JP2000164591A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JP2000164591A
JP2000164591A JP10332241A JP33224198A JP2000164591A JP 2000164591 A JP2000164591 A JP 2000164591A JP 10332241 A JP10332241 A JP 10332241A JP 33224198 A JP33224198 A JP 33224198A JP 2000164591 A JP2000164591 A JP 2000164591A
Authority
JP
Japan
Prior art keywords
layer
amorphous
interface
substrate
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10332241A
Other languages
Japanese (ja)
Inventor
Masanobu Miyao
正信 宮尾
Kiyokazu Nakagawa
清和 中川
Nobuyuki Sugii
信之 杉井
Shinya Yamaguchi
伸也 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10332241A priority Critical patent/JP2000164591A/en
Publication of JP2000164591A publication Critical patent/JP2000164591A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an ultra high speed transistor by forming an oxide film with an interface, that is flat and does not contain impurities in an atom layer near the surface of a single-crystal Si substrate. SOLUTION: A semiconductor device is manufactured by a method that uses deposition of an amorphous Si layer, formation of amorphous interface through ion implantation, and the recovery and thermal oxidation and the like of a low-damage region due to low-temperature heating. As a result, the heterostructure of an oxide film with a sharp and clean interface in an atom layer and a single-crystal Si can be formed, realizing operation of a transistor at an ultra-high speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は単結晶Si基板の表面
近傍に酸化膜を製造する方法に係わり、特に上記酸化膜
と単結晶Si層との界面領域が原子層レベルで平坦であり
かつ不純物を含まないSiヘテロ構造の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide film near the surface of a single-crystal Si substrate, and more particularly, to a method for manufacturing a semiconductor device, in which an interface region between the oxide film and the single-crystal Si layer is flat at an atomic layer level, The present invention relates to a method for manufacturing a Si heterostructure that does not contain Si.

【0002】[0002]

【従来の技術】Si単結晶基板上に酸化膜を形成する従来
方法に関してはジャーナル・オブ・アプライド・フィジ
ックス、1965年、36巻、3770頁(Journal of Applied P
hysics, volume 36 (1965) p.3770)に論じられてい
る。最近、単結晶Si基板上に非晶質Siを堆積した後に熱
酸化を行い非晶質Si層のみを熱酸化する手法が考案され
た。この方法に関してはジャーナル・オブ・アプライド
・フィジクス、1997 年、82巻、4611頁から4615頁(Jou
rnal of Applied Physics, volume 82(1997)pp4611
−4615)に論じられている。
2. Description of the Related Art A conventional method for forming an oxide film on a Si single crystal substrate is described in Journal of Applied Physics, 1965, 36, 3770 (Journal of Applied P.
hysics, volume 36 (1965), p. 3770). Recently, a method has been devised in which amorphous silicon is deposited on a single crystal Si substrate and then thermally oxidized to thermally oxidize only the amorphous Si layer. This method is described in Journal of Applied Physics, 1997, Vol. 82, pp. 4611 to 4615 (Jou
rnal of Applied Physics, volume 82 (1997) pp4611
−4615).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術である単
結晶Siの熱酸化法では、形成された酸化膜と単結晶Si層
との間に遷移層が形成されるために界面は原子層レベル
では平坦ではなく,凸凹が発生する。最近開発された上
記の単結晶Si基板上の非晶質Si層を熱酸化する方法では
原子層レベルで平坦な界面が得られている。しかし、単
結晶Si基板とその上に堆積した非晶質Si層の界面には不
純物が存在するために電気的特性は良くない。
In the above-described conventional thermal oxidation method for single crystal Si, a transition layer is formed between the formed oxide film and the single crystal Si layer. In this case, the surface is not flat, but irregularities occur. In the recently developed method of thermally oxidizing an amorphous Si layer on a single crystal Si substrate, a flat interface at the atomic layer level is obtained. However, the electrical characteristics are not good due to the presence of impurities at the interface between the single crystal Si substrate and the amorphous Si layer deposited thereon.

