JP2000166128A - Energy storage system and its using method - Google Patents

Energy storage system and its using method

Info

Publication number
JP2000166128A
JP2000166128A JP10375261A JP37526198A JP2000166128A JP 2000166128 A JP2000166128 A JP 2000166128A JP 10375261 A JP10375261 A JP 10375261A JP 37526198 A JP37526198 A JP 37526198A JP 2000166128 A JP2000166128 A JP 2000166128A
Authority
JP
Japan
Prior art keywords
pressure
power
compressed air
energy
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10375261A
Other languages
Japanese (ja)
Inventor
Hideo Masubuchi
秀雄 増渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10375261A priority Critical patent/JP2000166128A/en
Publication of JP2000166128A publication Critical patent/JP2000166128A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Abstract

PROBLEM TO BE SOLVED: To convert pneumatic pressure into electricity or to use the pneumatic pressure as power as is, or to use it as a cooler, making the best use of the characteristics of adiabatic expansion in the daytime by storing power as pneumatic pressure in place of electric power. SOLUTION: Using high-pressure steam or midnight electric power generated in a thermoelectric power plant at midnight, 100-1,000 atm of compressed air is produced, led with pipes to the inside of the sea where its pressure is the same with that of the compressed air to prevent a container from being broken due to pressure, and is stored in a comparatively simple container. The compressed air is extracted in daytime for power generation. Additionally, it is distributed as is with a thin pipe network to each place, without being converted into electricity, and used as power or as a cooler. Incidentally, a storage container is pressed with a weight which resists its buoyancy in a shallow sea.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】(産業上の利用分野)この発明は主に深夜
電力の貯蔵法に関するものであるが、電力をそのまま貯
蔵するのではなく、そのエネルギーを圧縮空気の形で保
存するといった分野に属する。
(Field of Industrial Application) The present invention mainly relates to a method of storing power at midnight, but belongs to the field of storing power in the form of compressed air instead of storing power as it is.

【0002】(従来の技術)電気使用量の昼夜差、曜日
差、季節差からくる変動に対処するため、揚水発電や超
伝導フライホイールを使う方法以外に圧縮空気にエネル
ギーを溜めるという素朴なアイデアは昔からあるがコス
ト的に引き合う方法が見つからず、今に至っても実現さ
れていない。
(Prior Art) The simple idea of storing energy in compressed air in order to cope with fluctuations caused by day-night, day-of-week, and seasonal differences in electricity usage, other than by using pumped-storage power generation or superconducting flywheels Has been around for a long time, but there has been no way to find it in terms of cost, and it has not yet been realized.

【0003】(発明が解決しようとする課題)貯蔵出来
るエネルギー密度から考えてコスト的に引き合わない高
強度を要する高圧圧縮空気の保存容器の簡素化を計る。
建設地買収費用の低減化、万一の事故にたいする安全性
確保の費用を少なくすることも実用技術にするために必
要です。次に発電所における高圧蒸気の力学的エネルギ
ーをそのまま圧縮空気をつくるのに利用し、場合によっ
ては最後まで電気にもしないで直接利用することによ
り、変換のつど生じるエネルギーロスを出来るだけ小さ
くすることにします。発明の副産物として火力発電所か
ら出る二酸化炭素を一万m級の海溝へ半永久固定するこ
とも考えています。
(Problems to be Solved by the Invention) In view of the energy density that can be stored, a storage container for high-pressure compressed air that requires high strength that is not cost-effective is simplified.
It is also necessary to reduce the cost of acquiring a construction site and the cost of ensuring safety in the event of an accident in order to make it a practical technology. Next, by using the mechanical energy of the high-pressure steam in the power plant to produce compressed air as it is, and in some cases directly using it without using electricity until the end, to minimize the energy loss that occurs with each conversion. To We are also considering semi-permanently fixing carbon dioxide emitted from thermal power plants in a 10,000m-class trench, as a by-product of the invention.

