JP2000161145A - Fuel injection control device for multiple cylinder engine - Google Patents

Fuel injection control device for multiple cylinder engine

Info

Publication number
JP2000161145A
JP2000161145A JP10342453A JP34245398A JP2000161145A JP 2000161145 A JP2000161145 A JP 2000161145A JP 10342453 A JP10342453 A JP 10342453A JP 34245398 A JP34245398 A JP 34245398A JP 2000161145 A JP2000161145 A JP 2000161145A
Authority
JP
Japan
Prior art keywords
egr
cylinder
rate
fuel injection
excess air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10342453A
Other languages
Japanese (ja)
Inventor
Koichi Hamaguchi
孝一 濱口
Taiji Uekusa
泰治 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP10342453A priority Critical patent/JP2000161145A/en
Publication of JP2000161145A publication Critical patent/JP2000161145A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the increase in black smoke by deterioration of combusting state in a cylinder having an increased EGR ratio by calculating the air excess rate of each cylinder from a calculated EGR ratio, comparing it with a prescribed judgment value, and controlling the fuel injection quantity so as to reduce when the air excess rate is lower than the judgment value. SOLUTION: During the operation of an engine, engine speed Ne and load LOAD are read into an ECU 9 to calculate EGR rate αi from the detection value Ti (T1-T4) detected by an intake air temperature sensor 11 provided every cylinder while EGR is performed. From a map data M1 air excess rate λi is calculated from the EGR rate αi on the basis of the relation of the EGR rate αi corresponding to the engine speed Ne and load quantity LOAD with the air excess rate λi. The air excess rate λi is compared with a judgment value λc, and in case of λi<λc, the fuel injection quantity is reduced with respect to only the cylinder having an air excess rate λi lower than the judgment value λc. According to this, the increase in black smoke exhausted from the engine is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ
ンなどにおいて、NOxの排出量を低減するために、排
気ガスの一部を吸気側に還流するEGRを備えた多気筒
エンジンの燃料噴射制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for a multi-cylinder engine provided with an EGR for recirculating a part of exhaust gas to an intake side in a diesel engine or the like in order to reduce NOx emission. Things.

【0002】より詳細には、多気筒エンジンの各気筒
(シリンダ)間のEGR率の不均等によって発生する黒
煙を、燃料噴射量を制御することにより抑制する多気筒
エンジンの燃料噴射制御装置に関する。
More specifically, the present invention relates to a fuel injection control device for a multi-cylinder engine that suppresses black smoke generated by uneven EGR rates between cylinders of a multi-cylinder engine by controlling a fuel injection amount. .

【0003】[0003]

【従来の技術】ディーゼルエンジン等の排気ガス対策に
おいて、排気ガス中のNOx(窒素酸化物)の排出量を
低減するために、不活性ガスである排気ガスの一部、即
ちEGRガスを吸気系に還流することによって燃焼温度
を低く抑えて、NOxの生成を抑制するEGR(排気再
循環)が有効であることが知られており、広く実用化さ
れている。
2. Description of the Related Art In an exhaust gas countermeasure for a diesel engine or the like, in order to reduce the amount of NOx (nitrogen oxide) contained in the exhaust gas, a part of the exhaust gas as an inert gas, that is, EGR gas is supplied to an intake system. It is known that EGR (exhaust gas recirculation), which suppresses the generation of NOx by suppressing the combustion temperature by recirculating the exhaust gas, is effective, and is widely used.

【0004】このEGR装置は、図8に示すように、エ
ンジン1の吸気マニホールド3へ至る吸気通路8と排気
マニホールド2との間をEGR通路6で接続し、排気系
から排気ガスGの一部であるEGRガスGeを、EGR
通路6を経由して吸気通路8の新気Aに混入して吸気マ
ニホールド3へ還流させてEGRを行っている。
In this EGR device, as shown in FIG. 8, an EGR passage 6 connects an intake passage 8 to the intake manifold 3 of the engine 1 and the exhaust manifold 2, and a part of the exhaust gas G from the exhaust system. EGR gas Ge
The EGR is performed by mixing the fresh air A in the intake passage 8 via the passage 6 and returning the mixture to the intake manifold 3.

【0005】このEGR通路6には、EGR率調整用の
EGR弁4が設けてあり、また、必要に応じて、冷却水
通路7を有するEGRクーラー5を設けてEGRガスG
eを冷却している。
The EGR passage 6 is provided with an EGR valve 4 for adjusting an EGR rate. If necessary, an EGR cooler 5 having a cooling water passage 7 is provided to provide an EGR gas G.
e is cooling.

【0006】そして、エンジン1の燃焼状態を良好に保
ちながらNOxを低減するために、エンジン1の回転数
NEや負荷LOAD等の運転状態に応じて決まるEGR
率を目標に、EGR弁4の弁開度をコントローラ9で調
整制御して、EGR通路6を通過するEGRガスGeの
流量調整を行っている。
In order to reduce NOx while keeping the combustion state of the engine 1 good, the EGR determined according to the operating state of the engine 1 such as the rotational speed NE and the load LOAD.
The controller 9 adjusts and controls the opening degree of the EGR valve 4 to adjust the flow rate of the EGR gas Ge passing through the EGR passage 6 with a target of the rate.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、吸気マ
ニホールド3の形状やEGR配管6の取り付け位置、吸
排気のタイミング、エンジンの回転速度NE、負荷LO
AD、運転の定常・非定常、EGR量(EGR率)など
の運転状態によって、気筒間のEGR率がバラツクとい
う現象がある。
However, the shape of the intake manifold 3, the mounting position of the EGR pipe 6, the timing of intake and exhaust, the rotational speed NE of the engine, the load LO
There is a phenomenon that the EGR rate between cylinders varies depending on the operating state such as AD, steady / unsteady state of operation, and EGR amount (EGR rate).

