powder (hydrogen storage alloy) containing 50 to 95% by weight of Zr and Ni powder (buffer material) containing unavoidable impurities. The present invention relates to a hydrogen storage material characterized by the following. With this composition, it is possible to manufacture a hydrogen storage material having excellent storage capacity as a hydrogen storage material and having a shape that is not easily deformed even after repeated storage and release cycles.

【0010】水素吸蔵合金としては、水素吸蔵量が大き
いZr−V合金が望ましい。Zr−V合金はZrが50
〜95重量%、好ましくは85〜93重量%が望まし
い。この範囲を外れると十分な水素吸蔵能を得ることが
できない。また、Zr−V合金が65重量%以下である
と十分な水素吸蔵量を確保することができず、75重量
%以上であると吸蔵放出サイクルの繰り返しによる形状
の崩壊を防ぐことはできない。
As the hydrogen storage alloy, a Zr-V alloy having a large hydrogen storage amount is desirable. Zr-V alloy has a Zr of 50
-95% by weight, preferably 85-93% by weight. Outside this range, sufficient hydrogen storage capacity cannot be obtained. When the Zr-V alloy content is 65% by weight or less, a sufficient amount of hydrogen storage cannot be secured. When the Zr-V alloy content is 75% by weight or more, collapse of the shape due to repetition of the storage / release cycle cannot be prevented.

【0011】緩衝材としては、水素吸蔵能が低く、弾性
に優れた金属または合金なら何でも良いが、耐食性が優
れている点から特にNiが望ましい。Ni量は25〜3
5重量%、より好ましくは25〜30重量%が望まし
い。Niが25重量%以下にするとNiの緩衝材として
の機能が十分に働かず、吸蔵放出サイクルの繰り返しに
よる形状の崩壊を防ぐことはできない。また、35重量
%以上になると、相対的に水素吸蔵合金の比率が低下
し、十分な水素吸蔵量が得られなくなる。
As the buffering material, any metal or alloy having a low hydrogen storage capacity and excellent elasticity may be used, but Ni is particularly preferable because of its excellent corrosion resistance. Ni content is 25-3
5% by weight, more preferably 25 to 30% by weight is desirable. If the content of Ni is 25% by weight or less, the function of Ni as a buffer material does not work sufficiently, and the collapse of the shape due to the repetition of the occlusion and release cycle cannot be prevented. On the other hand, when the content is 35% by weight or more, the ratio of the hydrogen storage alloy relatively decreases, and a sufficient hydrogen storage amount cannot be obtained.

【0012】また、この発明の水素吸蔵材は次の工程に
より製造される。勿論、厳密にはこの工程に限定される
ことはなく、様々な態様が可能である。まず、合金の作
製方法であるが、ZrとVを所定の合金組成となるよう
にそれぞれの元素を配合し、各構成元素をボタンアーク
炉、高周波誘導炉及びアトマイズ法により溶解、凝固す
ることによりZr−V合金を製造する。
The hydrogen storage material of the present invention is manufactured by the following steps. Of course, it is not strictly limited to this step, and various modes are possible. First, a method of manufacturing an alloy is as follows. Each element is blended with Zr and V so as to have a predetermined alloy composition, and each constituent element is melted and solidified by a button arc furnace, a high-frequency induction furnace, and an atomizing method. A Zr-V alloy is manufactured.

【0013】Zr−V合金作製後、Zr−V合金を水素
化粉砕を行い、その後、分級して粒径150μm以下と
し、より好ましくは、粒径100μm以下のものを使用
する。この際、粒径が大きすぎると、後の工程でプレス
成型し難いという問題点がある。
After producing the Zr-V alloy, the Zr-V alloy is hydrogenated and pulverized, and then classified to a particle size of 150 μm or less, more preferably, a particle size of 100 μm or less. At this time, if the particle size is too large, there is a problem that it is difficult to perform press molding in a subsequent step.

【0014】そして、25〜35重量%のNi粉を、Z
r−V合金粉と混合する。同時に、潤滑材として0.0
5〜1.0重量%のステアリン酸亜鉛と、結着材として
1〜5重量%のPTFE(ポリテトラフルオロエチレ
ン)を添加し、混合する。
Then, 25 to 35% by weight of Ni powder is added to Z
Mix with rV alloy powder. At the same time, 0.0
5 to 1.0% by weight of zinc stearate and 1 to 5% by weight of PTFE (polytetrafluoroethylene) as a binder are added and mixed.

