JP2000160266A - Tungsten carbide based cemented carbide of incremental composition, its manufacture and its application tool - Google Patents

Tungsten carbide based cemented carbide of incremental composition, its manufacture and its application tool

Info

Publication number
JP2000160266A
JP2000160266A JP10375238A JP37523898A JP2000160266A JP 2000160266 A JP2000160266 A JP 2000160266A JP 10375238 A JP10375238 A JP 10375238A JP 37523898 A JP37523898 A JP 37523898A JP 2000160266 A JP2000160266 A JP 2000160266A
Authority
JP
Japan
Prior art keywords
alloy
carbide
cemented carbide
based cemented
tungsten carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10375238A
Other languages
Japanese (ja)
Inventor
Osamu Terada
修 寺田
Kazuhiko Tsuchiya
一彦 土屋
Hiroo Ito
博郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Priority to JP10375238A priority Critical patent/JP2000160266A/en
Publication of JP2000160266A publication Critical patent/JP2000160266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily and stably manufacturing carbide tungsten based cemented carbide with incremental function, the carbide tungsten based cemented carbide with incremental function to be manufactured by the manufacturing method, and its applied tools. SOLUTION: A carbide tungsten based cemented carbide with incremental function whose bonding phase quantity is varied inward of the alloy from the surface of the alloy is manufactured by interposing at least one kind of elements belonging to 4A, 5A and 6A groups in the periodic table or its carbide, nitride or carbon-nitride on the surface of the green compact to be produced in the cemented carbide manufacturing process, and then, sintering it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】合金表面から合金内部に向か
って結合相量が変化する傾斜組成の炭化タングステン基
超硬合金、その製造方法、およびその応用工具に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tungsten carbide-based cemented carbide having a gradient composition in which the amount of a binder phase changes from the surface of the alloy toward the inside of the alloy, a method for producing the same, and a tool for applying the same.

【0002】[0002]

【従来の技術】通常、炭化タングステン基超硬合金は、
一般に粉末冶金法によって作製され、合金中のCo、N
i等の結合相中に炭化タングステンが均一に分散したも
のであり、使用目的に応じた組成、炭化タングステン粒
度のものが用いられている。その高硬度を利用して、耐
摩耗性工具、耐摩耗性部品、摺動部材等に使用されてい
る。
2. Description of the Related Art Generally, tungsten carbide-based cemented carbide is
Generally produced by powder metallurgy, Co, N
Tungsten carbide is uniformly dispersed in a binder phase such as i, and has a composition and a particle size of tungsten carbide according to the purpose of use. Utilizing its high hardness, it is used for wear-resistant tools, wear-resistant parts, sliding members and the like.

【0003】炭化タングステン基超硬合金の硬さと靭性
は相反する物であり、耐摩耗性向上のため、硬さを増す
と、靭性が低下し、適用工具に対して強度不足となり使
用不可能となる。
[0003] Hardness and toughness of a tungsten carbide-based cemented carbide are contradictory. To improve abrasion resistance, when the hardness is increased, the toughness is reduced, and the strength becomes insufficient for applied tools. Become.

【0004】この問題を解決しようとして、表面が高硬
度で、合金内部が高靭性である傾斜組成の炭化タングス
テン基超硬合金の検討が従来行なわれてきた。
In order to solve this problem, studies have been made on a tungsten carbide-based cemented carbide having a gradient composition in which the surface has a high hardness and the inside of the alloy has a high toughness.

【0005】一般的には、炭化タングステン基超硬合金
の傾斜組成材料の製造方法は、超硬合金組成で組成又は
炭化物粒度の異なる2種類以上の粉末を、プレス時に積
層させる方法と、green compactを焼結す
る過程で、炉内雰囲気を調整し、内部の組成を変えて傾
斜させる方法の2種類がある。
[0005] Generally, a method for producing a graded composition material of a tungsten carbide-based cemented carbide includes a method of laminating two or more kinds of powders having different compositions or carbide grain sizes in a cemented carbide composition at the time of pressing, and a green compact. In the process of sintering, there are two methods of adjusting the atmosphere in the furnace and changing the internal composition to incline.