【0004】(課題を解決するための手段)発電所ボイ
ラーからでる数十気圧の蒸気をポンプを動かすことに直
接使い、100〜450気圧の圧縮空気をつくり、それ
をパイプを使い、圧縮空気自体の自重も考えに入れて、
同圧の海底に導き、そこに設けたシート状の簡易容器、
または浅い海では鉄製、コンクリート性の簡易容器に貯
蔵します。ここで言う簡易容器とは地上で同圧の気体を
保持しようとした場合の容器に比べてはるかに強度がい
らない容器という意味です。水圧が空気と同圧なため、
圧力保持のための強度はほとんど必要ありませんが浅い
海では浮力に対抗するため重りで下に引くのでこのため
の強度は必要です。これは例えば5000mの海では空
気の比重が0.5になるため半径10mの半球容器に2
000立法メートルの空気を入れる場合、容器の強度は
その半分の1000トンの水を地上で普通に入れたとき
持ちこたえられるものでなければなりません。コンクリ
ートでつくる場合は海底固定の形になりますがこれでも
浮かないように重りで押さえる必要があります。これは
屋根の上に石やコンクリートの廃棄物などを置くことで
十分です。またそれが置きやすいように設計します。内
部は空気と海水しか入らないため縦横にはすかいを入れ
ることが出来ます。下部はなくても構いませんが万一の
事故に備えて簡単なふたをし、底面に開けたいくつかの
穴から海水の出入りをさせます。逆さまになり全部の気
体が一気に出ることを防ぐ目的です。水深が約1000
m、100気圧以上と限定したのはエネルギー密度を高
くするためと、深いほど空気の比重が上がり、浮力が小
さくなり、浮き上がり防止のための重りや容器の強度も
少なくて済むことと、本発明が生きてくるのは経済的に
も少なくともそのへんの深さがないと意味がなくなるか
らです。深度が一万m、千気圧位になり、空気の比重が
周りの海水より重くなることがあると、浮力防止に使っ
ていた重りは必要がなくなります。この場合は海底に窪
地があればそこを池のように使うことも出来るので容器
そのものも必要なくなります。季節を通した長期間の保
存においては空気が海水に拡散溶融して損失がおこるこ
ともあるので接触面積を減らすために簡易シートで覆う
ことも検討します。二酸化炭素の割合が多い火力発電所
の排ガスを使った場合、空気より重い二酸化炭素は下の
方に沈むのでそれを分離し、汲み上げに使わなければ海
溝に半永久固定したことになります。二酸化炭素は一万
mよりもっと浅い海でもシャーベット状になり分離する
と思いますが深い海ほど固定が確実になります。パイプ
の強度は深海にいくにつれて弱くしてよく、下端ではビ
ニールホースのようなものでかまいません。深夜電力や
日祭日、春秋の余剰エネルギーを使って溜めたこれらの
高圧空気は必要なときに取り出し、タービンを回して発
電したり、力としてそのまま利用したり、室内で断熱膨
張させてクーラーとしても利用出来ます。高圧の空気は
電気でポンプを動かしてつくってもいいが、発電所には
30気圧以上の蒸気がはじめからあるため、それを使う
のがよりよい方法です。径が4倍違うシリンダーをもつ
ピストンポンプを連結してつ使えば圧力は16倍になる
ため必要な高圧空気は簡単に出来ます。地上において例
えば500気圧の空気をつくっても意味がありません。
なぜなら簡単に計算しても圧縮空気の密度は0.5にな
りそれを1万mの海底に持っていくと自重だけで少なく
とも500気圧になり、はじめの500気圧をたすと1
000気圧になってしまうからです。従って深海の圧力
を利用するこの方法では利用できる圧縮空気の圧力には
上限があります。これは地上に設けたタンクとの大きな
違いです。ただこれは利点として働きます。450気圧
の力で1000気圧まで圧縮した気体が得られ、保存容
器もその分小さくできるからです。保存容器の具体的な
強度は気球というよりもエアドームの屋根に使うシート
程度の強さがあれば1万mの海では十分ですがエネルギ
ー密度が大きいため、きちんとした容器を使っても採算
的には問題ありません。万一の事故で空気の放出が起こ
ったとしても設置場所が海のため、惨劇は起こりませ
ん。一応船には真上を通らないように設置位置だけは知
らせておきます。二酸化炭素などを何十年にもわたって
大量に海溝に捨てそれが海底火山活動によって暖められ
海上に噴出するというような事故はおそらくメタンでと
きどきおこり、それが魔の海域といわれるバミューダ海
域での事故の原因であろうと思われています。高圧な空
気が管を破断する力は細管に入れるとぐんと弱まるた
め、細管網を都市部などにつくり、各所に分配、動力と
して使ったりすることが出来ます。現在はその用途は限
られていますが、空気流推進の人や物体の移動システム
が使われるようになると飛躍的に需要が伸びます。追い
風で送るチューブ内自転車専用高速道路、リニアモータ
ーに替わる風力推進の高速列車、荷物だけのチューブ内
輸送など物体の移動には空気圧力そのものが有効で、電
気に変える必要がない大きな分野が未開発のまま眠って
います。工場などで大きな動力モーターを動かす必要の
あるときは高圧空気からタービンを回して動力にした方
が、力を電気にしてまた電気から力に直すより得なはず
です。モーターの替わりに小型タービンという時代がく
る可能性もあります。請求項2はこのことを考えてのも
のです。請求項3はシステム全体が大きなクーラーをつ
くったとも見なせるので高圧空気の断熱膨張をそのまま
室内などに放出して、冷房に使おうというものである。
細管の配線だけで冷房が出来てしまう利点はあります
が、欠点もありその特性を生かし使うべきものです。こ
こで言う細管とは特別な大量使用者は別として一般には
内径数ミリのようなもので太さが電線並のものをさして
います。注意点は密封した部屋は必ず空気抜け穴を設け
ること、細管の先端は凍らないように局部加熱すること
です。特性は一度きりの冷気放出で終わるため、工場内
のスポットクーラーの役割や、大勢の人が一時だけ集ま
る場所の冷房が得意な分野です。配線だけで設備費がほ
とんどかからないのが特徴です。強弱は弁の操作だけで
行います。なおこれらの高圧空気の配管網には各所に電
磁弁を入れ、緊急の事故に備えます。
(Means for solving the problem) Steam of several tens of atmospheres from a power plant boiler is directly used to operate a pump, and compressed air of 100 to 450 atmospheres is produced. Considering its own weight,
Guided to the seabed of the same pressure, a sheet-shaped simple container provided there,
Or in shallow seas, store in a simple container made of iron or concrete. A simple container here means a container that requires much less strength than a container that tries to hold the same pressure gas on the ground. Since the water pressure is the same as air,