【0015】この混合材を任意の形状の金型ダイスに充
填し、1〜8tonf/cmの圧力でプレス成型を行
う。
This mixed material is filled in a mold die having an arbitrary shape, and press-molded at a pressure of 1 to 8 tonf / cm 2 .

【0016】前工程で製造されたプレス成型体を真空ま
たは不活性ガス雰囲気熱処理炉に入れ、600〜950
℃の温度で0.5〜5.0時間保持し、焼結を行う。ま
た、この工程でPTFE及びステアリン酸亜鉛は蒸発し
除去される。溶解、粉砕、分級、混合、成型及び焼結に
ついては、上記以外にも他の公知の方法が採用され得る
ことは多言を要しない。
The press-formed body produced in the preceding step is placed in a heat treatment furnace in a vacuum or an inert gas atmosphere.
The temperature is maintained at a temperature of 0.5 to 5.0 hours for sintering. In this step, PTFE and zinc stearate are removed by evaporation. Regarding dissolution, pulverization, classification, mixing, molding and sintering, it is not necessary to say that other known methods other than those described above can be adopted.

【0017】以下、実施例を示し、さらに詳しくこの発
明について説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples.

【0018】[0018]

【実施例】(実施例1〜7、比較例1〜6)組成が表1
に示されるような水素吸蔵材(実施例1〜7、比較例1
〜6)を、0.01〜0.2Torrの真空度に排気し
た高周波誘導溶解炉において、アルゴンガスに雰囲気中
で、溶解した合金を、加圧水素雰囲気中で水素を吸蔵さ
せることにより合金を粉砕(水素化粉砕)した後、10
0μm以下に粉末を分級し、そして、所定量のNi粉、
0.4重量%のステアリン酸亜鉛、及び3重量%のPT
FEを、Zr−V合金粉に混合した。また、Ni粉は平
均粒径が50μmの粉を使用した。この混合材を任意の
形状の金型ダイスに充填し、5tonf/cmの圧力
でプレス成型を行った。前工程で製造されたプレス成型
体を真空熱処理炉に入れ、700℃の温度で1.0時間
保持し、脱脂および焼結を行った。
Examples (Examples 1 to 7, Comparative Examples 1 to 6)
Hydrogen storage materials (Examples 1 to 7, Comparative Example 1)
In the high-frequency induction melting furnace, which was evacuated to a vacuum degree of 0.01 to 0.2 Torr, the alloy was pulverized by absorbing hydrogen in an atmosphere of argon gas and absorbing hydrogen in a pressurized hydrogen atmosphere. (Hydrogenation pulverization)
Classify the powder to 0 μm or less, and a predetermined amount of Ni powder,
0.4% by weight of zinc stearate and 3% by weight of PT
FE was mixed with the Zr-V alloy powder. Ni powder used had an average particle diameter of 50 μm. This mixed material was filled in a mold die having an arbitrary shape, and press-molded at a pressure of 5 tonf / cm 2 . The press-formed body produced in the previous step was placed in a vacuum heat treatment furnace, held at a temperature of 700 ° C. for 1.0 hour, and degreased and sintered.

【0019】水素吸蔵材はレスカ(株)製の自動ジーベ
ルツ装置を用いて水素吸蔵量の測定を行った。また、水
素吸蔵量は30℃、0.5MPaでの値で評価した。
For the hydrogen storage material, the amount of hydrogen storage was measured using an automatic Siebelz apparatus manufactured by Resca Corporation. Also, the hydrogen storage amount was evaluated at a value of 30 ° C. and 0.5 MPa.

【0020】表1に本発明及び比較例の水素吸蔵材の水
素吸蔵量(30℃、0.5MPa、吸蔵側)と測定後の
試料の割れの有無を示した。水素吸蔵量は特に基準はな
いが、今回は1.3重量%以上(PCT測定における温
度30℃、0.5MPa、吸蔵側での水素吸蔵量)を良
品とした。
Table 1 shows the hydrogen storage amounts (30 ° C., 0.5 MPa, storage side) of the hydrogen storage materials of the present invention and the comparative example, and the presence or absence of cracks in the sample after measurement. Although there is no particular standard for the amount of hydrogen absorbed, in this case, 1.3 wt% or more (temperature of 30 ° C., 0.5 MPa in PCT measurement, amount of hydrogen absorbed on the storage side) was regarded as a good product.

