JP2000164226A - Manufacture of separator for fuel cell - Google Patents

Manufacture of separator for fuel cell

Info

Publication number
JP2000164226A
JP2000164226A JP10336871A JP33687198A JP2000164226A JP 2000164226 A JP2000164226 A JP 2000164226A JP 10336871 A JP10336871 A JP 10336871A JP 33687198 A JP33687198 A JP 33687198A JP 2000164226 A JP2000164226 A JP 2000164226A
Authority
JP
Japan
Prior art keywords
resin
separator
fuel cell
electrodes
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10336871A
Other languages
Japanese (ja)
Inventor
Tatsuya Hayashi
林  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP10336871A priority Critical patent/JP2000164226A/en
Publication of JP2000164226A publication Critical patent/JP2000164226A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a separator provided with conductivity of a high degree and having excellent productivity. SOLUTION: In this method of manufacturing a separator, as a base material of the separator, three-dimensional netlike structure 40 made of the metal material having fine clearance parts is used, and the three-dimensional netlike structure 40 is impregnated with the thermosetting resin to be selected among the phenol resin, epoxy resin, and di-aryl phthalate resin so as to form a prepreg, and a mold having a projecting part 33 for forming a flow passage is used for press molding, and the resin material 50 is heated for hardening, and while a gas flow passage is formed. Thermoplastic resin to be selected among the ABS resin, PC resin, modulated PPO resin, polyacetal resin, PPS resin, and liquid crystal polymer resin can be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解質膜を挟み込
む1対の電極に接触し、電極からの集電に用いられると
ともに、上記電極側にガス供給用のガス流路を有し、電
極の反対側に冷却水路を有する燃料電池セル用セパレー
タの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of contacting a pair of electrodes sandwiching an electrolyte membrane, and being used for current collection from the electrodes. The present invention relates to a method for manufacturing a fuel cell separator having a cooling water channel on the opposite side.

【0002】[0002]

【従来の技術】上記の燃料電池セル用セパレータ(以
下、単に「セパレータ」という)には、電極からの集電
をする都合上、高度の導電性が必要である。さらに、ガ
ス不透過性や、耐食性、機械的強度等も必要とされる。
そして、セパレータには電極にガスを供給するためのガ
ス流路や冷却溝を形成するが、その形成方法は、従来、
金属板やカーボンプレートのような導電材料にエンドミ
ル、フライス等の切削加工を施して形成されていた。
2. Description of the Related Art The above-mentioned separator for a fuel cell (hereinafter simply referred to as "separator") requires a high degree of conductivity in order to collect current from an electrode. Further, gas impermeability, corrosion resistance, mechanical strength, and the like are required.
Then, a gas flow path and a cooling groove for supplying gas to the electrode are formed in the separator.
It has been formed by cutting a conductive material such as a metal plate or a carbon plate with an end mill, a milling machine, or the like.

【0003】[0003]

【発明が解決しようとする課題】セパレータ材料として
純銅やステンレス鋼などの金属材料で構成する例が知ら
れているが、これらの金属系の材質では重量的に重くな
る他に燃料ガスとして用いる水素ガスと長時間に亘って
接触するために、水素脆性が生じて材質劣化が起こる欠
点や、溝形成における切削加工やエッチング処理なども
必要とするので工数増加とそれに伴うコスト増が避けら
れないという問題がある。
It is known that a separator material is made of a metal material such as pure copper or stainless steel. However, such a metal material becomes heavy in weight and hydrogen used as a fuel gas is used. The disadvantage is that hydrogen brittleness occurs due to contact with the gas for a long time, resulting in deterioration of the material, and the need for cutting and etching in the formation of grooves also necessitates an increase in man-hours and an accompanying increase in cost. There's a problem.

【0004】また、金属系の他には緻密質カーボン板材
を採用し、この板材に切削加工を経てガス流路を形成し
てセパレータとしている例がある。このセパレータでは
軽量化は解決できるが、板自体の製造に長時間を要し、
生産性が悪いという問題がある。さらに、金属材料と同
様の流路の加工に加え、板材とするためのダイヤモンド
カッタによるスライス切削をも必要とするので、工数増
加とそれに伴うコスト増が避けられないという問題があ
る。本発明は、従来のセパレータの問題点を解決すべ
く、集電に極めて優れた高度の導電性や機械強度等の特
性を備え、生産性に富んだセパレータの製造方法を提供
することを目的としている。
Further, there is an example in which a dense carbon plate material is adopted in addition to a metal material, and a gas flow path is formed in this plate material through cutting to form a separator. This separator can solve the weight reduction, but it takes a long time to manufacture the plate itself,
There is a problem that productivity is poor. Further, in addition to the processing of the flow path similar to that of the metal material, slice cutting by a diamond cutter for forming a plate material is also required, so that there is a problem that an increase in man-hours and an accompanying increase in cost are unavoidable. An object of the present invention is to solve the problems of the conventional separator, and to provide a highly productive separator manufacturing method that has characteristics such as high electrical conductivity and mechanical strength that are extremely excellent in current collection. I have.