【0006】後者の場合は、鈴木 寿 編著「超硬合金
と焼結硬質材料」、昭和61年2月20日、丸善株式会
社発行、第54頁に記される「低炭素合金の液相出現温
度は高炭素合金よりも約60℃高くなる。」という現象
を利用したものである。この場合、焼結雰囲気調整ガス
に炭素を含むガス(例えばメタン等)を用い、合金表面
を高炭素とし、早期に出現した表面の液相を毛管現象に
より合金内部に移動させるという方法が一般的に用いら
れている。
[0006] The latter case is described in "The appearance of liquid phase of low carbon alloy" described in "Carbide Alloy and Sintered Hard Material", edited by Hisashi Suzuki, published on Mar. 20, 1986, Mar. The temperature is about 60 ° C. higher than that of the high carbon alloy. ” In this case, a method is generally used in which a gas containing carbon (for example, methane or the like) is used as a sintering atmosphere adjusting gas, the surface of the alloy is made of high carbon, and the liquid phase on the surface that appeared earlier is moved into the alloy by capillary action. It is used for

【0007】[0007]

【発明が解決しようとする課題】しかしながら炭化タン
グステン基超硬合金の傾斜組成材料の製造方法の前者の
場合、積層作業の人為的、機械的なバラツキや、積層作
業の工程時間の延長という問題が生じる。また、積層
し、再現性良く傾斜組成を得られる方向は、一般に粉末
のプレス方向と同一方向のみとなってしまう。
However, in the case of the former method of producing a graded composition material of a tungsten carbide-based cemented carbide, there are problems of artificial and mechanical variations in the laminating operation and an increase in the processing time of the laminating operation. Occurs. In addition, the direction in which the gradient composition can be obtained with good reproducibility by laminating is generally only the same direction as the pressing direction of the powder.

【0008】後者の場合は、焼結炉内雰囲気調整の為、
各種ガスを導入するのであるが、焼結炉体に新たなガス
流量コントロール装置やガス配管等の設備を設けなけれ
ばならず、コスト高となること、および目的の傾斜組成
を有した合金を得るために、導入した雰囲気ガスの流量
や圧力をコントロールすることが難しいこと等が問題で
ある。また、この場合、結合相量の傾斜する範囲は合金
全体となり、合金表面全体が、靭性の乏しい結合相の少
ない組成の合金となり、局部的に傾斜させることはでき
ない。
In the latter case, in order to adjust the atmosphere in the sintering furnace,
Various gases are introduced, but new equipment such as a gas flow control device and gas piping must be provided in the sintering furnace body, which increases the cost and obtains an alloy having the desired gradient composition. For this reason, it is difficult to control the flow rate and pressure of the introduced atmospheric gas. Further, in this case, the range in which the amount of the binder phase is inclined is the entire alloy, and the entire alloy surface is an alloy having a composition having a small toughness and a small amount of the binder phase, and cannot be locally inclined.

【0009】上記のように、炭化タングステン基超硬合
金の傾斜材料は、製造作業性の悪さ、新たな設備の投入
コスト、製造条件の確立の難しさ等の問題があり、一般
的には普及していないようである。
As described above, graded materials of tungsten carbide-based cemented carbide have problems such as poor manufacturing workability, input cost of new equipment, difficulty in establishing manufacturing conditions, and the like, and are generally popular. It doesn't seem to.

【0010】本発明が解決しようとする課題は、従来の
炭化タングステン基超硬合金の傾斜材料製造時に生じる
上記問題点を排除し、より簡単に、かつ安定して製造す
る方法を提供することを目的とする。
[0010] An object of the present invention is to eliminate the above-mentioned problems that occur when a conventional graded material of a tungsten carbide-based cemented carbide is manufactured, and to provide a simpler and more stable manufacturing method. Aim.

