JP2000166138A - Rotating electric machine - Google Patents

Rotating electric machine

Info

Publication number
JP2000166138A
JP2000166138A JP10330532A JP33053298A JP2000166138A JP 2000166138 A JP2000166138 A JP 2000166138A JP 10330532 A JP10330532 A JP 10330532A JP 33053298 A JP33053298 A JP 33053298A JP 2000166138 A JP2000166138 A JP 2000166138A
Authority
JP
Japan
Prior art keywords
electric machine
magnetic pole
rotating electric
magnetic
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10330532A
Other languages
Japanese (ja)
Inventor
Kazuo Shima
和男 島
Kazumasa Ide
一正 井出
Miyoshi Takahashi
身佳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10330532A priority Critical patent/JP2000166138A/en
Publication of JP2000166138A publication Critical patent/JP2000166138A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotating electric machine having high power efficiency. SOLUTION: The magnetic poles of a rotor 1 is of a salient pole type, and armature coils 8 are wound in slots formed in a core 6 of a stator 3. Field coils 4 are wound on magnetic pole barrels 5. The armature coils 8 are wound through distributed winding, and the field coils 4 are wound through concentrated winding. A top part 10 of each magnetic pole 10 is in a protruded shape, so that a gap 12A is small at its circumferential center part 10A (between B and B'), and gaps 12B are large at its two circumferential end parts 10B (between B and C and between B' and C').

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、突極形回転子を有
する回転電機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotating electric machine having a salient pole type rotor.

【0002】[0002]

【従来の技術】実開平3−54337号公報が従来の技術の欄
で紹介するように、従来の突極形回転子は、磁極頭部が
湾曲して段差が無く、頭部が磁極胴に巻回された界磁巻
線の上部を覆って、界磁巻線をラジアル方向に支持して
いるものであった。
2. Description of the Related Art As disclosed in Japanese Unexamined Utility Model Publication No. 3-54337 in the section of prior art, a conventional salient-pole rotor has a curved pole head with no step, and a head having a pole body. The field winding was supported in the radial direction by covering the upper part of the wound field winding.

【0003】実開平3−54337号公報は、上述した従来の
突極形回転子による問題点を解決する突極形回転子とし
て、磁極頭部の両端を切り落とし、磁極頭部の幅寸法を
磁気的に必要とする寸法とし、磁極頭部の切り落とし箇
所に界磁巻線の上部を支持する切片を取り付けたものを
記載する。
Japanese Unexamined Utility Model Publication No. 3-54337 discloses a salient pole type rotor which solves the above-mentioned problems caused by the conventional salient pole type rotor, in which both ends of a magnetic pole head are cut off and the width of the magnetic pole head is reduced. A description will be given of a case in which a cut-off portion of a pole head is provided with a section supporting the upper portion of a field winding at a cut-off portion of a pole head.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、突極形
回転子を用いた回転電機では、固定子の電機子巻線は分
布して巻かれ、回転子の界磁巻線は集中的に巻かれてい
るのが一般的である。
However, in a rotating electric machine using salient pole type rotors, the armature windings of the stator are distributed and wound, and the field windings of the rotor are concentratedly wound. That is common.

【0005】固定子と回転子の巻線分布が異なると、電
機子巻線だけに電流を流した場合と、界磁巻線だけに電
流を流す場合とで、ギャップにおける磁束密度分布が異
なり、これが原因で漏れ磁束が生じる。この漏れ磁束が
大きいと、運転に必要な界磁起磁力が大きくなって、電
力効率が悪くなるという問題がある。
[0005] If the winding distribution of the stator and the rotor is different, the magnetic flux density distribution in the gap differs between when current flows only through the armature winding and when only current flows through the field winding. This causes leakage flux. If the leakage magnetic flux is large, there is a problem that the field magnetomotive force required for the operation becomes large and the power efficiency is deteriorated.

【0006】また、磁極頭部の両端を切り落として鉄片
を取り付けた突極形回転子を用いた回転電機では、鉄片
を溶接で取り付ける際の熱によって、磁極の磁器特性お
よび機械的強度が低下し、さらに鉄片および溶接箇所に
軸方向の渦電流が流れるために発熱し、電力効率が悪く
なるという問題がある。
Further, in a rotating electric machine using a salient pole type rotor having both ends of a magnetic pole head cut off and an iron piece attached thereto, heat generated when the iron piece is attached by welding deteriorates the magnetic properties and mechanical strength of the magnetic pole. Further, there is a problem that heat is generated due to an axial eddy current flowing through the iron piece and the welded portion, and power efficiency is deteriorated.