【0008】この気筒間のEGR率のバラツキは、EG
R廻りの吸気マニホールドやEGR配管の形状や配置等
の仕様が同じであっても、エンジンの運転状態が変化す
ると変化する。例えば、図9、図10に示す実験データ
によれば、中速定常運転時では、NO.2の気筒(N
O.3やNO.4の吸気ポート)のEGR率が大きくな
り、図10に示す高速定常運転時では、逆にNO.1の
気筒(NO.1の吸気ポート)やNO.4の気筒(N
O.8の吸気ポート)のEGR率が大きくなっている。
The variation in the EGR rate between the cylinders is EG
Even if the specifications such as the shape and arrangement of the intake manifold around the R and the EGR pipe are the same, it changes when the operating state of the engine changes. For example, according to the experimental data shown in FIG. 9 and FIG. Two cylinders (N
O. 3 or NO. In the high-speed steady operation shown in FIG. No. 1 cylinder (NO. 1 intake port) and NO. 4 cylinders (N
O. EGR rate of the intake port No. 8) is large.

【0009】この各気筒におけるEGR率のバラツキ
は、吸気マニホールド内のEGRガスGeの速度分布の
不均等な流れとEGRガスの混合の不十分さが主な原因
となって発生する。
The variation in the EGR rate in each cylinder is mainly caused by an uneven flow of the velocity distribution of the EGR gas Ge in the intake manifold and insufficient mixing of the EGR gas.

【0010】そして、この気筒間のEGR率のバラツキ
が大きくなると、各気筒間のEGR率が偏り一部の気筒
のEGR率が過度に高くなって、その気筒の燃焼状態が
悪化して黒煙が著しく発生する。また、図11で示す実
験データによれば、同じバラツキでも、エンジンの運転
状態に従って全体のEGR率を増加すると相対的にEG
R量が増えるため、黒煙の発生量がより多くなることが
分かる。
If the variation in the EGR rate among the cylinders becomes large, the EGR rate among the cylinders becomes uneven, and the EGR rate in some of the cylinders becomes excessively high. Remarkably occurs. Further, according to the experimental data shown in FIG. 11, even if the same variation, when the overall EGR rate is increased according to the operating state of the engine, the relative EG
It can be seen that the amount of black smoke is increased because the amount of R increases.

【0011】一方、この黒煙防止の参考となる装置とし
て、実開平3−25848号公報によって、各気筒毎の
排気枝管に配設した排気温度センサの検出信号に基づい
て、各排気還流枝管に配設したEGR弁を制御して、各
気筒毎にEGR量を変えて、エンジン始動時の始動性を
良くすると共に白煙の発生を防止する多気筒エンジンの
EGR装置が提案されている。
On the other hand, as a reference device for black smoke prevention, Japanese Unexamined Utility Model Publication No. 3-25848 discloses an exhaust gas recirculation branch based on a detection signal of an exhaust temperature sensor disposed in an exhaust branch pipe of each cylinder. There has been proposed an EGR device for a multi-cylinder engine that controls an EGR valve disposed in a pipe to change an EGR amount for each cylinder to improve startability at the time of engine start and prevent generation of white smoke. .

【0012】しかし、このEGR装置では、各気筒毎に
設けるEGR弁と配管数が多くなり、また、各EGR弁
を制御する必要があるので、装置や制御が複雑になり、
重量及び配置スペースも増加するのでレイアウト上の問
題が発生し、しかも、高コストとなるという問題があ
り、その上、排気温度によって、各気筒の燃焼状態を検
出しているので、燃料噴射系の噴射量、噴射タイミン
グ、噴射率等の気筒間のバラツキによる燃焼のバラツキ
の影響を受けるので、各気筒のEGR率を正確に推定で
きないという問題がある。
However, in this EGR device, the number of EGR valves and pipes provided for each cylinder increases, and since it is necessary to control each EGR valve, the device and control become complicated.
Since the weight and the space to be arranged also increase, there is a problem in the layout, and there is a problem that the cost is high. In addition, since the combustion state of each cylinder is detected based on the exhaust gas temperature, the fuel injection system There is a problem in that the EGR rate of each cylinder cannot be accurately estimated because it is affected by variations in combustion due to variations among cylinders such as the injection amount, the injection timing, and the injection rate.

【0013】これらの問題に対して、本発明者らは、次
のような知見に基づいて、黒煙防止を図ることにした。
を計測することにより、吸気温度TiからEGR率α
i、EGR率αiから空気過剰率λiを算定できるとの
知見を利用して、各気筒の空気過剰率λiが黒煙の発生
が増加し始める空気過剰率λcより上か下かを判断し
て、下で黒煙が発生する可能性のある場合には、燃料噴
射を低減制御することにより、黒煙防止を図るのであ
る。
In response to these problems, the present inventors have attempted to prevent black smoke based on the following findings.
From the intake air temperature Ti, the EGR rate α
i, utilizing the knowledge that the excess air ratio λi can be calculated from the EGR rate αi, determine whether the excess air ratio λi of each cylinder is above or below the excess air ratio λc at which the generation of black smoke starts to increase. When there is a possibility that black smoke is generated below, black smoke is prevented by controlling the fuel injection to be reduced.

【0014】つまり、このEGR率αは、比較的高温の
EGRガスGeが比較的低温の新気Aに混合する比であ
るので、この混合比によって吸気温度Tが定まり、吸気
温度Tとの関係は図4に示すような関係となる。そのた
め、各気筒に入る吸気の温度Tiを測定することによ
り、容易に各気筒のEGR率αiを算定することができ
る。
That is, since the EGR rate α is a ratio at which the relatively high temperature EGR gas Ge is mixed with the relatively low temperature fresh air A, the mixture ratio determines the intake air temperature T, and the relationship with the intake air temperature T Has a relationship as shown in FIG. Therefore, the EGR rate αi of each cylinder can be easily calculated by measuring the temperature Ti of the intake air entering each cylinder.

