JP2000160137A - Polishing agent and polishing process using the same - Google Patents

Polishing agent and polishing process using the same

Info

Publication number
JP2000160137A
JP2000160137A JP33927098A JP33927098A JP2000160137A JP 2000160137 A JP2000160137 A JP 2000160137A JP 33927098 A JP33927098 A JP 33927098A JP 33927098 A JP33927098 A JP 33927098A JP 2000160137 A JP2000160137 A JP 2000160137A
Authority
JP
Japan
Prior art keywords
polishing
film
cerium oxide
substrate
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33927098A
Other languages
Japanese (ja)
Inventor
Yasushi Kurata
靖 倉田
Toranosuke Ashizawa
寅之助 芦沢
Keizo Hirai
圭三 平井
Satohiko Akahori
聡彦 赤堀
Yoshio Kurihara
美穂 栗原
Masato Yoshida
誠人 吉田
Yoichi Machii
洋一 町井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP33927098A priority Critical patent/JP2000160137A/en
Publication of JP2000160137A publication Critical patent/JP2000160137A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a polishing agent applicable to a smoothening process for an interlayer insulating membrane and also for the polishing of shallow trench separation by compounding cerium oxide particles, water and an anionic surfactant. SOLUTION: This polishing agent is composed of cerium oxide particles (preferably, the primary particle diameter of 5-600 nm and the median of the particle diameters of 100-2000 nm), water and an anionic surfactant (an anionic surfactant preferably containing ammonium acrylate as a copolymer component). The pH and the viscosity (mPa.s) are in the region surrounded with the 4 points of A (5.5, 0.9), B (5.5, 3.0), C (10.0, 3.0) and D (9.0, 0.9) in the (x, y) coordination system where pH is let x-coordinate and viscosity is let y-coordinate). Further, the polishing speed ratio of silicon oxide membrane/silicon nitride membrane is preferably 5 or more in the polishing agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子製造技
術に使用される研磨剤及び研磨法に関し、基板表面の平
坦化工程、特に層間絶縁膜の平坦化工程、シャロー・ト
レンチ素子分離の形成工程等において使用される研磨剤
及びこれらの研磨剤を使用した基板の研磨法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing agent and a polishing method used in a semiconductor device manufacturing technique, and more particularly to a step of flattening a substrate surface, particularly a step of flattening an interlayer insulating film, and a step of forming shallow trench element isolation. The present invention relates to an abrasive used in the above-mentioned method and a method for polishing a substrate using the abrasive.

【0002】[0002]

【従来の技術】現在のULSI半導体素子製造工程で
は、高密度・微細化のための加工技術が研究開発されて
いる。その一つであるCMP(ケミカルメカニカルポリ
ッシング)技術は、半導体素子の製造工程において、層
間絶縁膜の平坦化、シャロー・トレンチ素子分離形成、
プラグ及び埋め込み金属配線形成等を行う際に必須の技
術となってきている。
2. Description of the Related Art In the current manufacturing process of ULSI semiconductor devices, processing techniques for high density and miniaturization have been researched and developed. The CMP (Chemical Mechanical Polishing) technology, which is one of the methods, is used to flatten an interlayer insulating film, form a shallow trench element isolation,
It is becoming an indispensable technique when forming plugs and embedded metal wirings.

【0003】従来、半導体素子の製造工程において、プ
ラズマ−CVD、低圧−CVD等の方法で形成される酸
化珪素絶縁膜等無機絶縁膜層を平坦化するための化学機
械研磨剤としてフュームドシリカ系の研磨剤が一般的に
検討されている。フュームドシリカ系の研磨剤は、シリ
カ粒子を四塩化珪酸を熱分解する等の方法で粒成長さ
せ、pH調整を行って製造している。しかしながら、こ
の様な研磨剤は、研磨速度が低く、パターンの平坦性が
悪いという技術課題がある。
Conventionally, in the manufacturing process of a semiconductor device, a fumed silica-based polishing agent is used as a chemical mechanical polishing agent for planarizing an inorganic insulating film layer such as a silicon oxide insulating film formed by a method such as plasma-CVD or low-pressure-CVD. Are generally considered. Fumed silica-based abrasives are produced by subjecting silica particles to grain growth by a method such as thermal decomposition of tetrachlorosilicic acid and adjusting the pH. However, such an abrasive has a technical problem that the polishing rate is low and the flatness of the pattern is poor.