【0021】[0021]

【表1】 [Table 1]

【0022】表1に示されたように本発明の水素吸蔵材
(実施例1〜7)は成型体の割れも無く、水素吸蔵量も
1.3重量%以上(PCT測定における温度30℃、
0.5MPa、吸蔵側での水素吸蔵量)と優れた特性を
示した。一方、比較例に示した水素吸蔵材は、Zr、V
の成分範囲がそれぞれ発明組成の上限より大きくなる、
もしくは下限未満になると水素吸蔵量が1.3重量%未
満となり優れた水素吸蔵特性を示さなくなる(比較例
1、2)。Ni成分範囲が上限から外れた場合も同様に
水素吸蔵量が1.3重量%以下となる(比較例3)。ま
た、Ni成分範囲が下限未満の場合(比較例4〜6)
は、水素吸蔵及び放出時に成型体に割れが生じ、成型体
の初期の形状を保つことができなくなる。この結果から
明らかなように、実施例に示した本発明の水素吸蔵材
は、比較例の様に水素吸蔵量、形状保持性のどちらか一
方だけでなく、水素吸蔵量と形状保持性の両面において
優れていることが分かる。
As shown in Table 1, the hydrogen storage material of the present invention (Examples 1 to 7) had no cracks in the molded product and the hydrogen storage amount was 1.3% by weight or more (at a temperature of 30 ° C. in PCT measurement,
0.5 MPa, hydrogen storage amount on the storage side). On the other hand, the hydrogen storage materials shown in the comparative examples were Zr, V
Each component range is larger than the upper limit of the inventive composition,
Alternatively, when the amount is less than the lower limit, the hydrogen storage amount becomes less than 1.3% by weight, and excellent hydrogen storage characteristics are not exhibited (Comparative Examples 1 and 2). Similarly, when the Ni component range deviates from the upper limit, the hydrogen storage amount becomes 1.3% by weight or less (Comparative Example 3). When the Ni component range is less than the lower limit (Comparative Examples 4 to 6)
In the method, cracks occur in the molded body when hydrogen is absorbed and released, and the initial shape of the molded body cannot be maintained. As is clear from these results, the hydrogen storage material of the present invention shown in the examples is not limited to either one of the hydrogen storage amount and the shape retention as in the comparative example, It turns out that it is excellent in.

【0023】[0023]

【発明の効果】本発明による水素吸蔵材は請求項1に記
載しているように、Zr:50〜95重量%の不可避的
不純物を含むZr−V合金粉と不可避的不純物を含むN
i粉を混合したことを特徴とする水素吸蔵材であるか
ら、吸蔵能が優れ、且つ吸蔵放出サイクルを繰り返して
も形状が崩れにくい水素吸蔵材を提供することが可能と
なる。
As described in claim 1, the hydrogen storage material according to the present invention has a Zr-V alloy powder containing 50 to 95% by weight of Zr and an Nr containing inevitable impurities.
Since it is a hydrogen storage material characterized by mixing i-powder, it is possible to provide a hydrogen storage material that has excellent storage capacity and does not easily lose its shape even after repeated storage and release cycles.

【0024】そして、請求項2に記載しているように、
Zr−V合金粉が65〜75重量%でNi粉が25〜3
5重量%であることにより、Zr−V合金粉の水素吸蔵
放出による膨張収縮をNi粉が緩衝するので粉末粒子同
士の結合が崩れることはなく、初期の形状を保持するこ
とができる。
And, as described in claim 2,
Zr-V alloy powder is 65 to 75% by weight and Ni powder is 25 to 3
When the content is 5% by weight, the Ni powder buffers the expansion and contraction of the Zr-V alloy powder due to hydrogen absorption and release, so that the bond between the powder particles is not broken and the initial shape can be maintained.