【0004】本発明の目的は、界面構造が原子層レベル
で平坦でありかつ不純物を含まない理想的な酸化膜と単
結晶Si層の界面を形成する手法を提供することにある。
An object of the present invention is to provide a method of forming an ideal interface between an oxide film and a single-crystal Si layer having an interface structure that is flat at an atomic layer level and contains no impurities.

【0005】[0005]

【課題を解決するための手段】本発明の方法では、単結
晶Si基板の表面近傍に非晶質Si層を形成し、その非晶質
Siと単結晶Si基板との界面をイオンビーム照射を用いて
非晶質化することにより単結晶Si基板内部に新たに非晶
質層を作り込む。この界面は非晶質Siの堆積とは異な
り、基板内部に作り込まれた界面であるから、不純物は
存在せず、全く清浄な界面である。その後、450℃程度
の低温度で熱処理するとイオンビーム照射のテイル領域
に生じた欠陥は選択的にアニールされる。従って急峻な
損傷分布が得られ、原子層で平坦な非晶質Si層と単結晶
Si層の界面が得られることとなる。
According to the method of the present invention, an amorphous Si layer is formed near the surface of a single crystal Si substrate,
A new amorphous layer is formed inside the single crystal Si substrate by amorphizing the interface between Si and the single crystal Si substrate using ion beam irradiation. Since this interface is different from the deposition of amorphous Si and is an interface formed inside the substrate, it has no impurities and is a completely clean interface. Thereafter, when heat treatment is performed at a low temperature of about 450 ° C., defects generated in the tail region of the ion beam irradiation are selectively annealed. Therefore, a steep damage distribution is obtained, and a flat amorphous silicon layer and single crystal
The interface of the Si layer is obtained.

【0006】このようにして得られた試料を熱酸化する
と酸化速度の速い非晶質Si層のみが酸化される。即ち原
子層で平坦な酸化膜と単結晶Si層の界面が得られること
となる。
When the thus obtained sample is thermally oxidized, only the amorphous Si layer having a high oxidation rate is oxidized. That is, an interface between the oxide film and the single crystal Si layer which is flat in the atomic layer can be obtained.

【0007】イオンビーム照射法を用いて、堆積した非
晶質Siと単結晶Si基板との界面を非晶質化することによ
り単結晶Si基板内部に非晶質層を作り込むこと、即ち不
純物のない清浄な界面を作り出すことが第1のポイント
である。
By using an ion beam irradiation method to amorphize the interface between the deposited amorphous Si and the single crystal Si substrate to form an amorphous layer inside the single crystal Si substrate, The first point is to create a clean interface free from defects.

【0008】低温度で熱処理することによりイオンビー
ム照射のテイル領域に残存する低損傷領域のみを選択的
にアニールし、急峻な損傷分布を得ることが第2のポイ
ントである。
The second point is that a heat treatment is performed at a low temperature to selectively anneal only a low damage region remaining in the tail region of the ion beam irradiation, thereby obtaining a steep damage distribution.

【0009】その結果、最終段の非晶質Si層の選択的熱
酸化により原子層で平坦かつ不純物を含まない酸化膜と
単結晶Si層との界面が得られる。
As a result, an interface between the oxide film free of impurities and a single crystal Si layer is formed in a flat atomic layer by selective thermal oxidation of the final amorphous Si layer.

【0010】[0010]

【発明の実施の形態】(実施例1)図1および図2に本
発明による製造方法の工程図を示す。図1(a)は単結
晶Si 基板1である。図1(b)は基板1の上に非晶質Si層
2を堆積する工程を示す。単結晶Si 基板1を化学洗浄し
た後、分子線成長装置に導入し、表面クリーニングを行
った後に電子線加熱蒸着法を用いて、非晶質Si層(厚
さ;60nm)2を堆積した。
(Embodiment 1) FIGS. 1 and 2 show process diagrams of a manufacturing method according to the present invention. FIG. 1A shows a single crystal Si substrate 1. FIG. 1 (b) shows an amorphous Si layer on the substrate 1.
2 shows a step of depositing 2. After the single crystal Si substrate 1 was chemically cleaned, it was introduced into a molecular beam growth apparatus, and after cleaning the surface, an amorphous Si layer (thickness: 60 nm) 2 was deposited by using an electron beam evaporation method.