【0011】[0011]

【課題を解決するための手段】原理的には、前記した炭
化タングステン基超硬合金の傾斜組成材料の製造方法の
後者の方法と同様であり、鈴木 寿 編著「超硬合金と
焼結硬質材料」、昭和61年2月20日、丸善株式会社
発行、第54頁に記される「TiCやTaCが添加され
たWC−Co合金やMoCを添加したTiC−Ni合
金では液相出現温度が低下する。」という現象、すなわ
ち多元系合金では、結合相の融解温度は共晶反応により
低下するという現象に基くものである。
In principle, the method is the same as the latter method for producing a gradient composition material of a tungsten carbide-based cemented carbide described above. ", 1986 February 20, Maruzen Co., Ltd. issued, in the TiC-Ni alloy that" TiC and TaC was added an added WC-Co alloy and Mo 2 C is described in pp. 54 liquid phase appearance temperature Is reduced. ”That is, in the case of a multi-component alloy, the melting temperature of the binder phase is reduced by a eutectic reaction.

【0012】本発明では、合金表面付近の液相出現温度
を下げるため、通常、炭化タングステン基超硬合金に添
加される、元素周期表の4A、5A、6A族に属する元
素又はその炭化物、窒化物、炭窒化物を用いる。これら
は一般に超硬合金に添加される元素又は化合物であり、
著しい強度低下を引き起こす原因となりにくい。
In the present invention, in order to lower the liquid phase appearance temperature in the vicinity of the alloy surface, elements belonging to groups 4A, 5A and 6A of the periodic table or carbides or nitrides thereof are usually added to the tungsten carbide-based cemented carbide. Material and carbonitride are used. These are generally elements or compounds added to cemented carbide,
It is unlikely to cause a significant decrease in strength.

【0013】本発明の結合相量の傾斜した炭化タングス
テン基超硬合金の作成方法および詳しい原理は以下の通
りである。
The method and the detailed principle of the preparation of the tungsten carbide based cemented carbide in which the amount of the binder phase is inclined according to the present invention are as follows.

【0014】まず上記した元素又は化合物を、一般に用
いられる炭化タングステン基超硬合金のgreen c
ompact上の傾斜組成にさせたい部分に、適当な量
を直接介在させる。その後焼結を行なうのであるが、焼
結温度上昇中に、介在させた元素又は化合物は合金表面
付近に拡散し、結合相と共晶反応する。介在させた元素
又は化合物と共晶反応する結合相の融解温度は、合金内
部の結合相の融解温度より低いため、焼結時早期に液相
が出現することとなる。早期に出現したgreen c
ompact表面付近の液相は、green comp
act内部がまだ多孔質のため、毛管現象により、内部
に移動する。その後、全体に液相が出現するよう、しか
るべき焼結温度とし、冷却することで結合相量の傾斜し
た高密度の合金を得る。ここで、拡散させる元素又は化
合物により拡散の程度が違うので、拡散させる元素又は
化合物を変えることで、結合相の傾斜部分の深度を変化
させることができる。
First, the above-mentioned element or compound is converted to green c of a commonly used tungsten carbide-based cemented carbide.
An appropriate amount is directly interposed in a portion of the ompact to be made into a gradient composition. Thereafter, sintering is performed. During the increase in the sintering temperature, the interposed element or compound diffuses near the alloy surface and undergoes a eutectic reaction with the binder phase. Since the melting temperature of the binder phase that undergoes a eutectic reaction with the intervening element or compound is lower than the melting temperature of the binder phase inside the alloy, a liquid phase appears early during sintering. Green c that appeared early
The liquid phase near the surface of the green compact is green comp
Since the inside of the act is still porous, the inside of the act moves inside by capillary action. Thereafter, an appropriate sintering temperature is set so that a liquid phase appears entirely, and cooling is performed to obtain a high-density alloy in which the amount of the binder phase is inclined. Here, since the degree of diffusion differs depending on the element or compound to be diffused, the depth of the inclined portion of the binder phase can be changed by changing the element or compound to be diffused.