【0015】また、このEGR率αと実際の空気量Aの
理論空気量Arに対する比である空気過剰率λ(=A/
Ar)とは、運転状態、即ち、エンジン回転数NEと負
荷LOADを固定した時に、図5に示すような関係にな
るので、EGR率αから空気過剰率λを算出することが
できる。
The excess air ratio λ (= A / A), which is the ratio of the EGR rate α and the actual air amount A to the theoretical air amount Ar.
Ar) has a relationship as shown in FIG. 5 when the operating state, that is, when the engine speed NE and the load LOAD are fixed, so that the excess air ratio λ can be calculated from the EGR ratio α.

【0016】そして、この空気過剰率λと発生する黒煙
発生量SMの関係は、図6、図7に示すようなものであ
り、空気過剰率λを増加することにより、黒煙発生量S
Mを下げることができる。この空気過剰率λの増加は、
吸引空気量の増加あるいは噴射燃料量の低減により達成
される。
The relationship between the excess air ratio λ and the amount of generated black smoke SM is as shown in FIGS. 6 and 7, and by increasing the excess air ratio λ, the amount of generated black smoke S
M can be reduced. This increase in excess air ratio λ
This is achieved by increasing the amount of intake air or decreasing the amount of injected fuel.

【0017】従って、各気筒のEGR率から各気筒の空
気過剰率λiを算出し、この空気過剰率λiが黒煙発生
の空気過剰率の判定値λcより小さい時は、噴射燃料量
Qiを低減することにより、EGR率αiの不均等によ
る黒煙の発生を防止できることになる。
Accordingly, the excess air ratio λi of each cylinder is calculated from the EGR rate of each cylinder, and when the excess air ratio λi is smaller than the determination value λc of the excess air ratio of black smoke generation, the injection fuel amount Qi is reduced. By doing so, it is possible to prevent the generation of black smoke due to the uneven EGR rate αi.

【0018】本発明は、上記の原理に基づき、前述の問
題を解決するためになされたものであり、その目的は、
EGR装置を備えた多気筒エンジンにおいて、EGR率
の不均等によって、EGR率が大きくなった気筒で、燃
焼状態の悪化による黒煙の増加を防止することができる
多気筒エンジンの燃料噴射制御装置を提供することにあ
る。
The present invention has been made to solve the above-mentioned problems based on the above-mentioned principle.
In a multi-cylinder engine equipped with an EGR device, a fuel injection control device for a multi-cylinder engine capable of preventing an increase in black smoke due to deterioration of a combustion state in a cylinder having an increased EGR rate due to an uneven EGR rate. To provide.

【0019】[0019]

【課題を解決するための手段】以上のような目的を達成
するための多気筒エンジンの燃料噴射制御装置は、EG
R装置を備えた多気筒エンジンの各気筒の吸気温度を検
出する吸気温度センサと、この検出値から各気筒のEG
R率を算出するEGR率算出手段と、算出されたEGR
率から各気筒の空気過剰率を算出する空気過剰率算出手
段と、算出された空気過剰率を所定の判定値と比較する
比較手段と、前記比較手段において、空気過剰率が所定
の判定値より低下した時に、燃料噴射量を少なくする燃
料量低減手段とを備えたことを特徴とする。
A fuel injection control apparatus for a multi-cylinder engine for achieving the above object is provided by an EG.
An intake air temperature sensor for detecting the intake air temperature of each cylinder of a multi-cylinder engine equipped with an R device, and an EG of each cylinder based on the detected value.
EGR rate calculating means for calculating the R rate, and the calculated EGR
An excess air ratio calculating means for calculating an excess air ratio of each cylinder from the ratio, a comparing means for comparing the calculated excess air ratio with a predetermined determination value, and wherein the excess air ratio is greater than a predetermined determination value. A fuel amount reducing means for decreasing the fuel injection amount when the fuel injection amount is reduced.

【0020】この吸気温度とEGR率との関係、EGR
率と空気過剰率との関係、空気過剰率の判定値、及び燃
料低減量は、予め、エンジンの運転状態に対応した実験
や計算などによって求められた数値や関数値であり、比
較判定する前に予め決定されるデータマップや演算プロ
グラムによって算出できるような形で、各手段を内包す
るコントローラに入力されて構成される。
The relationship between the intake air temperature and the EGR rate, EGR
The relationship between the ratio and the excess air ratio, the determination value of the excess air ratio, and the fuel reduction amount are numerical values or function values obtained in advance by experiments or calculations corresponding to the operating state of the engine, In a form that can be calculated by a data map or an arithmetic program determined in advance, the data is inputted to a controller including each means.

【0021】この多気筒エンジンの燃料噴射制御装置に
より、EGR装置を備えた多気筒エンジンの各気筒の吸
気温度を検出し、この検出値から各気筒のEGR率を算
出し、この算出されたEGR率から各気筒の空気過剰率
を算出し、この算出された空気過剰率が所定の判定値よ
り低下した時に、気筒全体の燃料噴射量、又は空気過剰
率が所定の判定値より低下した気筒の燃料噴射量を所定
の減少量低減する制御を行なう。
The multi-cylinder engine fuel injection control device detects the intake air temperature of each cylinder of the multi-cylinder engine provided with the EGR device, calculates the EGR rate of each cylinder from the detected value, and calculates the calculated EGR ratio. The excess air ratio of each cylinder is calculated from the rate, and when the calculated excess air ratio falls below a predetermined determination value, the fuel injection amount of the entire cylinder, or of the cylinders whose excess air ratio falls below a predetermined determination value, Control for reducing the fuel injection amount by a predetermined amount is performed.