Hardly any strength is needed to hold the pressure, but in shallow waters the weight pulls down to resist buoyancy, so strength is needed. For example, in a 5000 m sea, the specific gravity of air becomes 0.5, so a 2 m
When 000 cubic meters of air is introduced, the strength of the container must be able to withstand half of its 1000 tons of water when placed normally on the ground. When made of concrete, it will be fixed on the sea floor, but it is necessary to hold it with a weight so that it does not float. It is enough to put stone and concrete waste on the roof. Also design it to be easy to put. Since the inside can only enter air and seawater, you can put a vertical and horizontal gap. You don't have to have a lower part, but just in case of an accident, put a simple lid on and let some of the holes on the bottom let the water in and out. The purpose is to prevent upside down and all of the gas at once. Water depth about 1000
The reason for limiting the energy density to 100 m or more is to increase the energy density and to increase the specific gravity of the air as the depth increases, the buoyancy decreases, and the weight of the weight for preventing floating and the strength of the container are reduced. Comes to life because it is economically meaningless without at least that much depth. When the depth reaches 10,000m and the atmospheric pressure becomes higher and the specific gravity of the air becomes heavier than the surrounding seawater, the weight used to prevent buoyancy becomes unnecessary. In this case, if there is a depression on the seabed, it can be used like a pond, so the container itself is not required. During long-term storage throughout the season, air may diffuse into seawater and melt, causing loss, so consider using a simple sheet to reduce the contact area. When using the exhaust gas from a thermal power plant with a high proportion of carbon dioxide, the carbon dioxide heavier than the air sinks down, so it is separated and if not used for pumping, it is semi-permanently fixed in a trench. I think that carbon dioxide will be sherbet-like and separate even in seas shallower than 10,000m, but the deeper the sea, the more secure it will be. The strength of the pipe can be reduced as it goes deeper into the sea, and at the lower end it can be like a vinyl hose. These high-pressure air collected using surplus energy from late-night power, holidays, and spring and autumn is taken out when needed, and the turbines are used to generate electricity, use it as power, or adiabaticly expand indoors as a cooler. Available. High-pressure air can be created by running a pump with electricity, but it is better to use it because power plants already have more than 30 atmospheres of steam. If a piston pump with a cylinder whose diameter is 4 times different is connected and used, the pressure will be 16 times and the necessary high pressure air can be easily obtained. There is no point in creating air at 500 atmospheres on the ground, for example.
Even if it is calculated simply, the density of compressed air will be 0.5, and if it is brought to the seabed of 10,000m, it will be at least 500 atm by its own weight alone, and if the first 500 atm is added, it will be 1