【0011】図1(c)は堆積した非晶質Si層2と単結晶
Si基板1の界面を非晶質化する工程である。即ち試料にS
i+,Ar+,Kr+等のイオン線(エネルギー;30〜500 ke
V、ドーズ量;1014〜1016 cm-2)を照射する工程であ
る。イオン照射量を効率的に低減する観点からは界面近
傍にイオン打ち込み分布のピークが来る用に打ち込みエ
ネルギーを選ぶのがよい。図2(a)にSi+イオンを50ke
Vのエネルギーで1016 cm-2のドーズ量だけ照射した結果
を示す。この場合ではイオン打ち込み分布のピーク位置
は表面から60nmの深さに位置し、そのピーク濃度は1.5
×1021 cm-3となっている。
FIG. 1C shows the deposited amorphous Si layer 2 and a single crystal.
In this step, the interface of the Si substrate 1 is made amorphous. That is, S
I + , Ar + , Kr +, etc. ion energy (energy; 30 to 500 ke
V, a dose amount: 10 14 to 10 16 cm -2 ). From the viewpoint of efficiently reducing the ion irradiation dose, it is preferable to select the implantation energy so that the peak of the ion implantation distribution comes near the interface. Fig. 2 (a) shows 50 ke of Si + ion.
The result of irradiation at a dose of 10 16 cm -2 with V energy is shown. In this case, the peak position of the ion implantation distribution is located at a depth of 60 nm from the surface, and the peak concentration is 1.5
× 10 21 cm -3 .

【0012】上記工程により得られた試料について損傷
量の深さ方向分布を高エネルギーイオンを用いた後方散
乱法および電子顕微鏡観察法で測定した結果を図1
(c)および図 2(b)に示す。非晶質領域の深さ(図2
(b)の(2)および(3))は表面から80nmに達するこ
と、およびそれより深い領域(図2(b)の(4))では
粒状の非晶質塊((図1(c)の(4))が表面から80~1
00nmの深さ領域で分布していることが明らかとなった。
FIG. 1 shows the results obtained by measuring the depth distribution of the amount of damage in the sample obtained by the above-described steps by a backscattering method using high-energy ions and an electron microscope observation method.
(C) and Fig. 2 (b). Depth of amorphous region (Fig. 2
(2) and (3) in (b) reach 80 nm from the surface, and in the deeper region ((4) in FIG. 2 (b)), a granular amorphous mass ((FIG. 1 (c)) (4)) is 80 ~ 1 from the surface
It was found that the distribution was at a depth of 00 nm.

【0013】これらの非晶質塊の消去を目的とし試料を
窒素ガス雰囲気中で熱処理を行ったところ比較的低温
(450〜500℃),かつ短時間(5〜15分間)の加熱で極
めて容易に非晶質塊が消去されることが判明した。加熱
後の試料の結晶状態を後方散乱法および電子顕微鏡観察
法で調べた結果を図1(d)および図2(c)に示す。非
晶質領域の深さ(図2(c)の(2)および(3))は表
面から60nmの深さに位置し、その界面は0.5nm以内の凸
凹しかないこと、即ち界面が原子層レベルで平坦である
ことが判明した。
When the sample was heat-treated in a nitrogen gas atmosphere for the purpose of erasing these amorphous masses, it was extremely easy to heat at a relatively low temperature (450 to 500 ° C.) and for a short time (5 to 15 minutes). It was found that the amorphous mass disappeared. FIG. 1 (d) and FIG. 2 (c) show the results of examining the crystal state of the sample after heating by the backscattering method and the electron microscope observation method. The depth of the amorphous region ((2) and (3) in FIG. 2 (c)) is located at a depth of 60 nm from the surface, and the interface has only irregularities within 0.5 nm, that is, the interface is an atomic layer. It turned out to be flat at the level.