【0022】この構成により、各気筒の吸気温度を検出
する吸気温度センサにより検出した吸気温度から各気筒
間のEGR率、空気過剰率を算定して、この空気過剰率
が黒煙が発生する空気過剰率に関係する判定値より低下
し、黒煙の発生量が大きくなると判断された場合には、
噴射燃料量を低減して、黒煙の発生を防止することがで
きる。
With this configuration, the EGR ratio and the excess air ratio between the cylinders are calculated from the intake air temperature detected by the intake air temperature sensor that detects the intake air temperature of each cylinder. If it is determined that the black smoke generation amount is lower than the determination value related to the excess rate and the black smoke generation amount is large,
The amount of injected fuel can be reduced to prevent the generation of black smoke.

【0023】この噴射燃料量の低減は、個々の気筒毎の
噴射燃料量の制御が難しい場合には、全気筒一律に低減
するが、コモンレール方式等では、各気筒毎に噴射燃料
量を低減できるように構成して、空気過剰率が所定の判
定値より低下した気筒のみ、燃料噴射量を低減するよう
に構成する。これにより、他の気筒の出力の低下を防止
できるので、エンジン全体の出力の低下を最小限に抑え
ながら、黒煙の発生を抑制できる。
In the case where it is difficult to control the amount of injected fuel for each cylinder, the amount of injected fuel is reduced uniformly for all cylinders. However, in the case of a common rail system or the like, the amount of injected fuel can be reduced for each cylinder. With such a configuration, the fuel injection amount is reduced only in the cylinders in which the excess air ratio is lower than the predetermined determination value. As a result, a decrease in the output of the other cylinders can be prevented, so that the generation of black smoke can be suppressed while the decrease in the output of the entire engine is minimized.

【0024】従って、以上の構成によれば、EGR率の
不均等により、一部の気筒に過度のEGRが発生した場
合でも、燃料噴射量を低減して、気筒間のEGRバラツ
キによる黒煙悪化を防止することができる。
Therefore, according to the above configuration, even when excessive EGR occurs in some of the cylinders due to the non-uniformity of the EGR rate, the fuel injection amount is reduced, and the black smoke deteriorates due to the EGR variation between the cylinders. Can be prevented.

【0025】また、特に、EGR率の測定に吸気温度セ
ンサを使用しているので、噴射系の気筒間の噴射量、タ
イミング、噴射率等のバラツキによる燃焼のバラツキの
影響を受けずにEGR率を算定できる。なお、ここで用
いている「吸気」とは、各気筒に入るガスを示し、詳細
にはEGR中は新気とEGRガスの混合ガスを示し、E
GR無しの時は新気を示す。
In particular, since the intake air temperature sensor is used to measure the EGR rate, the EGR rate is not affected by variations in combustion due to variations in injection amount, timing, injection rate, etc. between cylinders of the injection system. Can be calculated. Note that the term “intake” used herein indicates gas entering each cylinder, and more specifically, a mixed gas of fresh air and EGR gas during EGR.
When there is no GR, it shows freshness.

【0026】[0026]

【発明の実施の形態】以下、図面を用いて、本発明に係
る多気筒エンジンの噴射燃料量制御装置の実施の形態を
説明する。図1に、本発明に係る多気筒エンジンの噴射
燃料量制御装置のシステム図を示すが、エンジン1の吸
気マニホールド3へ至る吸気通路8と排気マニホールド
2との間をEGR通路6で接続し、排気系から排気ガス
Gの一部であるEGRガスGeを、EGR通路6を経由
して吸気通路8の新気Aに混入して吸気マニホールド3
へ還流させてEGRを行うように構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a fuel injection control apparatus for a multi-cylinder engine according to the present invention will be described with reference to the drawings. FIG. 1 shows a system diagram of an injection fuel amount control device for a multi-cylinder engine according to the present invention. An EGR passage 6 connects an intake passage 8 to an intake manifold 3 of an engine 1 and an exhaust manifold 2, The EGR gas Ge, which is a part of the exhaust gas G from the exhaust system, is mixed into the fresh air A in the intake passage 8 via the EGR passage 6 and the intake manifold 3
It is configured to perform EGR by recirculating to the EGR.

【0027】また、このEGR通路6には、このEGR
通路6の開閉と通過するEGRガスGeの量を調整する
ためのEGR弁4を設け、更に、EGRクーラー5を設
けて、この冷却水通路7に冷却水を循環させてEGRガ
スGeを冷却するように構成される。
The EGR passage 6 is provided with the EGR
An EGR valve 4 for adjusting the opening / closing of the passage 6 and the amount of the EGR gas Ge passing therethrough is provided. Further, an EGR cooler 5 is provided, and cooling water is circulated through the cooling water passage 7 to cool the EGR gas Ge. It is configured as follows.

【0028】そして、このEGR弁4の弁開度の調整及
び開閉の操作を行うために、エンジン1の回転速度N
E、負荷LOAD等の運転状態を示すデータを図示しな
い各種センサから入力して、予め入力されたEGR用デ
ータマップやプログラムにより、運転状態に応じたEG
R率を演算して、このEGR率になるように操作信号を
EGR弁4のアクチュエータに出力してEGR弁4の弁
開度を調整をするEGR制御手段を備えて構成する。
In order to adjust the opening degree of the EGR valve 4 and open / close the EGR valve 4, the rotation speed N
E, data indicating an operating state such as load LOAD is input from various sensors (not shown), and an EG corresponding to the operating state is determined by a previously input EGR data map or program.
An EGR control means for calculating the R rate and outputting an operation signal to the actuator of the EGR valve 4 so as to adjust the EGR rate to adjust the valve opening degree is provided.