【0025】また、請求項3に記載しているように、Z
r−V合金を溶解、及び凝固し、水素化粉砕した後、N
i粉と混合し、プレス成型、及び焼結を行うことによ
り、Niが拡散し、水素を吸蔵放出の役割をするZrと
V合金表面に付着し反応触媒の働きをする為、水素吸蔵
放出反応が促進される効果がもたらされる。
Further, as described in claim 3, Z
The rV alloy is melted and solidified, hydrogenated and pulverized.
By mixing with i-powder, press molding and sintering, Ni diffuses and adheres to the surface of Zr and V alloy which plays the role of absorbing and releasing hydrogen, and acts as a reaction catalyst, so that hydrogen storage and release reaction Is promoted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例の水素吸蔵量である(Ni:
30重量%の場合のみ)。
FIG. 1 shows the hydrogen storage amounts of Examples and Comparative Examples (Ni:
30% by weight only).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Zr:50〜95重量%の不可避的不純
物を含むZr−V合金粉と不可避的不純物を含むNi粉
を混合したことを特徴とする水素吸蔵材。
1. A hydrogen storage material comprising Zr: a Zr-V alloy powder containing 50 to 95% by weight of unavoidable impurities and a Ni powder containing unavoidable impurities.
【請求項2】 前記Zr−V合金粉が65〜75重量%
で前記Ni粉が25〜35重量%である請求項1に記載
の水素吸蔵材。
2. The method according to claim 1, wherein said Zr-V alloy powder is 65 to 75% by weight.
The hydrogen storage material according to claim 1, wherein the Ni powder is 25 to 35% by weight.
【請求項3】 Zr−V合金を溶解、及び凝固し、水素
化粉砕した後、Ni粉と混合し、プレス成型、及び焼結
を行うことを特徴とする請求項1または請求項2に記載
の水素吸蔵材の製造方法。
3. The method according to claim 1, wherein the Zr-V alloy is melted and solidified, hydrogenated and pulverized, mixed with Ni powder, press-molded, and sintered. Production method of hydrogen storage material.
JP10376209A 1998-12-03 1998-12-03 Hydrogen storage material and its production Pending JP2000169921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10376209A JP2000169921A (en) 1998-12-03 1998-12-03 Hydrogen storage material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10376209A JP2000169921A (en) 1998-12-03 1998-12-03 Hydrogen storage material and its production

Publications (1)

Publication Number Publication Date
JP2000169921A true JP2000169921A (en) 2000-06-20

Family

ID=18506758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10376209A Pending JP2000169921A (en) 1998-12-03 1998-12-03 Hydrogen storage material and its production

Country Status (1)

Country Link
JP (1) JP2000169921A (en)

Similar Documents

Publication Publication Date Title
JP4897154B2 (en) Method for producing high density multi-component materials
JP4332220B2 (en) Method for forming dendritic metal particles
TWI281506B (en) Pre-alloyed bond powders
US7041250B2 (en) Combined liquid phase and activated sintering of refractory metals
US5470404A (en) Rare earth metal-nickel hydrogen occlusive alloy ingot
JP2000501786A (en) Prealloyed powder and its use in the production of diamond tools
JP3566637B2 (en) Manufacturing method of sintered titanium filter
JP6242814B2 (en) Niobium capacitor anode chemical and method for producing the same
JP2000169921A (en) Hydrogen storage material and its production
US6770113B2 (en) Method for forming anisotrophic metal particles
JP3720250B2 (en) High hydrogen storage alloy and manufacturing method thereof
JP2719542B2 (en) Hydrogen storage alloy powder for battery electrode and method for producing hydrogen storage electrode
JP2004195464A (en) Sintered titanium filter
JPH0913101A (en) Iron based mixture for powder metallurgy and its production
JPH0688153A (en) Production of sintered titanium alloy
JP2639812B2 (en) Magnetic alloy powder for sintering
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH02294440A (en) Production of porous titanium-nickel alloy
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same
JPH1030136A (en) Manufacture of sintered titanium alloy
JP2627302B2 (en) Method for producing hydrogen storage alloy molded product
JPH08253833A (en) Copper-molybdenum alloy and its production
JPH07214378A (en) Production of brazing filler metal
JPH07216477A (en) Production of copper-tungsten alloy
JPS6358900B2 (en)