【0014】上記試料を湿った酸素雰囲気中で650℃の
加熱を行ったところ、10時間の加熱で非晶質Si層(図2
(c)の(2)および(3))のみが酸化されることが判
った。これはジャーナル・オブ・アプライド・フィジク
ス、1997年、82巻、4611頁から4615頁(Journal of App
lied Physics, volume 82 (1997) pp4611−4615)に
論じられているように、非晶質Si層の酸化速度が単結晶
Siのそれよりも約3倍早いことに起因している。60nmの
非晶質Si層が酸化された結果、136nmの酸化膜が形成さ
れた。この様にして得られた結果を図1(e)に示す。
When the above sample was heated at 650 ° C. in a humid oxygen atmosphere, the amorphous Si layer was heated for 10 hours (FIG. 2).
Only (2) and (3)) of (c) were found to be oxidized. This is the Journal of Applied Physics, 1997, Vol. 82, pp. 4611 to 4615 (Journal of Applied Physics).
As discussed in lied Physics, volume 82 (1997) pp 4611-4615), the oxidation rate of amorphous Si
Approximately three times faster than that of Si. As a result of oxidation of the 60 nm amorphous Si layer, a 136 nm oxide film was formed. The results obtained in this way are shown in FIG.

【0015】(実施例2)図3に本発明を用い試作した
電界効果トランジスタを示す。試作例Aでは単結晶Si基
板1の上に実施例1で説明した手順に従い、136nm厚の酸
化膜5を形成した。
(Embodiment 2) FIG. 3 shows a field-effect transistor prototyped using the present invention. In Prototype Example A, an oxide film 5 having a thickness of 136 nm was formed on the single crystal Si substrate 1 according to the procedure described in Example 1.

【0016】試作例Bでは単結晶Si基板1上に非晶質Si
(60nm厚)を堆積した後、直ちに湿った酸素雰囲気中で
650℃の温度で10時間の加熱を行い酸化膜を形成した。
試作例Cでは単結晶Si基板1を直ちに湿った酸素雰囲気中
で700℃の温度で10時間の加熱を行い酸化膜を形成し
た。これらの試料の上に化学反応堆積法を用い多結晶 S
i(厚さ;300nm)からなるゲート6を形成した。
In the prototype B, the amorphous silicon
(60nm thick) immediately after deposition in a humid oxygen atmosphere
Heating was performed at 650 ° C. for 10 hours to form an oxide film.
In Prototype Example C, the single-crystal Si substrate 1 was immediately heated in a moist oxygen atmosphere at 700 ° C. for 10 hours to form an oxide film. Polycrystalline S was deposited on these samples using chemical reaction deposition.
A gate 6 made of i (thickness: 300 nm) was formed.

【0017】その後、通常のホトリソグラフィ技術によ
り多結晶Siゲート6と酸化膜5を部分的に除去し、イオン
打ち込み法を用いて大略1×1020cm-3程度の燐原子を含
む n+層7、8を形成した。即ち各々がトランジスタのソ
ース7およびドレイン8である。
Thereafter, the polycrystalline Si gate 6 and the oxide film 5 are partially removed by a usual photolithography technique, and an n + layer containing approximately 1 × 10 20 cm −3 of phosphorus atoms is formed by ion implantation. 7, 8 were formed. That is, each is the source 7 and the drain 8 of the transistor.

【0018】最終的にホトリソグラフィー法とAlの蒸着
法とを用いソース/ドレイン電極、(図示せず)および
ゲート電極(図示せず)を形成し、電界効果トランジス
タを完成した。
Finally, a source / drain electrode (not shown) and a gate electrode (not shown) were formed by photolithography and Al evaporation to complete a field effect transistor.