【0005】[0005]

【問題を解決するための手段】本発明は、上述の問題点
を解消できる燃料電池セル用セパレータ及びその製造方
法を見出したものであり、その要旨とするところは、電
解質膜12を挟み込む1対の電極11にそれぞれ接触
し、電極からの集電に用いられるとともに、上記電極側
にガス供給用のガス流路21を有する燃料電池セル用セ
パレータ20の製造方法であって、該セパレータの基材
として、微細な空隙部を有する金属材料からなる3次元
網目状構造物40を用い、この3次元網目状構造物にフ
ェノール樹脂、エポキシ樹脂、及びジアリルフタレート
樹脂から選ばれてなる熱硬化性樹脂を含浸させてプリプ
レグを作成し、ついで、流路形成用の凸部33を有する
成形型を用いてプレス成形により上記樹脂材料50を加
熱硬化させるとともにガス流路21の形成を行うことを
特徴とする燃料電池セル用セパレータの製造方法及び、
ABS樹脂、PC樹脂、変成PPO樹脂、ポリアセター
ル樹脂、PPS樹脂、及び液晶ポリマー樹脂から選ばれ
てなる熱可塑性樹脂を上記3次元網目状構造物に含浸さ
せたプリプレグを作成し、ついで、流路形成用の凸部3
3を有する成形型を用いてプレス成形により上記樹脂材
料50を加熱軟化させるとともにガス流路21の形成を
行うことを特徴とする燃料電池セル用セパレータの製造
方法にある。
SUMMARY OF THE INVENTION The present invention has found a fuel cell separator and a method of manufacturing the same which can solve the above-mentioned problems. A method for producing a fuel cell separator 20 having a gas flow path 21 for gas supply on the electrode side, wherein the separator 20 is in contact with each of the electrodes 11 and is used for current collection from the electrodes. As a three-dimensional network structure 40 made of a metal material having fine voids, a thermosetting resin selected from a phenol resin, an epoxy resin, and a diallyl phthalate resin is used for the three-dimensional network structure. A prepreg is created by impregnation, and then the resin material 50 is heated and cured by press molding using a mold having a convex portion 33 for forming a flow path. Method for manufacturing a fuel cell separator which is characterized in that the formation of the gas passage 21 and,
A prepreg in which a thermoplastic resin selected from an ABS resin, a PC resin, a modified PPO resin, a polyacetal resin, a PPS resin, and a liquid crystal polymer resin is impregnated into the three-dimensional network structure is formed, and then a flow path is formed. Convex part 3 for
3. A method for producing a separator for a fuel cell, characterized in that the resin material 50 is heated and softened by press molding using a molding die having a 3 and a gas flow path 21 is formed.

【0006】[0006]

【発明の実施形態】以下、本発明を詳しく説明する。図
3は固体高分子型の燃料電池セル10の構造を示した断
面概略図である。この図3に示すように、燃料電池セル
10は、電解質膜12と、この電解質膜12を両側から
挟んでサンドイッチ構造とする一対の電極11と、この
サンドイッチ構造を両側から挟みつつ電極に接触するセ
パレータ20を備えている。セパレーター20は電極側
にガス供給用のガス流路21を有し、電極の反対側に冷
却水路22を有している(冷却水路は必要に応じて設け
ればよい)。セパレータ20の全厚みは通常、1.0m
m〜3.0mmの範囲である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. FIG. 3 is a schematic sectional view showing the structure of the polymer electrolyte fuel cell 10. As shown in FIG. 3, the fuel cell unit 10 has an electrolyte membrane 12, a pair of electrodes 11 sandwiching the electrolyte membrane 12 from both sides to form a sandwich structure, and contacts the electrodes while sandwiching the sandwich structure from both sides. A separator 20 is provided. The separator 20 has a gas flow path 21 for gas supply on the electrode side and a cooling water path 22 on the opposite side of the electrode (the cooling water path may be provided as needed). The total thickness of the separator 20 is usually 1.0 m
m to 3.0 mm.