【0007】本発明の目的は、電力効率のよい回転電機
を提供することにある。
An object of the present invention is to provide a rotating electric machine with high power efficiency.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の特徴は、磁極頭部と固定子との間の距離、すなわち
ギャップ長が磁極の周方向中央部で最も小さく、磁極の
周方向両端部でギャップ長が大きくなるように、磁極頭
部に段差が設けられて、磁極頭部の形状が凸形であるこ
とにある。
The feature of the present invention that achieves the above object is that the distance between the pole head and the stator, that is, the gap length, is smallest at the circumferential center of the magnetic pole, A step is provided on the magnetic pole head so that the gap length is increased at both ends, and the shape of the magnetic pole head is convex.

【0009】この特徴によれば、本発明の回転電機のギ
ャップにおける磁束密度分布は、磁極頭部が湾曲して段
差が無く、磁極頭部が界磁巻線の上部を覆っている従来
の突極形回転子を用いた回転電機に比べて、固定子の電
機子巻線のみに通電した場合と回転子の界磁巻線のみに
通電した場合とで、違いが小さい。磁束密度の分布の違
いが従来よりも小さいので、漏れ磁束を小さくでき、運
転時に必要な界磁起電力が小さくてすみ、界磁起電力を
生じるための界磁電流も小さくてよいので、電力効率が
よくなる。また、界磁電流が小さいので、回転子の温度
上昇を低減できる。また、界磁巻線の断面積を小さくす
ることができるので、回転電機本体を小さくできる。磁
極は複数の板状の強磁性材を軸方向に積層して形成して
も、塊状の強磁性材を成形したものでもよい。
According to this feature, the magnetic flux density distribution in the gap of the rotating electric machine according to the present invention is such that the magnetic pole head is curved, has no step, and the conventional magnetic pole head covers the upper part of the field winding. Compared to a rotating electric machine using a polar rotor, the difference between the case where only the armature winding of the stator is energized and the case where only the field winding of the rotor is energized is smaller. Since the difference in the distribution of the magnetic flux density is smaller than before, the leakage flux can be reduced, the field electromotive force required during operation can be small, and the field current for generating the field electromotive force can be small. Efficiency is improved. Further, since the field current is small, the temperature rise of the rotor can be reduced. Further, since the cross-sectional area of the field winding can be reduced, the rotating electric machine body can be reduced. The magnetic pole may be formed by laminating a plurality of plate-shaped ferromagnetic materials in the axial direction, or may be formed by molding a massive ferromagnetic material.

【0010】また、磁極頭部の周方向中央部の固定子に
対向する面を、中心が回転軸と一致した円弧に沿う面と
すれば、有効磁束量をより多くすることができる。
Further, if the surface of the magnetic pole head facing the stator at the center in the circumferential direction is a surface along an arc whose center coincides with the rotation axis, the effective magnetic flux can be further increased.

【0011】[0011]

【発明の実施の形態】本発明の実施例である回転電機を
説明する。図1に本実施例の回転電機の軸方向に垂直な
断面の一部を示す。回転子1の磁極は突極形で、図1に
は、回転子1の1つの磁極2とギャップ12を挟んで向
かい合う固定子3を示してある。固定子3のコア6に設
けられたスロットには電機子巻線8が巻回されている。
回転子1の磁極胴5には界磁巻線4が巻回されている。
本実施例では、電機子巻線8は分布巻き、界磁巻線4は
集中巻きである。磁極2の中央部のd軸(電気角で0°)
を破線16で、隣り合う磁極と磁極との中間のq軸を破
線14(電気角で±90°)で示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A rotating electric machine according to an embodiment of the present invention will be described. FIG. 1 shows a part of a cross section perpendicular to the axial direction of the rotating electric machine of the present embodiment. The magnetic poles of the rotor 1 are salient poles, and FIG. 1 shows a stator 3 facing one magnetic pole 2 of the rotor 1 with a gap 12 interposed therebetween. An armature winding 8 is wound around a slot provided in the core 6 of the stator 3.
A field winding 4 is wound around a magnetic pole body 5 of the rotor 1.
In this embodiment, the armature winding 8 is a distributed winding, and the field winding 4 is a concentrated winding. D-axis at the center of magnetic pole 2 (0 ° in electrical angle)
Is indicated by a dashed line 16 and the middle q axis between adjacent magnetic poles is indicated by a dashed line 14 (± 90 ° in electrical angle).