Because it will be 000 atm. Therefore, there is an upper limit to the available compressed air pressure in this method that uses deep sea pressure. This is a major difference from tanks on the ground. But this works as an advantage. This is because a gas compressed to 1000 atm with a force of 450 atm is obtained, and the storage container can be made smaller accordingly. The specific strength of the storage container is enough for a sea of 10,000m if the strength of the sheet used for the roof of the air dome is more than a balloon, but the energy density is large, so even if a proper container is used, it is profitable Is no problem. Even if air is released in the event of an accident, the tragedy will not occur because the installation location is the sea. For the time being, let us know only the installation position so that the ship does not pass right above. Accidents such as carbon dioxide being dumped in trenches in large quantities for decades, which are likely to be warmed by submarine volcanic activity and erupted onto the sea, probably occur occasionally with methane, which is the demon sea area in Bermuda. It is thought to be the cause of the accident. Since the force of high-pressure air breaking the pipe is greatly reduced when it is put in a capillary, a capillary network can be created in urban areas and distributed and used as power. At present, its use is limited, but the demand for airflow-driven human and object movement systems will increase dramatically. Air pressure itself is effective for moving objects, such as a motorway dedicated to bicycles in a tube sent by tailwind, a high-speed train driven by wind power instead of a linear motor, and transport of luggage only in a tube, and a large field that does not need to be converted to electricity is undeveloped. Sleeping as it is. When it is necessary to operate a large power motor in a factory or the like, turning the turbine from high-pressure air to power should be better than turning power into electricity and converting from electricity to power. The era of small turbines may replace the motors. Claim 2 takes this into account. Claim 3 claims that the entire system can be considered to have created a large cooler, so that the adiabatic expansion of high-pressure air is directly discharged into a room or the like and used for cooling.
Although there is an advantage that cooling can be done only by thin tube wiring, there are disadvantages and it should be used taking advantage of its characteristics. Aside from the thin tubes mentioned here, apart from special mass users, they generally have a diameter of several millimeters and a thickness similar to that of electric wires. Please note that the sealed room must be provided with an air vent, and the tip of the thin tube must be locally heated so as not to freeze. Since the characteristics end with a single release of cold air, it is an area that excels in the role of spot coolers in factories and in the cooling of places where large numbers of people gather only once. The feature is that almost no equipment cost is required just by wiring. The strength is controlled only by operating the valve. In addition, solenoid valves are installed in these high-pressure air piping networks at various locations to prepare for emergency accidents.