【0029】このEGR制御手段は、通常はエンジン運
転制御全体を受け持っているエンジンコントローラユニ
ット(ECU)と呼ばれるコントローラ(制御装置)9
の一部に組込まれて構成される。
The EGR control means normally includes a controller (control device) 9 called an engine controller unit (ECU) which takes charge of the entire engine operation control.
It is configured to be incorporated in a part of.

【0030】そして、各気筒の吸気温度(Ti=T1〜
T4)を検出するための吸気温度センサ11を、吸気通路
8の吸気マニホールド3の下流側の各吸気枝通路10、即
ち、吸気ポート直前の吸気枝通路10内の吸気ポートの上
流近傍に設ける。この吸気温度センサ11には熱電対など
を使用することができる。
Then, the intake air temperature of each cylinder (Ti = T1-
An intake air temperature sensor 11 for detecting T4) is provided in each intake branch passage 10 on the downstream side of the intake manifold 3 of the intake passage 8, that is, in the vicinity of the upstream of the intake port in the intake branch passage 10 immediately before the intake port. A thermocouple or the like can be used for the intake air temperature sensor 11.

【0031】そして、図2に示すように、この吸気温度
センサ11の検出値Tiをコントローラ9に入力し、この
コントローラ9内に、検出値である吸気温度TiからE
GR率αiを演算するEGR率算出手段91を設け、更
に、この算出されたEGR率αiから、予め入力された
マップデータM1から各気筒の空気過剰率λiを算出す
る空気過剰率算出手段92を設ける。
Then, as shown in FIG. 2, the detected value Ti of the intake air temperature sensor 11 is input to a controller 9 and the detected value, ie, the detected intake air temperature Ti
An EGR rate calculating means 91 for calculating the GR rate αi is provided. Further, based on the calculated EGR rate αi, an excess air rate calculating means 92 for calculating an excess air rate λi of each cylinder from map data M1 input in advance. Provide.

【0032】更に、この算出された空気過剰率λiを所
定の判定値λcと比較する比較手段93と、この比較手段
93において、空気過剰率λiが所定の判定値λcより低
下した時に、燃料噴射量Qを低減する燃料量低減手段94
とを備えて構成する。
Further, a comparing means 93 for comparing the calculated excess air ratio λi with a predetermined judgment value λc,
In 93, when the excess air ratio λi falls below a predetermined determination value λc, a fuel amount reducing means 94 for reducing the fuel injection amount Q
And is configured.

【0033】この燃料噴射量Qの低減は、コモンレール
式の噴射系であれば、各気筒毎に低減することが可能で
あるので、空気過剰率λiが所定の判定値λcより低下
した気筒のみに対してを燃料噴射量Qiの低減を行なう
ように構成する。
The fuel injection amount Q can be reduced for each cylinder by using a common rail type injection system. Therefore, only the cylinders in which the excess air ratio λi is lower than the predetermined determination value λc are used. On the other hand, the fuel injection amount Qi is reduced.

【0034】これらのEGR率算出手段91、空気過剰率
算出手段92、比較手段93、燃料量低減手段94は、上述の
EGR制御手段と同様に通常はエンジン1の運転やEG
R弁4等を制御するコントローラ9の一部に含まれて構
成される。
The EGR rate calculating means 91, the excess air rate calculating means 92, the comparing means 93, and the fuel amount reducing means 94 are usually used for the operation of the engine 1 and the EGR control means similarly to the above-mentioned EGR control means.
It is configured to be included in a part of the controller 9 that controls the R valve 4 and the like.

【0035】図4に示すような吸気温度TiとEGR率
αiとの関係、図5に示すようなEGR率αiと空気過
剰率λiとの関係、空気過剰率の判定値λc、及び燃料
低減量ΔQ、ΔQi等は、予め、エンジンの運転状態に
対応した実験や計算などによって求められた数値や関数
値であり、比較判定する前に予め決定されるデータマッ
プや演算プログラムによって算出できるような形でコン
トローラ9に入力されて構成される。そして、以上の構
成の多気筒エンジンの燃料噴射制御装置によって、図3
に示すフローチャートのような運転制御を行う。
The relationship between the intake air temperature Ti and the EGR rate αi as shown in FIG. 4, the relationship between the EGR rate αi and the excess air rate λi as shown in FIG. 5, the determination value λc of the excess air rate, and the fuel reduction amount ΔQ, ΔQi, and the like are numerical values and function values obtained in advance by experiments and calculations corresponding to the operating state of the engine, and can be calculated by a data map or an arithmetic program that is determined before comparison and determination. And is inputted to the controller 9. Then, the fuel injection control device for a multi-cylinder engine having the above-described configuration uses FIG.
Operation control is performed as shown in the flowchart of FIG.

【0036】このフローチャートのサブルーチンは、メ
インのエンジンの制御プラグラムから、必要によって繰
り返し呼ばれ(コールされ)、図3のフローチャートの
作業を終了した後はメインのエンジンの制御プラグラム
に戻る(リターンする)ものである。
The subroutine of this flowchart is repeatedly called (called) as necessary from the control program of the main engine, and returns to the control program of the main engine after completing the work of the flowchart of FIG. Things.

【0037】この燃料噴射制御用のサブルーチンが呼ば
れると、最初のステップS1で、この燃料噴射制御に必
要なデータが読み込まれる。このデータとしては、運転
状態を表す回転数Ne、負荷LOAD、EGR率αiと
過剰空気率λiとの関係を示す図5のようなマップデー
タM1、過剰空気率λiに関する燃料低減の判定値λ
c、燃料低減量ΔQ、ΔQi等がある。
When the fuel injection control subroutine is called, data necessary for the fuel injection control is read in a first step S1. The data include a rotational speed Ne representing an operation state, a load LOAD, map data M1 as shown in FIG. 5 showing a relationship between an EGR rate αi and an excess air rate λi, and a fuel reduction determination value λ relating to the excess air rate λi.
c, a fuel reduction amount ΔQ, ΔQi, and the like.