【0012】磁極頭部10は、周方向中央部10A(B
−B′間)でギャップ12Aが小さく、2つの周方向端
部10B(B−C間およびB′−C′間)でギャップ1
2Bが大きくなるように、凸形になっている。磁極2は
凸形の塊状の強磁性体で形成するか、凸形の板状の強磁
性体を回転軸方向に積層して形成する。周方向中央部1
0Aの幅は、回転電機として有効な磁束の量を確保した
上で、漏れリアクタンスが小さくなる位置に設定する。
周方向端部10Bの寸法は、回転の際に界磁巻線4を支
持するための強度を考慮して決定する。
The magnetic pole head 10 has a central portion 10A (B
-B '), the gap 12A is small, and the gap 1 between the two circumferential ends 10B (between BC and B'-C').
It is convex so that 2B becomes large. The magnetic pole 2 is formed of a convex massive ferromagnetic material, or is formed by laminating a convex plate-like ferromagnetic material in the rotation axis direction. Circumferential center 1
The width of 0A is set at a position where the leakage reactance becomes small after securing the amount of magnetic flux effective as a rotating electric machine.
The size of the circumferential end 10B is determined in consideration of the strength for supporting the field winding 4 during rotation.

【0013】本実施例の回転電機のギャップに生じる磁
束密度の分布を、磁極頭部が湾曲して段差が無く、磁極
頭部が界磁巻線の上部を覆っている突極形回転子を用い
た従来の回転電機と比べて説明する。
The distribution of the magnetic flux density generated in the gap of the rotating electric machine according to the present embodiment is described by using a salient pole type rotor in which the pole head is curved, has no steps, and the pole head covers the upper part of the field winding. A description will be given in comparison with the conventional rotating electric machine used.

【0014】はじめに、磁極頭部が湾曲して段差が無
く、磁極頭部が界磁巻線の上部を覆っている従来の突極
形回転子を用いた回転電機について、ギャップにおける
磁束密度の分布を説明する。
First, for a rotating electric machine using a conventional salient pole type rotor in which a magnetic pole head is curved and has no steps, and a magnetic pole head covers an upper part of a field winding, a distribution of magnetic flux density in a gap. Will be described.

【0015】図4に、d軸磁束だけが生じるように、固
定子の電機子巻線のみに通電した場合の、ギャップにお
ける磁束密度の分布を示す。図4の横軸は、ギャップに
おける周方向の空間位置を示し、磁極の中心を原点0度
として電気角で表す。また、本実施例の回転電機の周方
向の位置C及びC′に対応する空間位置も示す。この場
合に、電機子巻線が分布巻きであるために、ギャップ起
電力の周方向分布はほぼ正弦波状となるので、ギャップ
に生じる磁束密度は正弦波に近い分布となる。図5に、
回転子の界磁巻線のみに通電した場合の、ギャップにお
ける磁束密度の分布を示す。この場合に、界磁巻線が集
中巻きであるために、ギャップ起電力の周方向分布はほ
ぼ台形状または方形状となるので、ギャップに生じる磁
束密度は台形に近い分布となる。
FIG. 4 shows the distribution of the magnetic flux density in the gap when only the armature winding of the stator is energized so that only the d-axis magnetic flux is generated. The horizontal axis in FIG. 4 indicates the spatial position in the circumferential direction in the gap, and is represented by an electrical angle with the origin of the magnetic pole being 0 degree. Also, the spatial positions corresponding to the circumferential positions C and C 'of the rotating electric machine of the present embodiment are shown. In this case, since the armature winding is a distributed winding, the circumferential distribution of the gap electromotive force is substantially sinusoidal, so that the magnetic flux density generated in the gap is close to a sinusoidal distribution. In FIG.
4 shows a distribution of a magnetic flux density in a gap when only a field winding of a rotor is energized. In this case, since the field windings are concentrated windings, the circumferential distribution of the gap electromotive force is substantially trapezoidal or square, so that the magnetic flux density generated in the gap is close to a trapezoidal distribution.

【0016】固定子の電機子巻線のみに通電した場合
(図4)と回転子の界磁巻線のみに通電した場合(図
5)とで、ギャップにおける磁束密度の分布は大きく異
なる。磁束密度分布の違いは漏れ磁束となり、漏れリア
クタンスが大きい。漏れ磁束が大きいと、運転に必要な
界磁起電力が大きくなるという問題がある。
The distribution of the magnetic flux density in the gap differs greatly between the case where only the armature winding of the stator is energized (FIG. 4) and the case where only the field winding of the rotor is energized (FIG. 5). The difference in the magnetic flux density distribution is a leakage magnetic flux, and the leakage reactance is large. If the leakage flux is large, there is a problem that the field electromotive force required for operation becomes large.