【0005】(作用)本発明では数百気圧の空気のエネ
ルギー貯蔵密度がかなり高いことと貯蔵容器はいくらで
も大きく安価に出来るため、収容能力には問題ありませ
ん。発電所のボイラーの高圧蒸気を発電の代わりに使
い、直接圧縮ポンプのピストンを動かしつくった高圧空
気は昼間逆流させれば、同容量の空気がほぼ同じ力で同
じピストンを逆回しして発電することができると考えれ
ばエネルギーのロスはあまりないことが解ります。もち
ろんタービンを使うのはさらに有効です。圧縮したとき
にでる発熱、ピストンから漏れる空気、管抵抗が主な損
失です。圧縮したときの発熱は発電のときにより大きな
径のタービンなどの使用で圧力を薄めて使うとき空気が
冷えるということに影響してくることになるが発電所で
は廃熱がいくらでもあるため、それらを利用して暖めま
す。ピストンとシリンダの隙間から漏れる割合を小さく
するにはピストン径を大きくすることと早く動かすこと
が主な対策です。管抵抗の割合を小さくするには高圧に
すること、管径をとくに強度が必要なくなる深い部分で
次第に大きくしていく方法をとります。
(Action) In the present invention, the energy storage density of air at several hundred atmospheres is quite high, and the storage container can be made large and inexpensive, so that there is no problem in the storage capacity. The high-pressure steam generated from the boiler at the power plant is used instead of power generation, and the high-pressure air produced by directly moving the piston of the compression pump is back-flowed during the day. If you think that you can do it, you can see that there is not much energy loss. Of course, using a turbine is even more effective. The main losses are heat generated when compressed, air leaking from the piston, and pipe resistance. The heat generated during compression will have an effect on the cooling of the air when the pressure is reduced by using a turbine with a larger diameter during power generation.However, since the power plant generates a lot of waste heat, Use and warm. The main measures to reduce the rate of leakage from the gap between the piston and the cylinder are to increase the piston diameter and move the piston quickly. To reduce the ratio of tube resistance, use high pressure, and gradually increase the tube diameter in deep areas where strength is not required.