【0019】これらのトランジスタの特性を測定したと
ころ、総ての試作例で正常なトランジスタ動作が確認さ
れた。得られた移動度は試作例Aでは1000cm2/Vsであっ
たのに対して、試作例Bでは700cm2/Vs、試作例Cでは40
0cm2/Vsの値を示した。
When the characteristics of these transistors were measured, normal transistor operation was confirmed in all prototypes. The obtained mobility was 1000 cm 2 / Vs in Prototype Example A, whereas the mobility was 700 cm 2 / Vs in Prototype Example B and 40 cm in Prototype Example C.
It showed a value of 0 cm 2 / Vs.

【0020】即ち試作例Cでは酸化膜と単結晶Si層の界
面が凸凹であるために移動度が抑制され、試作例Bでは
界面凸凹が低減されたものの界面不純物の影響で移動度
の値が未だ完全でないことがわかる。それらに対し、試
作例Aではほぼ理想的な移動度の値が得られている。
That is, in the prototype C, the mobility is suppressed because the interface between the oxide film and the single-crystal Si layer is uneven, and in the prototype B, the value of the mobility is reduced due to the influence of interface impurities although the interface roughness is reduced. It turns out that it is not complete yet. On the other hand, in the prototype A, an almost ideal mobility value was obtained.

【0021】[0021]

【発明の効果】本発明により、界面構造が原子層で平坦
かつ不純物を含まない理想的な酸化膜と単結晶Si層の界
面を形成する技術が可能となった。その結果、従来技術
では得ることの出来なかった高い移動度が実現した。こ
の発明は次世代の高速素子の実現に新たな道を拓くもの
である。
According to the present invention, a technology for forming an ideal interface between an oxide film and a single-crystal Si layer, which has an interface structure of an atomic layer and is flat and contains no impurities, has become possible. As a result, a high mobility which cannot be obtained by the conventional technology has been realized. The present invention opens a new avenue for realizing next-generation high-speed devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の酸化膜形成工程を示す断面
図。
FIG. 1 is a sectional view showing an oxide film forming step according to one embodiment of the present invention.

【図2】図1の実施例の酸化膜形成過程における損傷層
の深さの測定図。
FIG. 2 is a measurement diagram of the depth of a damaged layer in the process of forming an oxide film in the embodiment of FIG.

【図3】電界効果トランジスタの要部断面図。FIG. 3 is a cross-sectional view of a main part of a field-effect transistor.

【符号の説明】[Explanation of symbols]