【0017】次に、本実施例の回転電機について、ギャ
ップにおける磁束密度の分布を説明する。
Next, the distribution of the magnetic flux density in the gap in the rotating electric machine according to the present embodiment will be described.

【0018】図2に、d軸磁束だけが生じるように、電
機子巻線8のみに通電した場合の、ギャップ12におけ
る磁束密度の分布を示す。
FIG. 2 shows the distribution of the magnetic flux density in the gap 12 when only the armature winding 8 is energized so that only the d-axis magnetic flux is generated.

【0019】図3に、界磁巻線4のみに通電した場合
の、ギャップ12における磁束密度の分布を示す。
FIG. 3 shows the distribution of the magnetic flux density in the gap 12 when only the field winding 4 is energized.

【0020】本実施例の回転電機でも、従来の回転電機
と同様に、電機子巻線8のみに通電した場合に磁束密度
は正弦波に近い分布となり、界磁巻線4のみに通電した
場合に磁束密度は台形に近い分布となる。しかし、この
台形に近い分布は、従来の回転電機の台形に近い分布に
比べて、周方向中央部10Aのギャップ12Aで磁束密
度がより高く、周方向端部10Bのギャップ12Bで磁
束密度がより低くなっている。したがって、本実施例の
回転電機で電機子巻線8のみに通電した場合と界磁巻線
4のみに通電した場合との磁束密度の分布の違いは、従
来の回転電機より小さい。特に、周方向端部10B(B
−C間およびB′−C′間)で磁束密度の分布の違いが
改善されている。
In the rotating electric machine of the present embodiment, similarly to the conventional rotating electric machine, the magnetic flux density has a distribution close to a sine wave when only the armature winding 8 is energized, and the magnetic flux density when only the field winding 4 is energized. The magnetic flux density has a distribution close to a trapezoid. However, the distribution close to the trapezoidal shape has a higher magnetic flux density at the gap 12A at the circumferential central portion 10A and a higher magnetic flux density at the gap 12B at the circumferential end portion 10B, as compared to the distribution close to the trapezoidal shape of the conventional rotating electric machine. It is lower. Therefore, in the rotating electric machine of the present embodiment, the difference in the distribution of magnetic flux density between the case where only the armature winding 8 is energized and the case where only the field winding 4 is energized is smaller than the conventional rotating electric machine. In particular, the circumferential end 10B (B
−C and B′−C ′), the difference in the distribution of the magnetic flux density is improved.

【0021】したがって、磁束密度の分布の違いが従来
よりも小さいので、漏れ磁束を小さくできる。漏れ磁束
が小さいので運転時に必要な界磁起電力が小さくてす
み、界磁起電力を生じるための界磁電流も小さくてよい
ので、電力効率がよくなる。
Therefore, since the difference in the distribution of the magnetic flux density is smaller than in the prior art, the leakage magnetic flux can be reduced. Since the leakage magnetic flux is small, the field electromotive force required during operation can be small, and the field current for generating the field electromotive force can be small, so that the power efficiency is improved.

【0022】また、界磁電流が小さいので、回転子の温
度上昇を低減できる。
Further, since the field current is small, the rise in temperature of the rotor can be reduced.

【0023】また、界磁巻線の断面積を小さくすること
ができるので、回転電機本体を小さくできる。
Further, since the cross-sectional area of the field winding can be reduced, the size of the rotating electric machine body can be reduced.

【0024】また、磁極頭部10の周方向端部10B
(B−C間およびB′−C′間)が、回転の際に界磁巻
線4を支持するので、界磁巻線4を支持するための鉄片
を溶接する必要はないから、鉄片を溶接する際の熱によ
る磁極の磁器特性低下および機械的強度低下もなく、さ
らに鉄片および溶接箇所の渦電流による発熱もなく、電
力効率が向上する。また、鉄片が無い分、部品点数が少
なくなり、溶接の工程もないから、製造コストを低くで
きる。
The circumferential end 10B of the pole head 10
(Between B-C and B'-C ') support the field winding 4 at the time of rotation, so that it is not necessary to weld an iron piece for supporting the field winding 4, There is no decrease in the porcelain characteristics and mechanical strength of the magnetic pole due to heat during welding, and there is no heat generation due to eddy currents in the iron piece and the welding location, and power efficiency is improved. Further, since there is no iron piece, the number of parts is reduced, and since there is no welding step, the manufacturing cost can be reduced.