【0006】(実施例)日本海溝までは200kmはあ
るのでまず身近な3000mの海での実施例の説明をし
ます。その深さの海が出来るだけ近くのある場所を探し
そこに小規模のものをつくるとします。送る配管の長さ
は20km以下で出来ると思います。陸上部で直径5c
m、200気圧強の空気を発電所の蒸気でなく深夜電力
を安価に買い、モーターを動かし、3重連結のポンプで
つくります。これで昼間ポンプを逆回しして発電、電力
会社に売電するわけです。多少の効率が悪くても10倍
近い料金の格差がこの方法をとてつもなく儲かるビジネ
スにしてしまいます。具体的な工事方法について説明し
ます。半径10mの半球ドームは地上でつくり海に浮か
べながら引いていきます。側面底辺部には円周に沿って
多くのフックを設け、そこにいくつものおもりをつり下
げます。おもりは岩石、コンクリート廃材など適度な強
度のナイロン網に入れたもの一つ10トンの場合150
個程度用意します。海に沈めるときはかすかに沈み始め
る程度ですが下降するに従い圧力のためどんどん容積が
減り、重さが増 てくるので途中で常に圧縮空気をポン
プで送りながら穏やかに下ろします。陸からの配管は2
種類の径の異なる鋼管を交互にはめ込み接着すれば溶接
は簡単なもので済みます。船上でこの作業をしながらだ
んだん長くしていくのですが深くなるに従い強度がいら
なくなるのはすでに述べた通りです。鋼管は300mに
もなると自然にしなって海底に落ちていきますが自重の
力で折れないように陸上から空気を送りながらつないで
いくと浮力のため浮いてきます。これらは適当なおもし
をつければ都合の良い工事環境を作れます。海流は深さ
300m位までしかありませんからそれほど心配はいり
ませんが、横に折れそうなときは数キロはなれた場所か
ら錨綱でおさえます。最後の部分は柔軟性のあるビニー
ルパイプのようなものを100m程度使い、タンクの上
端につなぎます。ただし鋼管とタンクはより短い強力な
ナイロンロープで結び、パイプに力がかかることを防ぎ
ます。このような状態にして徐々に海底に下ろしていき
ます。これらはあとで修理が出来るようにブイに係留し
ておくとまた持ち上げることができるので便利です。こ
こでこの小規模なプラントがどの程度のエネルギーを蓄
えられるか計算してみます。200気圧の空気1立方メ
ートルは200トンの水を10m持ち上げる力を持ちま
す。従ってこの2000倍なので20万トンの水を使用
できる20mの落差を持つ水力発電所と同等の能力を持
つことになります。ただしこれらは深夜の6時間で溜
め、昼の間に全部使い切り、これを毎日くり返すことが
出来ます。もっと深い海を使い、大規模なものをつくれ
ば出力400万kwの原子炉のエネルギーを全部溜める
ことも難しい話ではありません。
(Example) Since the distance to the Japan Trench is 200 km, an example in the familiar 3000 m sea will be described first. You want to find a place as close as possible to the sea at that depth and make a small one there. I think that the length of the pipe to send can be less than 20km. 5c diameter on land
m, more than 200 atmospheres of air is purchased at low cost from midnight power instead of steam from a power plant, and a motor is operated and it is made with a triple connection pump. In this way, the pump is turned around in the daytime to generate power and sell it to the power company. Even with some inefficiencies, the disparity in rates almost 10 times makes this method an incredibly profitable business. The concrete construction method is explained. A hemisphere dome with a radius of 10m is made on the ground and pulled while floating on the sea. There are many hooks along the circumference at the bottom of the side, and several weights are hung there. Weight is rock or concrete waste material, etc., put in nylon mesh of moderate strength.
Prepare around. Reduced more and more volume for the pressure in accordance with is the extent to which begins to sink faint but lowered when submerged in the sea, you gently down while feeding the always compressed air in the middle because the weight is coming increase in the pump. 2 pipes from land
Welding is simple if the pipes of different diameters are alternately fitted and glued. As we continue to do this work on board, the longer we go, the less strength is needed as we have already mentioned. Steel pipes become natural at 300m and fall to the sea floor, but when connected by sending air from the land so that they do not break under their own weight, they float due to buoyancy. These can create a convenient construction environment if given the proper weight. The current is only about 300m deep, so don't worry too much, but if it is likely to break sideways, keep it anchored from a place several kilometers away. For the last part, use something like a flexible vinyl pipe about 100m and connect it to the top of the tank. However, the steel pipe and tank are tied with shorter, strong nylon ropes to prevent the pipe from being stressed. In this state, it is gradually lowered to the sea floor. These can be useful for mooring on a buoy so that they can be lifted again for later repair. Let's calculate how much energy this small plant can store. One cubic meter of 200 atm air has the power to lift 200 tons of water 10m. Therefore, since it is 2000 times larger, it will have the same capacity as a hydropower plant with a head of 20m that can use 200,000 tons of water. However, these can be collected in 6 hours at midnight, used up during the day, and can be repeated daily. It is not difficult to store all the energy of a 4 million kW reactor if a deeper sea is used and a large one is made.