【0004】従来の層間絶縁膜を平坦化するCMP技術
では、研磨速度の基板上被研磨膜のパターン依存性が大
きく、パターン密度差或いはサイズ差の大小により凸部
の研磨速度が大きく異なり、また凹部の研磨も進行して
しまうため、ウエハ面内全体での高いレベルの平坦化を
実現することができないという技術課題があった。
In the conventional CMP technique for flattening an interlayer insulating film, the polishing rate largely depends on the pattern of a film to be polished on a substrate, and the polishing rate of a convex portion differs greatly depending on the pattern density difference or size difference. Since the polishing of the concave portion also proceeds, there has been a technical problem that a high level of planarization cannot be realized over the entire wafer surface.

【0005】また、層間膜を平坦化するCMP技術で
は、層間膜の途中で研磨を終了する必要があり、研磨量
の制御を研磨時間で行うプロセス管理方法が一般的に行
われている。しかし、パターン段差形状の変化だけでな
く、研磨布の状態等でも、研磨速度が顕著に変化してし
まうため、プロセス管理が難しいという問題があった。
In the CMP technique for flattening an interlayer film, it is necessary to finish polishing in the middle of the interlayer film, and a process management method for controlling a polishing amount by a polishing time is generally performed. However, there has been a problem that not only the change in the pattern step shape but also the state of the polishing cloth significantly changes the polishing rate, making process management difficult.

【0006】一方、デザインルール0.5μm以上の世
代では、集積回路内の素子分離にLOCOS(シリコン
局所酸化)が用いられてきたが、加工寸法の更なる微細
化に伴い、素子分離幅のより小さいシャロー・トレンチ
分離技術が採用されつつある。シャロー・トレンチ分離
では、基板上に埋め込んだ余分な酸化珪素膜を除くため
にCMPが必須な技術となる。素子分離の酸化珪素膜埋
め込み部分以外には、マスク及びストッパーとして主に
窒化珪素膜が形成されるため、CMP研磨剤の特性とし
て酸化珪素膜と窒化珪素膜との研磨速度比(酸化珪素膜
の研磨速度/窒化珪素膜の研磨速度)が大きいことが望
ましい。しかし、従来のシリカ系の研磨剤は、研磨速度
比が2〜3程度しかなく、プロセスマージンが充分に得
られないという問題があった。
On the other hand, in the generation of the design rule of 0.5 μm or more, LOCOS (Local Oxidation of Silicon) has been used for element isolation in an integrated circuit. Small shallow trench isolation technology is being adopted. In the shallow trench isolation, CMP is an indispensable technique for removing an extra silicon oxide film buried on a substrate. Since a silicon nitride film is mainly formed as a mask and a stopper except for the portion where the silicon oxide film is buried for element isolation, the polishing rate ratio of the silicon oxide film to the silicon nitride film (the silicon oxide film It is desirable that the polishing rate / polishing rate of the silicon nitride film be large. However, the conventional silica-based abrasive has a problem that the polishing rate ratio is only about 2 to 3 and a sufficient process margin cannot be obtained.

【0007】シリカ系研磨剤に比べ、酸化珪素膜の高い
研磨速度が得られる酸化セリウム等を含む研磨剤も使用
されている。しかし、研磨速度が高すぎるためにプロセ
ス管理が難しい、研磨速度の基板上被研磨膜のパターン
依存性が大きい等の問題があった。その他に、一般に比
較的低い粒子濃度で使用されるために基板上の被研磨膜
パターンが微細化するほど凸部が削れにくいという問題
もあった。また、酸化セリウムを含む研磨剤は、シリカ
系研磨剤の約2倍の酸化珪素膜と窒化珪素膜の研磨速度
比が得られるが、それでも実用上充分とはいえない。
[0007] An abrasive containing cerium oxide or the like, which can obtain a higher polishing rate of a silicon oxide film than a silica-based abrasive, is also used. However, there are problems such as difficulty in process management because the polishing rate is too high, and large dependence of the polishing rate on the pattern of the film to be polished on the substrate. In addition, there is also a problem that the projections are difficult to be removed as the polishing target film pattern on the substrate becomes finer, because the particles are generally used at a relatively low particle concentration. A polishing agent containing cerium oxide can provide a polishing rate ratio of a silicon oxide film and a silicon nitride film approximately twice that of a silica-based polishing agent, but it is still not practically sufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明は、シャロー・
トレンチ分離等の微細パターンの凸部が削れにくいとい
うの問題点を解決し、酸化珪素膜と窒化珪素膜との研磨
速度比が大きいことが必要とされるシャロー・トレンチ
分離の研磨にも適用可能な研磨剤及び基板の研磨法を提
供するものである。
SUMMARY OF THE INVENTION The present invention relates to a shallow
It solves the problem that the projections of fine patterns such as trench isolation are not easily removed, and can be applied to polishing of shallow trench isolation, which requires a high polishing rate ratio between silicon oxide film and silicon nitride film. And a method for polishing a substrate.