【0015】[0015]

【実施例】以下、実施例および比較例により本発明をさ
らに説明するが、本発明はこれらに限定される物ではな
い。
The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0016】基礎的な実施例 表1に示す配合組成およびWC粒度のWC、Co、VC
粉末の混合粉末X、Y、Zを用意した。これら粉末には
プレス成形助剤として外割で0.9mass%のパラフ
ィンが含まれている。
Basic Examples WC, Co, VC of the composition and WC particle size shown in Table 1
Powder mixed powders X, Y, and Z were prepared. These powders contain 0.9 mass% of paraffin as a press-forming aid.

【0017】[0017]

【表1】 [Table 1]

【0018】これら粉末を所定の角柱形状にプレス成形
し、角柱の一面にのみそれぞれCr、TiN、M
Cを介在させた。その後脱脂処理を行い、1400
℃にて1時間の焼結を行なった。比較のため何も介在さ
せない合金も作製した。
These powders are press-molded into a predetermined prism shape, and Cr 3 C 2 , TiN, M
o 2 C was interposed. Thereafter, a degreasing treatment is performed, and 1400
Sintering was performed at 1 ° C. for 1 hour. For comparison, an alloy without any intervention was also prepared.

【0019】得られた合金について、Cr、Ti
N、MoCを介在させた面付近の合金組織と、内部の
合金組織の光学顕微鏡での観察結果を図1(a、b)、
図2(a、b)、図3(a、b)に示す。各図のcには
比較のためCr、TiN、MoCを介在させな
い合金の組織も併示している。図1、図2、および図3
のようにCr、TiN、MoCを介在させた面
直下の結合相は明らかに少なくなっていることが分か
る。
Regarding the obtained alloy, Cr 3 C 2 , Ti
FIGS. 1A and 1B show the observation results of the alloy structure near the surface where N and Mo 2 C are interposed and the internal alloy structure with an optical microscope.
This is shown in FIGS. 2 (a, b) and 3 (a, b). For comparison, the structure of the alloy without Cr 3 C 2 , TiN, and Mo 2 C is also shown in FIG. 1, 2, and 3
It can be seen that the number of binder phases immediately below the plane with Cr 3 C 2 , TiN, and Mo 2 C interposed therebetween is clearly reduced.

【0020】さらにCr、TiN、MoCを介
在させた面から合金内部への硬さ(HV)の分布を測定
した。その結果を図4に示す。図4から、表面付近の高
硬度部分は、焼結時に結合相が移動した部分であること
が理解できる。ここでCr とTiNを使用した場
合で、硬さの分布が異なっているのは、CrとT
iNの結合相への拡散の程度の違いによるものである。
Further, Cr3C2, TiN, Mo2Via C
Of hardness (HV) distribution from the surface where it is present to the inside of the alloy
did. FIG. 4 shows the results. From FIG. 4, the height near the surface
The hardness part is the part where the binder phase moved during sintering
Can understand. Where Cr3 C2And using TiN
And the distribution of hardness is different3C2And T
This is due to the difference in the degree of diffusion of iN into the binder phase.

【0021】応用製品への実施例1(管引きプラグ) 平均粒径が1.5μmの原料WC粉末、平均粒径1.6
μmのCo粉末を用いて、90mass%WC−10m
ass%Coの組成になるように配合し、さらに外割り
で1mass%のパラフィンを加えて、超硬合金原料粉
末を作製した。その後プレス成形および加工を行ない、
所定の寸法(円筒形状)のgreencompactを
得た。その円筒状green compactの側面に
Cr を介在させ、真空中で1400℃にて1時間
焼結し、研削研摩加工して、φ25×50の管引きプラ
グを作製した。この管引きプラグをSUS材の管引きに
用いたところ、従来の結合相を傾斜させていない合金の
場合と比べて、寿命が延びた(従来のものの寿命は管引
き長さ1000mであったものが2200mとなっ
た)。
Example 1 for Application Product (Piping Plug) Raw material WC powder having an average particle size of 1.5 μm, average particle size 1.6
90 mass% WC-10m using Co powder of μm
ass.% Co composition
Add 1 mass% of paraffin with
A powder was prepared. Then press molding and processing,
Greencompact of specified dimensions (cylindrical shape)
Obtained. On the side of the cylindrical green compact
Cr3 C2For 1 hour at 1400 ° C in vacuum
Sintering, grinding and polishing, φ25 × 50 pipe drawing plug
Was made. Use this pipe plug to pipe SUS
When used, conventional alloys without tilting the binder phase
The service life has been extended compared to the conventional case.
What was 1000m long became 2200m
T).