【0007】本発明のセパレータの基材は、微細な空隙
部を有する金属材料からなる3次元網目状構造物(以
下、「3次元網目状金属構造体」という)を使用する
が、このような3次元網目状金属構造体としては、ニッ
ケルが線状形状で3次元的に絡まった3次元網目状構造
体ニッケルが挙げられる。この3次元網目状構造体ニッ
ケルは、スポンジ状に発泡した発泡ウレタンにニッケル
を電気メッキし、その後、このメッキ済みの発泡ウレタ
ンを加熱処理に処してウレタンを焼失して取り除くこと
で製造することができる。市販品としては住友電気工業
(株)製の「セルメット」がある。この他に高導電性金
属の線材を織り込む等の手法により3次元に絡ませた構
造物や、メッシュ体を積層した構造物を、3次元網目状
金属構造体とすることもできる。
As the base material of the separator of the present invention, a three-dimensional network structure (hereinafter, referred to as a "three-dimensional network metal structure") made of a metal material having fine voids is used. Examples of the three-dimensional network metal structure include a three-dimensional network structure nickel in which nickel is three-dimensionally entangled in a linear shape. The three-dimensional network structure nickel can be manufactured by electroplating nickel on urethane foam sponge-shaped and then subjecting the plated urethane foam to a heat treatment to burn off and remove the urethane. it can. As a commercially available product, there is "Celmet" manufactured by Sumitomo Electric Industries, Ltd. In addition, a three-dimensionally entangled structure by a method of weaving a wire of a highly conductive metal or a structure in which mesh bodies are laminated can be a three-dimensional mesh-like metal structure.

【0008】上記基材の微細な空隙部には樹脂材料を緻
密に充填する必要がある。使用する樹脂としては、熱硬
化性樹脂、熱可塑性樹脂のいずれも適宜使用できる。熱
硬化性樹脂としては、耐水性(耐加水分解性)、耐薬品
性等の観点からフェノール樹脂、エポキシ樹脂、及びジ
アリルフタレート樹脂が好適である。
[0008] It is necessary to finely fill a resin material into the minute voids of the base material. As the resin to be used, any of a thermosetting resin and a thermoplastic resin can be appropriately used. As the thermosetting resin, a phenol resin, an epoxy resin, and a diallyl phthalate resin are preferable from the viewpoints of water resistance (hydrolysis resistance), chemical resistance, and the like.

【0009】また、熱可塑性樹脂としては、耐熱性、耐
水性、耐薬品性の観点からABS樹脂、PC樹脂、変成
PPO樹脂、ポリアセタール樹脂、PPS樹脂、液晶ポ
リマー樹脂が好適に使用できる。
As the thermoplastic resin, ABS resin, PC resin, modified PPO resin, polyacetal resin, PPS resin, and liquid crystal polymer resin can be suitably used from the viewpoint of heat resistance, water resistance and chemical resistance.

【0010】必要に応じさらに大きな導電性を得たい場
合には、上記樹脂にカーボンファイバー、カーボン粒
子、金属繊維、金属粉末を5〜50容量%の範囲で含有
させ、樹脂自体の体積固有抵抗値を小さくすることが好
ましい。5容量%未満では導電性を付与する効果が少な
く、50容量%を越えるものでは機械的強度に劣りやす
い傾向がある。体積固有抵抗値は102 Ω・cm以下で
あることが好ましい。
In order to obtain a higher conductivity as required, the above resin contains carbon fiber, carbon particles, metal fiber, and metal powder in a range of 5 to 50% by volume, and the resin has a specific volume resistivity. Is preferably reduced. If it is less than 5% by volume, the effect of imparting conductivity is small, and if it exceeds 50% by volume, the mechanical strength tends to be poor. It is preferable that the volume specific resistance value is 10 2 Ω · cm or less.

【0011】つぎに本発明の製造方法について具体的に
説明する。製造に際してはまず、3次元網目状金属構造
体に樹脂材料を含浸させたプリプレグを作成する必要が
ある。プリプレグを作成することにより上記基材の微細
な空隙部に樹脂材料を緻密に充填できるとともに生産性
の向上が可能となる。使用する樹脂材料が熱硬化性樹脂
の場合のプリプレグ作成方法について説明する。
Next, the production method of the present invention will be specifically described. In manufacturing, first, it is necessary to prepare a prepreg in which a three-dimensional mesh-like metal structure is impregnated with a resin material. By preparing the prepreg, the resin material can be densely filled in the fine voids of the base material, and the productivity can be improved. A method of preparing a prepreg when the resin material used is a thermosetting resin will be described.