【0025】ところで、磁極頭部10の周方向中央部1
0Aは凸型をしているので、磁極頭部が湾曲して段差が
無く、磁極頭部が界磁巻線の上部を全面的に覆っている
突極形回転子と比べて、本実施例の回転電機で磁極2を
貫く有効磁束量は少なくなるが、ギャップ12Aを小さ
くすれば、有効磁束量を補うことができる。また、磁極
頭部10の周方向中央部10Aの面を、中心が回転軸と
一致した円弧に沿う面とすれば、有効磁束量をより多く
することができる。
By the way, the central part 1 in the circumferential direction of the pole head 10
Since 0A has a convex shape, the magnetic pole head is curved and there is no step, and the present embodiment is compared with the salient pole type rotor in which the magnetic pole head entirely covers the upper part of the field winding. Although the amount of effective magnetic flux penetrating the magnetic pole 2 is reduced in the rotating electric machine described above, the effective magnetic flux amount can be supplemented by reducing the gap 12A. If the surface of the magnetic pole head 10 at the circumferential central portion 10A is a surface along a circular arc whose center coincides with the rotation axis, the effective magnetic flux amount can be further increased.

【0026】[0026]

【発明の効果】本発明によれば、漏れ磁束を小さくで
き、運転時に必要な界磁起電力が小さくてすみ、界磁起
電力を生じるための界磁電流も小さくてよいので、電力
効率がよくなる。また、界磁電流が小さいので、回転子
の温度上昇を低減できる。また、界磁巻線の断面積を小
さくすることができるので、回転電機本体を小さくでき
る。
According to the present invention, the leakage magnetic flux can be reduced, the field electromotive force required during operation can be reduced, and the field current for generating the field electromotive force can be reduced. Get better. Further, since the field current is small, the temperature rise of the rotor can be reduced. Further, since the cross-sectional area of the field winding can be reduced, the rotating electric machine body can be reduced.

【0027】また、磁極頭部の周方向中央部の固定子に
対向する面を、中心が回転軸と一致した円弧に沿う面と
すれば、有効磁束量をより多くすることができる。
Further, when the surface of the magnetic pole head facing the stator at the center in the circumferential direction is a surface along an arc whose center coincides with the rotation axis, the effective magnetic flux amount can be further increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である回転電機の断面図。FIG. 1 is a sectional view of a rotating electric machine according to an embodiment of the present invention.

【図2】実施例の回転電機の電機子巻線8にのみ通電し
た場合のギャップ12における磁束密度の分布を示す
図。
FIG. 2 is a diagram showing a distribution of magnetic flux density in a gap 12 when current is applied only to an armature winding 8 of the rotating electric machine according to the embodiment.

【図3】実施例の回転電機の界磁巻線4にのみ通電した
場合のギャップ12における磁束密度の分布を示す図。
FIG. 3 is a diagram showing a distribution of a magnetic flux density in a gap 12 when current is supplied only to a field winding 4 of the rotating electric machine according to the embodiment.

【図4】従来の回転電機の電機子巻線にのみ通電した場
合のギャップにおける磁束密度の分布を示す図。
FIG. 4 is a diagram showing a distribution of magnetic flux density in a gap when current is applied only to an armature winding of a conventional rotary electric machine.

【図5】従来の回転電機の界磁巻線にのみ通電した場合
のギャップにおける磁束密度の分布を示す図。
FIG. 5 is a diagram showing a distribution of a magnetic flux density in a gap when current is supplied only to a field winding of a conventional rotating electric machine.

【符号の説明】[Explanation of symbols]