【0022】応用製品への実施例2(熱間圧延ロール) 平均粒径が3.0μmの原料WC粉末、平均粒径1.6
μmのCo粉末、2.0μmのNi粉末、1.7μmの
Cr粉末を用いて、85mass%WC−1ma
ss%Cr−7mass%Co−7mass%N
iの組成になるように配合し、さらに外割りで1mas
s%のパラフィンを加えて、超硬合金原料粉末を作製し
た。その後プレス成形および加工を行い、所定の寸法
(円筒形状)のgreen compactを得た。そ
の円筒状green compactの側面にTiCを
介在させ、真空中で1500℃にて1時間焼結し、研削
研摩加工して、φ120×300の熱間圧延ロールを作
製した。この熱間圧延ロールを黄銅の熱間圧延に用いた
ところ、従来の結合相を傾斜させていない合金の場合と
比べて、寿命が延びた(従来のものの寿命は圧延量3t
であったものが5tとなった)。
Example 2 (Hot rolling roll) for applied product Raw WC powder having an average particle size of 3.0 μm, average particle size 1.6
85 mass% WC-1ma using Co powder of 2.0 μm, Ni powder of 2.0 μm, and Cr 3 C 2 powder of 1.7 μm.
ss% Cr 3 C 2 -7mass% Co-7mass% N
Formulated to have the composition of i
By adding s% of paraffin, a cemented carbide raw material powder was produced. Thereafter, press molding and processing were performed to obtain a green compact having a predetermined size (cylindrical shape). TiC was interposed on the side surface of the cylindrical green compact, sintered at 1500 ° C. for 1 hour in vacuum, and ground and polished to prepare a hot rolling roll of φ120 × 300. When this hot-rolling roll was used for hot-rolling brass, the service life was extended as compared with the conventional alloy in which the binder phase was not inclined (the service life of the conventional product was a rolling amount of 3 t).
Was changed to 5t).

【0023】応用製品への実施例3(半導体封止材料混
練スクリュー) 平均粒径が0.8μmの原料WC粉末、平均粒径1.6
μmのCo粉末、2.0μmのVC粉末を用いて、84
mass%WC−1mass%VC−15mass%C
oの組成になるように配合し、さらに外割りで1mas
s%のパラフィンを加えて、超硬合金原料粉末を作製し
た。その後プレス成形および加工を行ない、所定の寸法
形状のgreen compactを得た。そのgre
en compactの側面にCrを介在させ、
真空中で1400℃にて1時間焼結し、研削研摩加工し
て、φ100×120の半導体封止材料用混練スクリュ
ーを作製した。この半導体封止材料用混練スクリューを
用いたところ、従来の結合相を傾斜させていない合金の
場合と比べて、寿命が延びた(従来のものの寿命は混練
時間500hrであったものが1100hrとなっ
た)。
Example 3 for Applied Product (Semiconductor Encapsulating Material Kneading Screw) Raw material WC powder having an average particle size of 0.8 μm, average particle size 1.6
Using Co powder of 2.0 μm and VC powder of 2.0 μm, 84
mass% WC-1mass% VC-15mass% C
o so that it becomes 1 composition.
By adding s% of paraffin, a cemented carbide raw material powder was produced. Thereafter, press molding and processing were performed to obtain a green compact having a predetermined size and shape. That gre
Cr 3 C 2 is interposed on the side of the en compact,
Sintering was performed at 1400 ° C. for 1 hour in a vacuum, followed by grinding and polishing to prepare a kneading screw for a semiconductor sealing material having a diameter of 100 × 120. When this kneading screw for semiconductor encapsulating material was used, the life was extended as compared with the conventional alloy in which the bonding phase was not inclined (the life of the conventional kneading time was 500 hr, but the kneading time was 1100 hr). T).