【0012】熱硬化性樹脂に所定量の硬化剤および必要
に応じてカーボンファイバー、カーボン粒子、金属繊
維、金属粉末から選ばれてなる導電性材料を添加したコ
ンパウンドを準備し、その後、3次元網目状金属構造体
をコンパウンド中に浸漬する。この際、微小な空気の残
留を防ぐため浸漬中は減圧にすることが望ましい。浸漬
後、引き上げて余分な樹脂を排除した後、若干熟成(半
硬化)させ、シート形状を保つ程度の粘度とした後、完
全硬化を抑制するためPETフィルム等で被覆し、プリ
プレグとする。浸漬時のコンパウンドの粘度(測定法:
JISK7233に準拠した単一円筒回転粘度計法によ
る)は含浸性や、脱泡性を付与するために10〜1,0
00ポイズ程度が望ましい。
A compound is prepared by adding a predetermined amount of a curing agent and, if necessary, a conductive material selected from carbon fibers, carbon particles, metal fibers, and metal powders to a thermosetting resin, and then prepares a three-dimensional network. The metallic structure is immersed in the compound. At this time, it is desirable to reduce the pressure during immersion to prevent minute air from remaining. After immersion, the resin is pulled up to remove the excess resin, is slightly aged (semi-cured), is made to have a viscosity such that the sheet shape is maintained, and is coated with a PET film or the like to suppress complete curing to obtain a prepreg. Compound viscosity during immersion (measurement method:
According to a single cylinder rotational viscometer method based on JIS K7233), 10 to 1,0 is used for imparting impregnating property and defoaming property.
Desirably about 00 poise.

【0013】使用する樹脂材料が熱可塑性樹脂の場合の
プリプレグ作成方法については上記熱硬化性樹脂と基本
的には同様で、熱可塑性樹脂および必要に応じてカーボ
ンファイバー、カーボン粒子、金属繊維、金属粉末から
選ばれてなる導電性材料を添加した熱可塑性樹脂を加熱
容器中で溶融状態に保持し、3次元網目状金属構造体を
浸漬する。この場合にも微小な空気の残留を防ぐため浸
漬中は減圧にすることが望ましい。浸漬後、引き上げて
余分な樹脂を排除した後、冷却固化させプリプレグ(ス
タンパブルシート)とする。
When the resin material to be used is a thermoplastic resin, the method of preparing the prepreg is basically the same as that of the above-mentioned thermosetting resin, and the thermoplastic resin and, if necessary, carbon fiber, carbon particles, metal fiber, metal A thermoplastic resin to which a conductive material selected from powder is added is kept in a molten state in a heating vessel, and the three-dimensional mesh-like metal structure is immersed. Also in this case, it is desirable to reduce the pressure during immersion in order to prevent minute air from remaining. After immersion, the resin is pulled up to remove excess resin, and then cooled and solidified to obtain a prepreg (a stampable sheet).

【0014】つぎにプレス成形を行なうが、図1に示す
ように流路形成用の凸部33を設けた下型31と上型3
2とを対向させた成形型30を用い、型内に上述のプリ
プレグを載置する。ついで、上型32を降下させて、図
2に示すように上型32と下型31とを型締めし、上記
プリプレグを加熱圧縮する。この際の圧縮荷重は20〜
100kgf/cm2 の範囲が好ましい。熱硬化性樹脂
の場合、加熱温度は使用する樹脂の硬化特性により異な
るが、できるだけ高温での硬化がサイクル時間を短くで
きて好ましい。熱可塑性樹脂の場合、溝を賦形するのに
可能な流動温度まで加熱圧縮後、冷却固化させる。
Next, press molding is performed. As shown in FIG. 1, a lower mold 31 and an upper mold 3 each having a projection 33 for forming a flow path are provided.
The above-described prepreg is placed in a mold using a molding die 30 facing 2. Next, the upper mold 32 is lowered, the upper mold 32 and the lower mold 31 are clamped as shown in FIG. 2, and the prepreg is heated and compressed. The compression load at this time is 20 ~
A range of 100 kgf / cm 2 is preferable. In the case of a thermosetting resin, the heating temperature varies depending on the curing characteristics of the resin used, but curing at as high a temperature as possible can shorten the cycle time, and is therefore preferable. In the case of a thermoplastic resin, the resin is heated and compressed to a flow temperature capable of forming grooves, and then cooled and solidified.

【0015】上型32と下型31とからなる成形型30
を用いた加熱圧縮成形により、プリプレグは上下の金型
により圧縮成形に付されるとともに、上型32、下型3
1に設けた流路形成用の凸部33はプリプレグに転写さ
れる。固化後、脱型しバリ仕上げを行うことでガス流路
21、冷却水路22を有するセパレータ20が得られ
る。
Mold 30 composed of upper mold 32 and lower mold 31
The prepreg is subjected to compression molding by upper and lower dies by heating and compression molding using
The projections 33 for forming the flow channel provided in 1 are transferred to the prepreg. After solidification, the mold is removed and burr finishing is performed, whereby the separator 20 having the gas flow path 21 and the cooling water path 22 is obtained.