【0038】そして、ステップS2で、EGRを行って
いる時に吸気温度センサ11で検出した検出値Tiを入力
し、ステップS3で各気筒の吸気温度TiからEGR率
αiを算出する。
In step S2, the detection value Ti detected by the intake air temperature sensor 11 during EGR is input, and in step S3, the EGR rate αi is calculated from the intake air temperature Ti of each cylinder.

【0039】更に、ステップS4で、このEGR率αi
から空気過剰率λiを算出する。この空気過剰率λiの
算出は、マップデータM1から、ステップS1で入力し
た回転数Ne、負荷量(LOAD)に対応したEGR率
αiと空気過剰率λiとの関係を選定し、この関係に基
づいて、EGR率αiから空気過剰率λiを算出する。
Further, in step S4, the EGR rate αi
Is calculated from the excess air ratio λi. In calculating the excess air ratio λi, a relationship between the EGR ratio αi and the excess air ratio λi corresponding to the rotation speed Ne and the load (LOAD) input in step S1 is selected from the map data M1, and based on this relationship. Then, the excess air ratio λi is calculated from the EGR ratio αi.

【0040】そして、ステップS5で、この空気過剰率
λiと判定値λcとを比較して、判定値λcより大きけ
れば、そのまま、リターンし、判定値λc以下であれ
ば、ステップS6に行く。このステップS6では、空気
過剰率λiが判定値λc以下の気筒に対してのみ燃料噴
射量Qiを低減し、リターンする。
In step S5, the excess air ratio λi is compared with the judgment value λc. If the air excess ratio λi is larger than the judgment value λc, the process returns as it is. In step S6, the fuel injection amount Qi is reduced only for the cylinders in which the excess air ratio λi is equal to or smaller than the determination value λc, and the process returns.

【0041】この低減量ΔQiは予め設定した一定量と
することもできるし、また、空気過剰率λiが予め設定
した目標値λtになるような低減量ΔQitを計算し
て、この値に設定することもできる。
The reduction amount ΔQi can be a predetermined constant amount, or a reduction amount ΔQit is calculated so that the excess air ratio λi becomes a predetermined target value λt, and set to this value. You can also.

【0042】また、この各気筒毎に燃料噴射量Qiを低
減できないエンジンの場合には、全体の噴射燃料量Qを
低減量ΔQだけ低減することにより、空気過剰率λiが
判定値λc以下の気筒に対して燃料噴射量Qiを低減で
き、黒煙の増加を抑制することができる。
In the case of an engine in which the fuel injection amount Qi cannot be reduced for each cylinder, the overall fuel injection amount Q is reduced by the reduction amount ΔQ, so that the excess air ratio λi is less than the determination value λc. In contrast, the fuel injection amount Qi can be reduced, and an increase in black smoke can be suppressed.

【0043】この構成の多気筒エンジンの噴射燃料量制
御装置により、吸気ポート直前の吸気枝通路10内の吸気
ポートの上流近傍に配置した吸気温度センサ11により検
出した吸気温度Tiから各気筒間のEGR率αi、空気
過剰率λiを算定して、この空気過剰率λiが黒煙が発
生する空気過剰率に関係する判定値λcより低下し、黒
煙の発生量が大きくなると判断された場合には、噴射燃
料量を低減して、黒煙の増加を防止することができる。
With the fuel injection amount control device for a multi-cylinder engine having this configuration, the intake air temperature sensor 11 disposed near the intake port upstream of the intake port in the intake branch passage 10 immediately before the intake port determines the intake air temperature between the cylinders. The EGR rate αi and excess air rate λi are calculated, and when it is determined that the excess air rate λi is lower than the determination value λc related to the excess air rate at which black smoke is generated and the amount of black smoke generated is increased. Can reduce the amount of injected fuel and prevent an increase in black smoke.

【0044】また、各気筒毎に噴射燃料量Qiを低減可
能に構成して、空気過剰率λiが判定値λcより小さく
なった気筒に対してのみ、噴射燃料量Qiを低減する
と、エンジン出力の低下を最小限度に抑えながら、黒煙
の発生を抑制できる。
Further, when the injection fuel amount Qi is reduced for each cylinder, and the injection fuel amount Qi is reduced only for the cylinders in which the excess air ratio λi is smaller than the determination value λc, the engine output is reduced. The generation of black smoke can be suppressed while minimizing the reduction.

【0045】また、特に、EGR率αiの測定に、排気
温度センサを用いずに、吸気温度センサ11を使用してい
るので、噴射系の気筒間の噴射量、タイミング、噴射率
等のバラツキによる燃焼のバラツキの影響を受けないの
で、精度よくEGR率を推定することができるというメ
リットがある。
In particular, since the intake air temperature sensor 11 is used for measuring the EGR rate αi without using the exhaust gas temperature sensor, there is a variation in the injection amount, timing, injection rate, etc. between the cylinders of the injection system. There is an advantage that the EGR rate can be accurately estimated because it is not affected by combustion variations.

【0046】その上、実開平3−25848号公報の多
気筒エンジンの排気還流装置の場合には、各気筒へのE
GRガス量を制御するためには、各気筒毎にEGRバル
ブを設けて制御する必要があり、高コストとなるが、こ
の方法に比べて、本発明の方法では、各気筒への燃料噴
射量を制御するだけであるので、EGRバルブの増設に
よるスペースの増加が無く、レイアウト上の制約も受け
ることが無く、低コストとなる。そして、気筒数が増加
する程、コスト低減効果が大きくなる。
In addition, in the case of the exhaust gas recirculation system for a multi-cylinder engine disclosed in Japanese Utility Model Laid-Open Publication No. 3-25848, E
In order to control the GR gas amount, it is necessary to provide and control an EGR valve for each cylinder, which is costly. However, in the method of the present invention, the fuel injection amount to each cylinder is higher than in this method. , The space is not increased due to the addition of the EGR valve, the layout is not restricted, and the cost is reduced. As the number of cylinders increases, the cost reduction effect increases.