【0024】[0024]

【発明の効果】本発明の効果は、以下の通りである。 (a)介在させるべき元素又は化合物は合金表面に介在
させるのみでよいため、粉末を積層プレスする方法は取
らなくてもよく、作業が簡略化できる。
The effects of the present invention are as follows. (A) Since the element or compound to be interposed only needs to be interposed on the alloy surface, a method of laminating and pressing the powder does not need to be taken, and the operation can be simplified.

【0025】(b)原料さえあればよく、特別な装置を
必要としない。コスト面で有利である。
(B) Only raw materials are required, and no special equipment is required. It is advantageous in terms of cost.

【0026】(c)合金表面の高硬度としたい部分だけ
に各元素又は化合物を介在させることで、部分的に結合
相量を傾斜させることができる。
(C) By interposing each element or compound only in a portion of the alloy surface where high hardness is desired, the amount of the binder phase can be partially inclined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】表1のX組成の粉末をプレスして得られるgr
een compact表面に、Crを介在させ
て焼結して得られる合金の組織写真((c)は介在無し
の場合の組織写真))。
FIG. 1 shows a gr obtained by pressing a powder having an X composition shown in Table 1.
Structure photograph of the alloy obtained by sintering Cr 3 C 2 on the surface of the een compact ((c) is a structure photograph without the interposition).

【図2】表1のY組成の粉末をプレスして得られるgr
een compact表面に、TiNを介在させて焼
結して得られる合金の組織写真((c)は介在無しの場
合の組織写真))。
FIG. 2 shows a gr obtained by pressing a powder having a Y composition shown in Table 1.
Structure photograph of an alloy obtained by sintering TiN on the surface of the een compact ((c) is a structure photograph without interposition).

【図3】表1のZ組成の粉末をプレスして得られるgr
een compact表面に、MoCを介在させて
焼結して得られる合金の組織写真((c)は介在無しの
場合の組織写真))。
FIG. 3 shows a gr obtained by pressing a powder having a Z composition shown in Table 1.
Structure photograph of the alloy obtained by sintering Mo 2 C on the surface of the een compact ((c) is a structure photograph without interposition).

【図4】各化合物を介在させた面から合金深部へ向かっ
ての硬さの分布を示したグラフ。黒丸、黒三角、黒四角
がそれぞれ表1の試料X、Y、Zに対応している。
FIG. 4 is a graph showing a distribution of hardness from a surface where each compound is interposed to a deep part of the alloy. Black circles, black triangles, and black squares correspond to samples X, Y, and Z in Table 1, respectively.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Co,NiおよびFeのうち一種類以上
を3〜30mass%含有、および元素周期表の4A、
5A、6A族に属する元素の炭化物、窒化物、炭窒化物
のうち一種類以上を0〜30mass%含有し、残りが
炭化タングステンWCと不可避不純物とからなる混合粉
末の圧粉体(green compact)の表面に、
元素周期表の4A、5A、6A族に属する元素又はその
炭化物、窒化物、炭窒化物のうち1種類以上を介在させ
て、1300℃〜1450℃の温度範囲で5分〜2時間
の真空中焼結を行なうことによって得られる、合金表面
から合金内部に向かって結合相量が変化する傾斜組成合
金の製造方法。
1. An alloy containing at least one of Co, Ni and Fe in an amount of 3 to 30 mass%, and 4A of the periodic table.
A green compact of a mixed powder containing 0 to 30 mass% of at least one of carbides, nitrides, and carbonitrides of elements belonging to groups 5A and 6A, and the balance comprising tungsten carbide WC and unavoidable impurities. On the surface of
In a vacuum for 5 minutes to 2 hours in a temperature range of 1300 ° C. to 1450 ° C. by interposing one or more of elements belonging to groups 4A, 5A and 6A of the periodic table or carbides, nitrides and carbonitrides thereof A method for producing a gradient composition alloy in which the amount of a binder phase changes from the alloy surface to the inside of the alloy, obtained by performing sintering.
【請求項2】 請求項1の方法で得られる、合金表面近
傍の結合相(Co、Ni、Fe、およびCrの一種類以
上)量が減少した傾斜組成の合金。
2. An alloy obtained by the method according to claim 1, wherein the amount of the binder phase (at least one of Co, Ni, Fe, and Cr) near the alloy surface is reduced.
【請求項3】 請求項1の方法で得られた傾斜組成の合
金によって構成される、ダイス、プラグ、ロール等の耐
摩耗工具。
3. A wear-resistant tool, such as a die, a plug, or a roll, made of the alloy having a graded composition obtained by the method of claim 1.
JP10375238A 1998-11-25 1998-11-25 Tungsten carbide based cemented carbide of incremental composition, its manufacture and its application tool Pending JP2000160266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10375238A JP2000160266A (en) 1998-11-25 1998-11-25 Tungsten carbide based cemented carbide of incremental composition, its manufacture and its application tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10375238A JP2000160266A (en) 1998-11-25 1998-11-25 Tungsten carbide based cemented carbide of incremental composition, its manufacture and its application tool