【0016】[0016]

【実施例】以下、本発明を実施例について説明するが、
本発明はこれに限定されるものではない。
Hereinafter, the present invention will be described with reference to Examples.
The present invention is not limited to this.

【0017】(実施例1)3次元網目状金属構造体とし
ては、「セルメット#3」(住友電気工業(株)製 厚
み3mm)を用いた。また、熱硬化性樹脂としてエポキ
シ樹脂を使用した。エポキシ樹脂は、主剤として「エピ
コート807」(油化シェルエポキシ(株)製)100
部に対し、硬化剤として「エピキュアIBMI12」
(油化シェルエポキシ(株)製)を4部、さらに、導電
性材料としてカーボンブラック(「ケッチェンブラック
EC」 ケッチェンブラックインターナショナル社製)
10部を配合混練してコンパウンドを得た。得られたコ
ンパウンドを真空乾燥機中で減圧した状態で3次元網目
状金属構造体を2分間浸漬した後、引き上げて70℃で
2時間熟成し、PETフィルムで被覆してプリプレグを
得た。
Example 1 "Celmet # 3" (thickness: 3 mm, manufactured by Sumitomo Electric Industries, Ltd.) was used as a three-dimensional mesh-like metal structure. An epoxy resin was used as the thermosetting resin. Epoxy resin is used as a base material of “Epicoat 807” (manufactured by Yuka Shell Epoxy Co., Ltd.) 100
"Epicure IBMI12" as a curing agent
4 parts (made by Yuka Shell Epoxy Co., Ltd.) and carbon black ("Ketjen Black EC" made by Ketjen Black International) as a conductive material
10 parts were compounded and kneaded to obtain a compound. The resulting compound was immersed in a three-dimensional mesh-like metal structure for 2 minutes in a vacuum dryer under reduced pressure, pulled up, aged at 70 ° C. for 2 hours, and covered with a PET film to obtain a prepreg.

【0018】つぎに図1に示すように下型と上型とを対
向させた成形型の下型31にプリプレグを載置し、金型
温度150℃、プレス圧力100kgf/cm2 の条件
で15分間加圧した。硬化後、脱型し目的とする流路を
形成したセパレータを得た。得られたセパレータの特性
は以下の通りであった。
Next, as shown in FIG. 1, a prepreg is placed on a lower mold 31 having a lower mold and an upper mold opposed to each other, and the prepreg is placed under a condition of a mold temperature of 150 ° C. and a press pressure of 100 kgf / cm 2. Pressurized for minutes. After curing, the separator was removed from the mold to form the intended flow path. The properties of the obtained separator were as follows.

【0019】引張強度 :約50Mpa 体積固有抵抗値:5×10-3Ω・cm ガス透過性 :10-6cc/atm/sec以下(対
ヘリウムガス) 強度、導電性、ガス不透過性のいずれも優れていること
が分かる。
Tensile strength: about 50 MPa Volume resistivity: 5 × 10 −3 Ω · cm Gas permeability: 10 −6 cc / atm / sec or less (to helium gas) Any of strength, conductivity, and gas impermeability It can be seen that is also excellent.

【0020】(実施例2)3次元網目状金属構造体とし
ては、実施例1と同じものを用い、樹脂材料としては液
晶ポリマーである「ノバキュレートE322G30」
(三菱エンジニアリングプラスチックス(株)製)に導
電性材料としてカーボンブラック(「ケッチェンブラッ
クEC」 ケッチェンブラックインターナショナル社
製)10重量%を2軸押出機で溶融混練し、造粒したも
のを準備した。
(Embodiment 2) The same three-dimensional mesh-like metal structure as in Embodiment 1 was used, and the resin material was a liquid crystal polymer "Novaculate E322G30".
(Mitsubishi Engineering Plastics Co., Ltd.) melted and kneaded 10% by weight of carbon black ("Ketjen Black EC" Ketjen Black International Co., Ltd.) as a conductive material with a twin screw extruder to prepare a granulated product. did.

【0021】上記の造粒ペレットを減圧下300℃の雰
囲気下で溶融させ、3次元網目状金属構造体を2分間浸
漬した後、引き上げ、室温で固化させたものをプリプレ
グとした。
The above-mentioned granulated pellets were melted under reduced pressure in an atmosphere of 300 ° C., and the three-dimensional mesh-like metal structure was immersed for 2 minutes, then pulled up and solidified at room temperature to obtain a prepreg.