【0047】[0047]

【発明の効果】以上の説明のように、本発明の多気筒エ
ンジンの噴射燃料量制御装置によれば、各気筒の吸気温
度センサにより検出した吸気温度から各気筒のEGR
率、空気過剰率を算定して、空気過剰率が所定の判定値
より低下して黒煙の発生が予測される状態になった時
に、噴射燃料量を低減して空気過剰率を大きくしてEG
R率の大きい気筒の燃焼悪化を防止することにより、黒
煙の増加を防止できる。
As described above, according to the fuel injection amount control system for a multi-cylinder engine of the present invention, the EGR of each cylinder is determined from the intake air temperature detected by the intake air temperature sensor of each cylinder.
Rate, the excess air ratio is calculated, and when the excess air ratio falls below a predetermined determination value and black smoke is predicted to occur, the amount of injected fuel is reduced to increase the excess air ratio. EG
By preventing deterioration of combustion in a cylinder having a large R rate, an increase in black smoke can be prevented.

【0048】特に、EGR率の算定に吸気温度を使用し
たので、噴射系の気筒間の噴射量、タイミング、噴射率
等のバラツキによる燃焼のバラツキの影響を受けないと
いうメリットがある。
In particular, since the intake air temperature is used for calculating the EGR rate, there is an advantage that there is no influence from the variation in combustion due to the variation in the injection amount, the timing, the injection rate between the cylinders of the injection system.

【0049】また、各気筒毎に噴射燃料量を低減可能に
構成して、空気過剰率が判定値より小さくなった気筒に
対してのみ、噴射燃料量を低減することにより、エンジ
ン出力の低下を最小限度に抑えながら、黒煙の発生を抑
制できる。
Further, by reducing the amount of injected fuel for each cylinder and reducing the amount of injected fuel only for the cylinders in which the excess air ratio is smaller than the determination value, the engine output can be reduced. The generation of black smoke can be suppressed while keeping it to a minimum.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る多気筒エンジンの噴射燃料量制御
装置のシステム構成図である。
FIG. 1 is a system configuration diagram of an injection fuel amount control device for a multi-cylinder engine according to the present invention.

【図2】本発明に係る多気筒エンジンの噴射燃料量制御
装置のコントローラのシステム図である。
FIG. 2 is a system diagram of a controller of an injection fuel amount control device for a multi-cylinder engine according to the present invention.

【図3】本発明に係る多気筒エンジンの噴射燃料量制御
装置の制御を示すフローチャート図である。
FIG. 3 is a flowchart illustrating control of an injection fuel amount control device for a multi-cylinder engine according to the present invention.

【図4】吸気温度とEGR率の関係を示す図である。FIG. 4 is a diagram showing a relationship between an intake air temperature and an EGR rate.

【図5】EGR率と空気過剰率の関係を示す図である。FIG. 5 is a diagram showing a relationship between an EGR rate and an excess air rate.

【図6】空気過剰率と黒煙発生量の関係を示す図であ
る。
FIG. 6 is a diagram showing the relationship between the excess air ratio and the amount of black smoke generated.

【図7】気筒間最大EGR率時の空気過剰率と黒煙発生
量の関係を示す図である。
FIG. 7 is a diagram showing the relationship between the excess air ratio and the amount of black smoke generated at the time of the maximum EGR rate between cylinders.

【図8】従来技術の多気筒エンジンのEGR装置のシス
テム構成図である。
FIG. 8 is a system configuration diagram of an EGR device of a conventional multi-cylinder engine.

【図9】エンジンの運転状態(60%回転、80%負
荷)と各気筒のEGR率の関係を示す図である。
FIG. 9 is a diagram showing a relationship between an engine operating state (60% rotation, 80% load) and an EGR rate of each cylinder.

【図10】エンジンの運転状態(80%回転、80%負
荷)と各気筒のEGR率の関係を示す図である。
FIG. 10 is a diagram showing a relationship between an engine operating state (80% rotation, 80% load) and an EGR rate of each cylinder.

【図11】EGR率の気筒間のバラツキと黒煙レベルの
関係を示す図である。
FIG. 11 is a diagram showing a relationship between a variation in an EGR rate between cylinders and a black smoke level.

【符号の説明】[Explanation of symbols]

1 エンジン本体 2 排気マニホールド 3
吸気マニホールド 4 EGR弁 5 EGRクーラー 6
EGR通路 7 冷却水通路 8 吸気通路 9
コントローラ 10 吸気枝通路 11 吸気温度センサ A 新気 A+Ge 吸気 G
排気ガス Ge EGRガス LOAD 負荷 NE
回転速度 Q 全体の燃料噴射量 Qi、Q1 、Q2 、Q3 、Q4 各気筒の燃料噴射量 ΔQ 全体の燃料噴射量の低減量 ΔQi 各気筒の燃料噴射量の低減量 Ti、T1 、T2 、T3 、T4 各気筒の吸気温度 α EGR率 αi 各気筒のEGR
率 λ 空気過剰率 λi 各気筒の空気過
剰率 λc 空気過剰率の判定値
1 Engine body 2 Exhaust manifold 3
Intake manifold 4 EGR valve 5 EGR cooler 6
EGR passage 7 Cooling water passage 8 Intake passage 9
Controller 10 Intake branch passage 11 Intake temperature sensor A Fresh air A + Ge Intake G
Exhaust gas Ge EGR gas LOAD Load NE
Rotation speed Q Overall fuel injection amount Qi, Q1, Q2, Q3, Q4 Fuel injection amount of each cylinder ΔQ Reduction amount of overall fuel injection amount ΔQi Reduction amount of fuel injection amount of each cylinder Ti, T1, T2, T3, T4 Intake temperature of each cylinder α EGR rate αi EGR of each cylinder
Ratio λ excess air ratio λi excess air ratio of each cylinder λc determination value of excess air ratio