Publications (1)

Publication Number Publication Date
JP2000160266A true JP2000160266A (en) 2000-06-13

Family

ID=18505196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10375238A Pending JP2000160266A (en) 1998-11-25 1998-11-25 Tungsten carbide based cemented carbide of incremental composition, its manufacture and its application tool

Country Status (1)

Country Link
JP (1) JP2000160266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177981A (en) * 2003-12-15 2005-07-07 Sandvik Ab Cemented carbide tool and manufacturing method thereof
JP2007522339A (en) * 2003-12-15 2007-08-09 サンドビック インテレクチュアル プロパティー アクティエボラーグ Cemented carbide tool for mining and construction, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177981A (en) * 2003-12-15 2005-07-07 Sandvik Ab Cemented carbide tool and manufacturing method thereof
JP2007522339A (en) * 2003-12-15 2007-08-09 サンドビック インテレクチュアル プロパティー アクティエボラーグ Cemented carbide tool for mining and construction, and manufacturing method thereof
JP2013014846A (en) * 2003-12-15 2013-01-24 Sandvik Intellectual Property Ab Cemented carbide tool for mining and construction application and method of making same

Similar Documents

Publication Publication Date Title
US5778301A (en) Cemented carbide
US5482670A (en) Cemented carbide
JPH05209247A (en) Cermet alloy and its production
GB2024843A (en) Composite diamond compact for a wire drawing die and a process for the production of the same
JP2000336437A (en) MANUFACTURE OF WC-Co-BASE CEMENTED CARBINE WITH FINE WC
CN103189155A (en) Method for producing a sintered composite body
JPWO2020090280A1 (en) Manufacturing method of cemented carbide, cutting tool and cemented carbide
JPH05271842A (en) Cermet alloy and its production
JP3310138B2 (en) Sintered hard material
CN101899602A (en) Cermet body and a method of making a cermet body
IE69760B1 (en) Method of forming diamond impregnated carbide via the in-situ conversion of dispersed graphite
US6290902B1 (en) Method for producing Ti (C,N)—(Ti,Ta,W) (C,N)—Co alloys for cutting tool applications
US4280841A (en) Method for manufacturing a mechanical seal ring
KR101001903B1 (en) Manufacturing method of high-density WC hardmetal
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
JP2000160266A (en) Tungsten carbide based cemented carbide of incremental composition, its manufacture and its application tool
JP4170402B2 (en) Titanium-based carbonitride alloy with nitrided surface region
JP2006111947A (en) Ultra-fine particle of cermet
JPH07216492A (en) Hard material and its production
KR100396009B1 (en) High hardness titanium carbonitride based cermets and manufacturing method thereof
JP2796011B2 (en) Whisker reinforced cemented carbide
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
CN115386775B (en) High-elasticity-modulus metal ceramic material and preparation method thereof
JP2007131505A (en) Sintered material for ultra-high-hardness sintered tool and method for manufacturing the same
JP2017186624A (en) Hard metal alloy and manufacturing method therefor and carbide tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627