【0022】つぎに実施例1と同様、図1に示すように
下型と上型とを対向させた成形型の下型31にプリプレ
グを載置し、金型温度300℃、プレス圧力50kgf
/cm2 の条件で1分間加熱加圧、さらに金型の冷却パ
スに20℃の水を流し30分間、プレス圧力100kg
f/cm2 の条件で加圧冷却した。固化後、脱型し目的
とする流路を形成したセパレータを得た。得られたセパ
レータの特性は以下の通りであった。
Next, as in Example 1, a prepreg is placed on a lower mold 31 having a lower mold and an upper mold facing each other as shown in FIG. 1, and a mold temperature of 300 ° C. and a press pressure of 50 kgf.
/ Cm 2 under heating and pressurization for 1 minute, water at 20 ° C. is passed through the cooling path of the mold for 30 minutes, and press pressure 100 kg
It was pressurized and cooled under the condition of f / cm 2 . After solidification, the separator was removed from the mold to form the intended flow path. The properties of the obtained separator were as follows.

【0023】引張強度 :約50Mpa 体積固有抵抗値:5×10-3Ω・cm ガス透過性 :10-6cc/atm/sec以下(対
ヘリウムガス) 強度、導電性、ガス不透過性のいずれも優れていること
が分かる。
Tensile strength: about 50 MPa Volume resistivity: 5 × 10 −3 Ω · cm Gas permeability: 10 −6 cc / atm / sec or less (to helium gas) Any of strength, conductivity, and gas impermeability It can be seen that is also excellent.

【0024】[0024]

【発明の効果】上述したように、本発明の燃料電池セル
用セパレータの製造方法は、3次元網目状金属構造物を
基材とする複合材であり強度的に優れ、また、セパレー
タ基材は3次元網目状構造物であるため、流路を有する
形状とするにあたり、変形性を利用して型成形可能で切
削加工を必要としない。この結果、本発明の製造方法で
は、得られるセパレータは高度の導電性や機械的強度等
の特性を備え、また、生産性に優れるという利点を有し
ており、セルを多数積層してなる燃料電池への利用性が
大きい。
As described above, the method for producing a separator for a fuel cell according to the present invention is a composite material having a three-dimensional mesh-like metal structure as a base material, and has excellent strength. Since it is a three-dimensional network-like structure, it can be molded using deformation and does not require a cutting process in forming a shape having a flow path. As a result, in the production method of the present invention, the obtained separator has characteristics such as high conductivity and mechanical strength, and has an advantage of excellent productivity. Great availability for batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法である一例を示した加熱圧縮
法による成形途中の段階を示した成形型とその内部の断
面概略図である。
FIG. 1 is a schematic cross-sectional view of a molding die showing an intermediate stage of molding by a heat compression method showing an example of a production method of the present invention and the inside thereof.

【図2】図2に示した方法で型締めの状況を示した断面
概略図である。
FIG. 2 is a schematic sectional view showing a state of mold clamping by the method shown in FIG. 2;

【図3】燃料電池セルの構造を示した断面概略図であ
る。
FIG. 3 is a schematic cross-sectional view showing a structure of a fuel cell unit.

【符号の説明】[Explanation of symbols]