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G062 AA01 BA04 CA06 ED08 GA05 GA12 GA15 3G301 HA02 JA24 KA06 LB11 MA06 MA11 NC02 PA10A PB03A PE01A PE06A  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3G062 AA01 BA04 CA06 ED08 GA05 GA12 GA15 3G301 HA02 JA24 KA06 LB11 MA06 MA11 NC02 PA10A PB03A PE01A PE06A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 EGR装置を備えた多気筒エンジンの各
気筒の吸気温度を検出する吸気温度センサと、この検出
値から各気筒のEGR率を算出するEGR率算出手段
と、算出されたEGR率から各気筒の空気過剰率を算出
する空気過剰率算出手段と、算出された空気過剰率を所
定の判定値と比較する比較手段と、前記比較手段におい
て、空気過剰率が所定の判定値より低下した時に、燃料
噴射量を少なくする燃料量低減手段とを備えたことを特
徴とする多気筒エンジンの燃料噴射制御装置。
An intake air temperature sensor for detecting an intake air temperature of each cylinder of a multi-cylinder engine equipped with an EGR device, an EGR rate calculating means for calculating an EGR rate of each cylinder from the detected value, and a calculated EGR rate An excess air ratio calculating means for calculating the excess air ratio of each cylinder from the above, a comparing means for comparing the calculated excess air ratio with a predetermined determination value, and the excess air ratio is lower than a predetermined determination value in the comparing means. A fuel injection control device for a multi-cylinder engine, the fuel injection control device comprising:
【請求項2】 空気過剰率が所定の判定値より低下した
気筒のみ、燃料噴射量を低減することを特徴とする請求
項1記載の多気筒エンジンの燃料噴射制御装置。
2. The fuel injection control device for a multi-cylinder engine according to claim 1, wherein the fuel injection amount is reduced only in the cylinders in which the excess air ratio is lower than a predetermined determination value.
JP10342453A 1998-12-02 1998-12-02 Fuel injection control device for multiple cylinder engine Pending JP2000161145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10342453A JP2000161145A (en) 1998-12-02 1998-12-02 Fuel injection control device for multiple cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10342453A JP2000161145A (en) 1998-12-02 1998-12-02 Fuel injection control device for multiple cylinder engine

Publications (1)

Publication Number Publication Date
JP2000161145A true JP2000161145A (en) 2000-06-13

Family

ID=18353869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10342453A Pending JP2000161145A (en) 1998-12-02 1998-12-02 Fuel injection control device for multiple cylinder engine

Country Status (1)

Country Link
JP (1) JP2000161145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309693B2 (en) * 2000-05-26 2007-12-18 Kensuke Egashira Preventives and remedies for pulmonary hypertension
EP2245287A1 (en) * 2008-01-24 2010-11-03 Mack Trucks, Inc. Method for controlling combustion in a multi-cylinder engine, and multi-cylinder engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309693B2 (en) * 2000-05-26 2007-12-18 Kensuke Egashira Preventives and remedies for pulmonary hypertension
EP2245287A1 (en) * 2008-01-24 2010-11-03 Mack Trucks, Inc. Method for controlling combustion in a multi-cylinder engine, and multi-cylinder engine
JP2011523989A (en) 2008-01-24 2011-08-25 マック トラックス インコーポレイテッド Combustion control method in multi-cylinder engine and multi-cylinder engine
EP2476888A1 (en) * 2008-01-24 2012-07-18 Mack Trucks, Inc. Method for controlling combustion in a multi-cylinder engine, and multi-cylinder engine
US8566006B2 (en) 2008-01-24 2013-10-22 Mack Trucks, Inc. Method for controlling combustion in a multi-cylinder engine, and multi-cylinder engine
EP2245287B1 (en) * 2008-01-24 2020-07-15 Mack Trucks, Inc. Method for controlling combustion in a multi-cylinder engine, and multi-cylinder engine

Similar Documents

Publication Publication Date Title
US6390081B1 (en) Method and device for determining temperature values in a combustion engine
WO2009136562A1 (en) Fuel control system for diesel engine
JP6259246B2 (en) Control device for internal combustion engine
JPH10176568A (en) Fuel control device for internal combustion engine
US7769531B2 (en) Control device of internal combustion engine
US6397820B1 (en) Method and device for controlling a combustion engine
JP2002155783A (en) Fuel injection control device of diesel engine
JP4618141B2 (en) Exhaust gas recirculation device for internal combustion engine
JPH01211633A (en) Fuel injection amount control device for internal combustion engine
JP2000161145A (en) Fuel injection control device for multiple cylinder engine
JP2003269306A (en) Ignition timing control device of engine
JP2004353580A (en) Exhaust temperature control device for internal combustion engine
JPH09317568A (en) Abnormality detecting device for diesel engine
JP6498537B2 (en) Control device for internal combustion engine
JP3704726B2 (en) Control device for internal combustion engine
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3307306B2 (en) Combustion system control device for internal combustion engine
JP3743078B2 (en) In-cylinder internal combustion engine
JPH11324817A (en) Egr control device for engine
JPS62118042A (en) Air-fuel ratio control device for exhaust gas recirculating type internal combustion engine
JP4019741B2 (en) Engine combustion control device
JPH11257162A (en) Egr device of multiple cylinder engine
JPH05332186A (en) Ignition timing control device for internal combustion engine
JP3632446B2 (en) EGR control device for internal combustion engine
JP2591103B2 (en) Fuel injection control device for internal combustion engine with EGR device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212