【0009】[0009]

【課題を解決するための手段】本発明のCMP研磨剤
は、酸化セリウム粒子、水、添加剤として陰イオン性界
面活性剤を含む研磨剤である。そのpH及び粘度(mP
a・s)が、pHをx座標、粘度をy座標とした(x,
y)座標系において、A点(5.5,0.9)、B点
(5.5,3.0)、C点(10.0,3.0)、D点
(9.0,0.9)の4点で囲まれた領域範囲内にある
ものであり、AA点(6.0,0.9)、BB点(6.
0,1.4)、CC点(8.4,1.4)、DD点
(7.5,0.9)の4点で囲まれた領域範囲内にある
ことがより好ましい。その結果、酸化珪素膜研磨速度と
窒化珪素膜研磨速度の比が大きくなることにより、シャ
ロー・トレンチ分離へ適用することが可能となる。
The CMP polishing slurry of the present invention is a polishing slurry containing cerium oxide particles, water, and an anionic surfactant as an additive. Its pH and viscosity (mP
a · s) is defined as (x,
y) In the coordinate system, point A (5.5, 0.9), point B (5.5, 3.0), point C (10.0, 3.0), point D (9.0, 0) .9) are within the range of the area surrounded by the four points, AA point (6.0, 0.9) and BB point (6.
0, 1.4), CC point (8.4, 1.4), and DD point (7.5, 0.9). As a result, the ratio between the polishing rate of the silicon oxide film and the polishing rate of the silicon nitride film is increased, so that the present invention can be applied to shallow trench isolation.

【0010】研磨剤中の酸化セリウム粒子の一次粒子径
(酸化セリウム粒子を構成する結晶子の径、電子顕微鏡
による観察で測定することができる。)は5〜600n
mであり、粒子径の中央値が100〜2000nmであ
ることが好ましく、一次粒子径は30〜500nmであ
り、粒子径の中央値が150〜1500nmであること
がより好ましい。陰イオン性界面活性剤は、有機高分子
の陰イオン性界面活性剤、特に共重合成分としてアクリ
ル酸アンモニウム塩が好ましく使用される。
The primary particle diameter of the cerium oxide particles in the abrasive (the diameter of crystallites constituting the cerium oxide particles, which can be measured by observation with an electron microscope) is 5 to 600 n.
m, and the median particle size is preferably 100 to 2000 nm, the primary particle size is 30 to 500 nm, and the median particle size is more preferably 150 to 1500 nm. As the anionic surfactant, an organic polymer anionic surfactant, particularly, an ammonium acrylate salt is preferably used as a copolymerization component.

【0011】また、本発明により酸化珪素膜研磨速度と
窒化珪素膜研磨速度の比(酸化珪素膜研磨速度/窒化珪
素膜研磨速度)が、5以上である研磨剤が提供される。
酸化珪素膜研磨速度と窒化珪素膜研磨速度の比は10以
上がより好ましい。
According to the present invention, there is provided an abrasive having a ratio of a polishing rate of a silicon oxide film to a polishing rate of a silicon nitride film (polishing rate of a silicon oxide film / polishing rate of a silicon nitride film) of 5 or more.
The ratio between the polishing rate of the silicon oxide film and the polishing rate of the silicon nitride film is more preferably 10 or more.

【0012】本発明の基板の研磨法は、上記の研磨剤で
所定の基板を研磨するものであり、所定の基板が、少な
くとも酸化珪素膜及び窒化珪素膜が形成された半導体チ
ップが使用される。本発明の基板の研磨法においては、
研磨定盤の研磨布上に研磨剤を供給しながら、被研磨膜
を有する基板を研磨布に押圧した状態で研磨定盤と基板
を相対的に動かすことによって被研磨膜を研磨する工程
において、被研磨膜を有する基板の研磨布への押しつけ
圧力が100〜1000gf/cm2 であることが好ま
しく、200〜500gf/cm2 であることがより好
ましい。
In the method of polishing a substrate of the present invention, a predetermined substrate is polished with the above-mentioned polishing agent, and the predetermined substrate uses a semiconductor chip on which at least a silicon oxide film and a silicon nitride film are formed. . In the substrate polishing method of the present invention,
In the step of polishing the film to be polished by relatively moving the polishing platen and the substrate while pressing the substrate having the film to be polished against the polishing cloth while supplying the abrasive onto the polishing cloth of the polishing platen, preferably pushing pressure on the polishing cloth substrate having a film to be polished is 100~1000gf / cm 2, more preferably 200~500gf / cm 2.