10 :燃料電池セル 11 :電極 12 :電解質膜 20 :セパレータ 21 :ガス流路 22 :冷却水路 30 :成形型 31 :上型 32 :下型 40 :金属材料からなる3次元網目状構造物 50 :樹脂材料 10: Fuel cell 11: Electrode 12: Electrolyte membrane 20: Separator 21: Gas flow path 22: Cooling water channel 30: Molding die 31: Upper die 32: Lower die 40: Three-dimensional network-like structure 50 made of metal material: Resin material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解質膜(12)を挟み込む1対の電極
(11)にそれぞれ接触し、電極からの集電に用いられ
るとともに、上記電極側にガス供給用のガス流路(2
1)を有する燃料電池セル用セパレータ(20)の製造
方法であって、該セパレータの基材として、微細な空隙
部を有する金属材料からなる3次元網目状構造物(4
0)を用い、この3次元網目状構造物にフェノール樹
脂、エポキシ樹脂、及びジアリルフタレート樹脂から選
ばれてなる熱硬化性樹脂を含浸させてプリプレグを作成
し、ついで、流路形成用の凸部(33)を有する成形型
を用いてプレス成形により上記樹脂材料(50)を加熱
硬化させるとともにガス流路(21)の形成を行うこと
を特徴とする燃料電池セル用セパレータの製造方法。
1. A gas flow path (2) for contacting a pair of electrodes (11) sandwiching an electrolyte membrane (12) to collect current from the electrodes and for supplying gas to the electrodes.
1) The method for producing a fuel cell separator (20) according to (1), wherein the base material of the separator is a three-dimensional network structure (4) made of a metal material having fine voids.
0), a prepreg is prepared by impregnating the three-dimensional network structure with a thermosetting resin selected from a phenol resin, an epoxy resin and a diallyl phthalate resin. A method for producing a separator for a fuel cell, wherein the resin material (50) is heated and cured by press molding using a mold having (33), and a gas flow path (21) is formed.
【請求項2】 電解質膜(12)を挟み込む1対の電極
(11)にそれぞれ接触し、電極からの集電に用いられ
るとともに、上記電極側にガス供給用のガス流路(2
1)を有する燃料電池セル用セパレータ(20)におい
て、該セパレータの基材として、微細な空隙部を有する
金属材料からなる3次元網目状構造物(40)を用い、
この3次元網目状構造物にABS樹脂、PC樹脂、変成
PPO樹脂、ポリアセタール樹脂、PPS樹脂、及び液
晶ポリマー樹脂から選ばれてなる熱可塑性樹脂を含浸さ
せたプリプレグを作成し、ついで、流路形成用の凸部
(33)を有する成形型を用いてプレス成形により上記
樹脂材料(50)を加熱軟化させるとともにガス流路
(21)の形成を行うことを特徴とする燃料電池セル用
セパレータの製造方法。
2. A gas flow path (2) for contacting a pair of electrodes (11) sandwiching an electrolyte membrane (12) to collect current from the electrodes and for supplying a gas to the electrodes.
In the fuel cell separator (20) having 1), a three-dimensional mesh structure (40) made of a metal material having fine voids is used as a base material of the separator,
A prepreg in which a thermoplastic resin selected from an ABS resin, a PC resin, a modified PPO resin, a polyacetal resin, a PPS resin, and a liquid crystal polymer resin is impregnated with the three-dimensional network structure is formed. Production of a separator for a fuel cell, wherein the resin material (50) is heated and softened by press molding using a molding die having a convex portion (33) for use and a gas flow path (21) is formed. Method.
【請求項3】 熱硬化性樹脂又は熱可塑性樹脂に、カー
ボンファイバー、カーボン粒子、金属繊維、及び金属粉
末から選ばれてなる導電性材料を5〜50容量%の範囲
で含有してなることを特徴とする請求項1乃至2記載の
燃料電池セル用セパレータの製造方法。
3. A thermosetting resin or a thermoplastic resin containing a conductive material selected from carbon fibers, carbon particles, metal fibers, and metal powders in a range of 5 to 50% by volume. The method for producing a fuel cell separator according to claim 1, wherein:
JP10336871A 1998-11-27 1998-11-27 Manufacture of separator for fuel cell Withdrawn JP2000164226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10336871A JP2000164226A (en) 1998-11-27 1998-11-27 Manufacture of separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10336871A JP2000164226A (en) 1998-11-27 1998-11-27 Manufacture of separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2000164226A true JP2000164226A (en) 2000-06-16