1…回転子、2…磁極、3…固定子、4…界磁巻線、5
…磁極胴、6…コア、8…電機子巻線、10…磁極頭
部、12…ギャップ。
DESCRIPTION OF SYMBOLS 1 ... Rotor, 2 ... Magnetic pole, 3 ... Stator, 4 ... Field winding, 5
... magnetic pole body, 6 ... core, 8 ... armature winding, 10 ... magnetic pole head, 12 ... gap.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 身佳 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H002 AA02 AA09 AE07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Mika Takahashi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratory, Hitachi Ltd. 5H002 AA02 AA09 AE07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】固定子と、磁極が突極形で、前記磁極に界
磁巻線が集中的に巻かれた回転子とを有する回転電機に
おいて、 前記磁極の前記界磁巻線よりも外周側である磁極頭部と
前記固定子との間の距離が前記磁極の周方向中央部で最
も小さく、前記磁極の周方向両端部で前記磁極の周方向
中央部の距離よりも大きくなるように、前記磁極頭部の
形状が、凸形であることを特徴とする回転電機。
1. A rotating electric machine comprising a stator and a rotor having magnetic poles of salient pole type and a field winding intensively wound around said magnetic poles, wherein said magnetic poles have outer periphery than said field windings. So that the distance between the magnetic pole head which is the side and the stator is smallest at the circumferential center of the magnetic pole, and larger than the distance of the circumferential center of the magnetic pole at both circumferential ends of the magnetic pole. A rotating electric machine, wherein the shape of the magnetic pole head is convex.
【請求項2】前記磁極は、複数の板状の強磁性材を軸方
向に積層して形成されたことを特徴とする請求項1の回
転電機。
2. The rotating electric machine according to claim 1, wherein said magnetic pole is formed by laminating a plurality of plate-shaped ferromagnetic materials in an axial direction.
【請求項3】前記磁極は、一体の塊状の強磁性材から成
形されたことを特徴とする請求項1の回転電機。
3. The rotating electric machine according to claim 1, wherein said magnetic pole is formed of an integral massive ferromagnetic material.
【請求項4】前記磁極頭部の周方向中央部の前記固定子
に対向する面は、前記回転子の回転軸と中心が一致する
同心円の円弧に沿うことを特徴とする請求項1の回転電
機。
4. The rotation according to claim 1, wherein a surface of the magnetic pole head facing the stator at a central portion in a circumferential direction is along a concentric arc whose center coincides with a rotation axis of the rotor. Electric machine.
JP10330532A 1998-11-20 1998-11-20 Rotating electric machine Pending JP2000166138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10330532A JP2000166138A (en) 1998-11-20 1998-11-20 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10330532A JP2000166138A (en) 1998-11-20 1998-11-20 Rotating electric machine

Publications (1)

Publication Number Publication Date
JP2000166138A true JP2000166138A (en) 2000-06-16

Family

ID=18233696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10330532A Pending JP2000166138A (en) 1998-11-20 1998-11-20 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP2000166138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122050A1 (en) * 2015-01-30 2016-08-04 한양대학교 산학협력단 Rotor of wound field synchronous motor
CN110212659A (en) * 2019-05-24 2019-09-06 浙江大学 A kind of double salient-pole electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122050A1 (en) * 2015-01-30 2016-08-04 한양대학교 산학협력단 Rotor of wound field synchronous motor
KR20160094201A (en) * 2015-01-30 2016-08-09 한양대학교 산학협력단 Wound field synchronous motor rotor
KR101676157B1 (en) * 2015-01-30 2016-11-14 한양대학교 산학협력단 Wound field synchronous motor rotor
CN110212659A (en) * 2019-05-24 2019-09-06 浙江大学 A kind of double salient-pole electric machine

Similar Documents

Publication Publication Date Title
JP3690067B2 (en) Permanent magnet rotating electric machine
JP4619179B2 (en) Rotating electric machine
JP3745884B2 (en) Motor structure and manufacturing method thereof
JP6332011B2 (en) Axial gap type rotating electrical machine
JP4900132B2 (en) Rotor and rotating electric machine
JP5659541B2 (en) Rotating electric machine stator core
US20120086288A1 (en) Electric rotating machine
JP2002507879A (en) Multi-phase traverse magnetic flux machine
JP2000041367A (en) Hybrid excitation type synchronous machine
JP4577068B2 (en) Rotating electric machine
JP2002345189A (en) Permanent magnet embedded synchronous motor
US11264877B2 (en) Axial flux machine
JP2009261162A (en) Split stator core
JPH10146030A (en) Dynamo electric machine having concentratedly-wound stator
JPH1094230A (en) Outer rotor concentrated winding rotating electric machine, and motor vehicle using it
JPH0993895A (en) Brushless motor
JP2000316241A (en) Motor with embedded permanent magnet
JP2002238194A (en) Structure of rotor of permanent-magnet motor
JP2001186698A (en) Permanent-magnet motor
JP2000166138A (en) Rotating electric machine
JP2017077133A (en) Rotary electric machine
JP2002136013A (en) Magnet motor
JPH0670520A (en) Synchronous motor
JP2002191157A (en) Synchronous rotating electric machine with combined use of permanent magnet
JP2000060042A (en) Permanent magnet rotor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622