【0007】(発明の効果)電力が貯蔵出来ないために
大きな無駄をしています。ほとんど昼夜調整が出来ない
原子力発電はもちろん火力発電の場合でも規模が大きく
なって来るにつれて同じ事がおこっています。最大ピー
ク時の使用量に合わせて施設もつくるので、その無駄は
ひいては電気料金の形で消費者にもかかってきます。本
発明はこれらをなくすとともに、火力発電所に発電とは
違う意味のエネルギー生産の役目を与え、電気やガス以
外にもう一つのエネルギー配管網をつくり、生活に役立
てようというものです。地球温暖化防止のためには排ガ
スに含まれる二酸化炭素の海底固定という方法の実際的
なやり方も提案し、大きな発生源となる火力発電所の責
任と義務を果たす手助けにもなっています。
(Effect of the Invention) There is a large waste because power cannot be stored. The same thing happens as the scale grows, not only for nuclear power, which can hardly be adjusted day and night, but also for thermal power. Since the facilities are built according to the peak usage, the waste is also incurred by consumers in the form of electricity bills. In addition to eliminating these problems, the present invention aims to provide thermal power plants with a role of energy production that is different from power generation, and to create another energy piping network other than electricity and gas, which will be useful for daily life. In order to prevent global warming, it proposes a practical method of fixing the carbon dioxide contained in exhaust gas to the seabed, and has helped to fulfill the responsibilities and obligations of thermal power plants, which are a major source.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原子力、火力発電における時間差からくる
余剰エネルギーを使い100〜450気圧の圧縮空気を
つくり、その地表における圧力と、送り込む水深までの
圧縮空気自体の自重による圧力の合計にほぼ等しくなる
水圧をもつ水深に設けた簡易容器にパイプで送り込み、
貯蔵し、必要なときそれを取り出し、発電に使うことを
特徴とするエネルギー貯蔵システム。
(1) Compressed air of 100 to 450 atm is produced by using surplus energy from the time difference between nuclear power and thermal power generation, and the pressure is approximately equal to the sum of the pressure on the ground surface and the pressure due to the weight of the compressed air itself up to the water depth to be sent. Piped into a simple container provided at the depth of water pressure,
An energy storage system that stores, retrieves when necessary, and uses it for power generation.
【請求項2】原子力、火力発電における時間差からくる
余剰エネルギーを使い100〜450気圧の圧縮空気を
つくり、その地表における圧力と、送り込む水深までの
圧縮空気自体の自重による圧力の合計にほぼ等しくなる
水圧をもつ水深に設けた簡易容器にパイプで送り込み、
貯蔵し、必要なときそれを取り出し、地上につくった細
管網をもって各所に分配、力のまま、動力として使用す
ることを特徴とするエネルギー使用法。
2. Compressed air of 100 to 450 atm is produced by using surplus energy from the time difference between nuclear power and thermal power generation, and the pressure is approximately equal to the sum of the pressure on the ground surface and the pressure due to the weight of the compressed air itself up to the water depth to be sent. Piped into a simple container provided at the depth of water pressure,
An energy use method that stores energy, takes it out when needed, distributes it to various places with a tubule network built on the ground, and uses it as power with power.
【請求項3】原子力、火力発電における時間差からくる
余剰エネルギーを使い100〜450気圧の圧縮空気を
つくり、その地表における圧力と、送り込む水深までの
圧縮空気自体の自重による圧力の合計にほぼ等しくなる
水圧をもつ水深に設けた簡易容器にパイプで送り込み、
貯蔵し、必要なときそれを取り出し、地上につくった細
管網をもって各所に分配、主に室内で放出、そこの冷房
に使うことを特徴とするエネルギー使用法。
3. A compressed air having a pressure of 100 to 450 atm is produced by using surplus energy obtained from a time difference between nuclear power and thermal power generation, and the pressure is substantially equal to the sum of the pressure at the ground surface and the pressure due to the own weight of the compressed air itself up to the water depth to be fed. Piped into a simple container provided at the depth of water pressure,
A method of storing energy that is stored, taken out when needed, distributed to various places with a tubule network built on the ground, released mainly indoors, and used for cooling there.
JP10375261A 1998-11-24 1998-11-24 Energy storage system and its using method Pending JP2000166128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10375261A JP2000166128A (en) 1998-11-24 1998-11-24 Energy storage system and its using method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10375261A JP2000166128A (en) 1998-11-24 1998-11-24 Energy storage system and its using method