Family

ID=18303430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10336871A Withdrawn JP2000164226A (en) 1998-11-27 1998-11-27 Manufacture of separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2000164226A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254464A (en) * 2001-02-28 2002-09-11 Ibiden Co Ltd Mold for press molding and its production method
JP2002367623A (en) * 2001-06-05 2002-12-20 Hitachi Chem Co Ltd Fuel cell separator and fuel cell using the same
KR100482585B1 (en) * 2002-11-28 2005-04-14 현대자동차주식회사 A preparting method of separator of the polymer electrolyte fuel cell using conductive polymer or carbon composite
WO2006061951A1 (en) * 2004-12-10 2006-06-15 Nissan Motor Co., Ltd. Method for manufacturing fuel cell separator using carbon, fuel cell separator, and fuel cell
JP2007059349A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Prepreg for fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator
JP2009266787A (en) * 2008-04-25 2009-11-12 Hyundai Motor Co Ltd Separation plate for fuel cell and method of manufacturing the same
JP2011168792A (en) * 2006-11-06 2011-09-01 Hexcel Composites Ltd Improved composite material
JP2013058414A (en) * 2011-09-08 2013-03-28 Shin Etsu Polymer Co Ltd Fuel cell separator and method for manufacturing the same
WO2019039214A1 (en) * 2017-08-24 2019-02-28 日清紡ホールディングス株式会社 Fuel cell separator precursor, and fuel cell separator
CN110041660A (en) * 2019-04-11 2019-07-23 桑顿新能源科技有限公司 A kind of high-temperature self-crosslinking thermosetting property diaphragm and preparation method thereof
CN111525147A (en) * 2019-02-04 2020-08-11 丰田自动车株式会社 Method for manufacturing separator for fuel cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254464A (en) * 2001-02-28 2002-09-11 Ibiden Co Ltd Mold for press molding and its production method
JP2002367623A (en) * 2001-06-05 2002-12-20 Hitachi Chem Co Ltd Fuel cell separator and fuel cell using the same
KR100482585B1 (en) * 2002-11-28 2005-04-14 현대자동차주식회사 A preparting method of separator of the polymer electrolyte fuel cell using conductive polymer or carbon composite
WO2006061951A1 (en) * 2004-12-10 2006-06-15 Nissan Motor Co., Ltd. Method for manufacturing fuel cell separator using carbon, fuel cell separator, and fuel cell
JP2006164889A (en) * 2004-12-10 2006-06-22 Nissan Motor Co Ltd Method of manufacturing fuel cell separator using carbon, fuel cell separator, and fuel cell
JP2007059349A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Prepreg for fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator
JP2015007245A (en) * 2006-11-06 2015-01-15 ヘクセル コンポジッツ、リミテッド Improved composite material
JP2011168792A (en) * 2006-11-06 2011-09-01 Hexcel Composites Ltd Improved composite material
JP2009266787A (en) * 2008-04-25 2009-11-12 Hyundai Motor Co Ltd Separation plate for fuel cell and method of manufacturing the same
JP2013058414A (en) * 2011-09-08 2013-03-28 Shin Etsu Polymer Co Ltd Fuel cell separator and method for manufacturing the same
WO2019039214A1 (en) * 2017-08-24 2019-02-28 日清紡ホールディングス株式会社 Fuel cell separator precursor, and fuel cell separator
JP2019040719A (en) * 2017-08-24 2019-03-14 日清紡ホールディングス株式会社 Fuel cell separator precursor and fuel cell separator
CN110998937A (en) * 2017-08-24 2020-04-10 日清纺控股株式会社 Fuel cell separator precursor and fuel cell separator
US11515547B2 (en) 2017-08-24 2022-11-29 Nisshinbo Holdings Inc. Fuel cell separator precursor, and fuel cell separator
CN110998937B (en) * 2017-08-24 2023-06-23 日清纺控股株式会社 Fuel cell separator precursor and fuel cell separator
CN111525147A (en) * 2019-02-04 2020-08-11 丰田自动车株式会社 Method for manufacturing separator for fuel cell
JP2020126757A (en) * 2019-02-04 2020-08-20 トヨタ自動車株式会社 Manufacturing method for fuel cell separator
CN110041660A (en) * 2019-04-11 2019-07-23 桑顿新能源科技有限公司 A kind of high-temperature self-crosslinking thermosetting property diaphragm and preparation method thereof

Similar Documents

Publication Publication Date Title
US7758783B2 (en) Continious production of exfoliated graphite composite compositions and flow field plates
US8728679B2 (en) Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications
US8501307B2 (en) Recompressed exfoliated graphite articles
JP2000164226A (en) Manufacture of separator for fuel cell
CN103117397B (en) Manufacturing technique of bipolar plate for fuel battery
US20020182473A1 (en) Fuel cell separator plate having controlled fiber orientation and method of manufacture
KR101134482B1 (en) Separation plate for Polymer Electrolyte Membrane Fuel Cell and method for manufacturing the same
WO2000030202A1 (en) Fuel cell collector plate and method of fabrication
US20090057940A1 (en) Method of producing less anisotropic flexible graphite
JP2000067882A (en) Cell separator for fuel cell and its manufacture
US20080277628A1 (en) Exfoliated graphite composite compositions for fuel cell flow field plates
US20020039675A1 (en) Compounding and molding process for fuel cell collector plates
CN113270605B (en) Preparation method of cold-pressed composite bipolar plate
US20030027030A1 (en) Fuel-cell separator, production of the same, and fuel cell
CN109950569A (en) A kind of molding preparation method of fuel battery double plates
CN100388537C (en) Fuel cell composite material double polar plate and its making method
CN113224339A (en) Flexible ultrathin graphite bipolar plate and preparation method thereof
JP4645790B2 (en) Fuel cell separator and polymer electrolyte fuel cell
CN113497241A (en) Carbon/carbon composite material, fuel cell bipolar plate, fuel cell and preparation method
US20110177419A1 (en) Fuel cell separator plate
US20080073812A1 (en) Manufacturing method of separator for fuel cell using preform and separator manufactured by the same
CN113707900B (en) Preparation method of composite bipolar plate for fuel cell
CN1391301A (en) Fuel cell and its manufacturing method
JP5424637B2 (en) Manufacturing method of fuel cell separator
CN113659165A (en) Carbon-based composite conductive slurry, graphite plate and preparation method of graphite plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070803