1…単結晶Si基板、2…非晶質Si層、3…イオン打ち込み
により形成した非晶質Si層、4…イオン打ち込みにより
発生した低損傷領域、 5…酸化膜、6…多結晶Siゲー
ト、7…ソース、8…ドレイン。
1 ... Single-crystal Si substrate, 2 ... Amorphous Si layer, 3 ... Amorphous Si layer formed by ion implantation, 4 ... Low damage area generated by ion implantation, 5 ... Oxide film, 6 ... Polycrystalline Si gate , 7 ... source, 8 ... drain.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉井 信之 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山口 伸也 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5F040 DA05 DA21 DA22 DC01 EC07 ED00 EE06 FC15 5F058 BA20 BB04 BC02 BE01 BE10 BF55 BF63 BJ01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuyuki Sugii 1-280 Higashi Koigakubo, Kokubunji City, Tokyo Inside the Central Research Laboratory of Hitachi, Ltd. Central Research Laboratory F-term (reference) 5F040 DA05 DA21 DA22 DC01 EC07 ED00 EE06 FC15 5F058 BA20 BB04 BC02 BE01 BE10 BF55 BF63 BJ01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】単結晶Si基板と、その基板表面近傍に形成
された酸化膜を有し、かつその酸化膜と単結晶Si層との
界面が原子層レベルで平坦かつ不純物を含まない層であ
ることを特徴とする半導体装置。
A single crystal Si substrate and an oxide film formed near the surface of the substrate, wherein an interface between the oxide film and the single crystal Si layer is flat at an atomic layer level and contains no impurities. A semiconductor device, comprising:
【請求項2】単結晶Si基板の表面近傍に非晶質Si層を形
成する工程と、その非晶質Si層と単結晶Si基板との界面
をイオンビーム照射を用いて非晶質化する工程と、これ
らの材料を熱処理し、次いでその温度よりも高温度で熱
酸化する工程を含む半導体装置の製造方法。
2. A step of forming an amorphous Si layer near the surface of a single-crystal Si substrate, and amorphizing an interface between the amorphous Si layer and the single-crystal Si substrate using ion beam irradiation. A method for manufacturing a semiconductor device, comprising: a step of heat-treating these materials and then thermally oxidizing the material at a temperature higher than the temperature.
JP10332241A 1998-11-24 1998-11-24 Manufacture of semiconductor device Pending JP2000164591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10332241A JP2000164591A (en) 1998-11-24 1998-11-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10332241A JP2000164591A (en) 1998-11-24 1998-11-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JP2000164591A true JP2000164591A (en) 2000-06-16

Family

ID=18252765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10332241A Pending JP2000164591A (en) 1998-11-24 1998-11-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JP2000164591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269924A (en) * 2005-03-25 2006-10-05 Fuji Electric Holdings Co Ltd Silicon carbide semiconductor device and its manufacturing method
JP2007081211A (en) * 2005-09-15 2007-03-29 Fujitsu Ltd Insulated gate semiconductor device and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269924A (en) * 2005-03-25 2006-10-05 Fuji Electric Holdings Co Ltd Silicon carbide semiconductor device and its manufacturing method
JP2007081211A (en) * 2005-09-15 2007-03-29 Fujitsu Ltd Insulated gate semiconductor device and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP6867393B2 (en) Substrate Doping Method, Semiconductor Device Doping Method and Substrate Doping System
JPH0684793A (en) Semiconductor device and its manufacture
JPH01103825A (en) Thin film type silicon semiconductor device and manufacture thereof
JP2000294470A (en) Soi wafer and its manufacture
JP2006349673A (en) Nanowire sensor device and method of fabricating nanowire sensor device structure
CN114256065A (en) Method for manufacturing gate oxide layer of SiC MOSFET device
JP2000164591A (en) Manufacture of semiconductor device
JP5051949B2 (en) Method for manufacturing semiconductor device
JPH05198507A (en) Manufacture of semiconductor
JP2010103296A (en) Method of manufacturing germanium oxide, and method of manufacturing semiconductor device using the same
JP3571160B2 (en) Method for forming oxide film on semiconductor surface and method for manufacturing semiconductor device
JP3221129B2 (en) Semiconductor device manufacturing method
Sameshima et al. Improvement in Characteristics of Polycrystalline Silicon Thin-Film Transistors by Heating with High-Pressure H 2O Vapor
JP2777783B2 (en) Method for forming a buried oxide layer in a silicon wafer
JP3090847B2 (en) Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
JPS5812732B2 (en) Manufacturing method for semiconductor devices
CN103972105A (en) MOSFET with SiGe channel and forming method of MOSFET
JP2864623B2 (en) Method for manufacturing semiconductor device
JP2002075987A (en) Method for manufacturing semiconductor device
JPH11145484A (en) Manufacture of thin-film transistor
JP2002083960A (en) Semiconductor device and its manufacturing method
Park et al. High performance LTPS TFT with very large grains produced by sequential lateral crystallization
JPS62119974A (en) Manufacture of thin film transistor
JPH09102459A (en) Semiconductor hetero interface formation
JP4066022B2 (en) Manufacturing method of semiconductor device