Publications (1)

Publication Number Publication Date
JP2000166128A true JP2000166128A (en) 2000-06-16

Family

ID=18505235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10375261A Pending JP2000166128A (en) 1998-11-24 1998-11-24 Energy storage system and its using method

Country Status (1)

Country Link
JP (1) JP2000166128A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139267A1 (en) * 2007-05-09 2008-11-20 Ecole Polytechnique Federale De Lausanne (Epfl) Energy storage systems
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8378521B2 (en) 2007-05-09 2013-02-19 Ecole Polytechnique Federale de Lausanna (EPFL) Energy storage systems
WO2008139267A1 (en) * 2007-05-09 2008-11-20 Ecole Polytechnique Federale De Lausanne (Epfl) Energy storage systems
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8713929B2 (en) 2008-04-09 2014-05-06 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8763390B2 (en) 2008-04-09 2014-07-01 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8733094B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8209974B2 (en) 2008-04-09 2012-07-03 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8627658B2 (en) 2008-04-09 2014-01-14 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8234862B2 (en) 2009-01-20 2012-08-07 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8122718B2 (en) 2009-01-20 2012-02-28 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8479502B2 (en) 2009-06-04 2013-07-09 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8109085B2 (en) 2009-09-11 2012-02-07 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8468815B2 (en) 2009-09-11 2013-06-25 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8245508B2 (en) 2010-04-08 2012-08-21 Sustainx, Inc. Improving efficiency of liquid heat exchange in compressed-gas energy storage systems
US8661808B2 (en) 2010-04-08 2014-03-04 Sustainx, Inc. High-efficiency heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8806866B2 (en) 2011-05-17 2014-08-19 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems

Similar Documents

Publication Publication Date Title
JP2000166128A (en) Energy storage system and its using method
US10344741B2 (en) Hydro-pneumatic energy storage system
US9617970B2 (en) Pumped-storage power plant
US8640462B2 (en) Deep sea geothermal energy system
RU2545263C2 (en) Arrangement of integrated generator for generation of energy from renewable alternative sources without hazardous emissions, which protects and saves environment
KR101036436B1 (en) Apparatus for using waves energy
US9797366B2 (en) Pumped-storage power plant
EP4117142A1 (en) Wide-area power supply system
WO2016032360A1 (en) Pumped-storage system
WO2009024933A2 (en) Aquatic system for energy storage in the form of compressed air
Seymour Ocean energy on-demand using underocean compressed air storage
CN111442180A (en) Method for storing compressed air by using tunnel
Halliday et al. Review of wave energy resource and wave generator developments in the UK and the rest of the world
WO2022044250A1 (en) Renewable energy power generation system
US20240125305A1 (en) Energy production from deep ocean pressure
JP2014118813A (en) Marine hot water power generation system
GB2439643A (en) Tidal energy system with compressible vessel and open circulation
EA042650B1 (en) GLOBAL POWER SUPPLY
JP2021079931A (en) Equatorial countercurrent-based hydrogen generation plant
WO2021022200A1 (en) Bottom-founded ocean thermal energy conversion plant
RU103262U1 (en) INFORMATION TRANSMISSION DEVICE AND INFORMATION TRANSMISSION SYSTEM OVER THE WATER SURFACE OF SEAS AND OCEANS
CN114701613A (en) Offshore power generation device with a plurality of floating power generation units
GR1009766B (en) Floating sea power generation systems
KR20160092804A (en) Method and apparatus for supplying cooling water supplied from onshore into floating power plant
JPS6130926A (en) Method and device for storing energy