【0013】[0013]

【発明の実施の形態】酸化セリウム粒子、水、添加剤と
して陰イオン性界面活性剤を含む研磨剤を用いて研磨を
行うことにより、界面活性剤が基板上の被研磨膜表面を
覆い、研磨粒子の被研磨膜表面への作用が阻害され、研
磨が進行しなくなる。しかし、研磨荷重を大きくするこ
とで機械的応力により、被研磨膜表面を覆った界面活性
剤が排除されるために、研磨が進行するようになる。こ
のような作用に起因した研磨速度の研磨荷重依存性に基
づき、界面活性剤濃度と研磨荷重を調整することによっ
て、被研磨膜のパターン形状に応じて実効研磨荷重の大
きい凸部を選択的に研磨する特性を実現することができ
る。その結果、高効率、高レベルに層間絶縁膜の平坦化
を実現することができる。また、平坦化された後の研磨
速度はパターンのないブランケット膜の研磨速度に等し
くなるため、その研磨速度が充分小さくなるように界面
活性剤添加量及び研磨荷重を調整することによって、時
間によるプロセス管理も容易に行うことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By polishing using cerium oxide particles, water, and an abrasive containing an anionic surfactant as an additive, the surfactant covers the surface of the film to be polished on the substrate and is polished. The effect of the particles on the surface of the film to be polished is hindered, and the polishing does not proceed. However, when the polishing load is increased, the surfactant that covers the surface of the film to be polished is removed due to mechanical stress, so that the polishing proceeds. By adjusting the concentration of the surfactant and the polishing load based on the polishing load dependency of the polishing rate caused by such an action, a convex portion having a large effective polishing load can be selectively selected according to the pattern shape of the film to be polished. Polishing characteristics can be realized. As a result, the interlayer insulating film can be planarized with high efficiency and at a high level. In addition, since the polishing rate after flattening is equal to the polishing rate of a blanket film without a pattern, by adjusting the amount of surfactant added and the polishing load so that the polishing rate becomes sufficiently small, the process by time can be reduced. Management can be performed easily.

【0014】パターン依存性の少ないグローバルな平坦
化を実現するためには、パターン凹部の研磨速度が凸部
の研磨速度に比べて充分小さい研磨特性が得られる範囲
で、界面活性剤の添加量及びpHを調整する必要があ
る。研磨剤の粘度は、1.0〜2.5mPa・sの範囲
であることが好ましく、1.0〜1.4mPa・sの方
がより好ましい。研磨剤の粘度が高くなると、幅1mm
以上の広い凸部の研磨速度が、幅1mm以下の凸部の研
磨速度よりも小さくなる等、被研磨膜のパターン依存性
が大きくなる傾向がある。本発明で、研磨剤の粘度は、
ウベローデ粘度計により測定した動粘度と浮子式比重計
により測定した比重から算出する。
In order to realize global flattening with little pattern dependency, the amount of the surfactant and the amount of the surfactant added are limited as long as the polishing rate of the concave portions of the pattern can be sufficiently reduced as compared with the polishing rate of the convex portions. It is necessary to adjust the pH. The viscosity of the abrasive is preferably in the range of 1.0 to 2.5 mPa · s, more preferably 1.0 to 1.4 mPa · s. When the viscosity of the abrasive increases, the width is 1 mm
The pattern dependency of the film to be polished tends to increase, for example, the polishing rate of the above-mentioned wide convex portion becomes smaller than the polishing rate of the convex portion having a width of 1 mm or less. In the present invention, the viscosity of the abrasive is
It is calculated from the kinematic viscosity measured by an Ubbelohde viscometer and the specific gravity measured by a float type hydrometer.

【0015】pH5.5以上では酸化珪素膜の表面電位
がマイナスに増加する。また、pH5.5以上の領域で
は、ポリアクリル酸アンモニウム塩等の界面活性剤は解
離している。界面活性剤として、陰イオン性界面活性剤
を添加剤とすることにより、被研磨膜の表面電位と界面
活性剤の電気的反発により、研磨速度に適度な荷重依存
性が得られる。研磨剤のpHが低いほど、酸化珪素膜表
面と陰イオン性界面活性剤との電気的反発が弱く、より
少ない界面活性剤添加量において研磨速度の荷重依存性
が見られる。界面活性剤の添加量とともに粘度が増加す
るために、粘度を1.0〜1.4mPa・sの範囲内に
してパターン依存性の少ない平坦化特性を実現するため
には、界面活性剤を添加した後の研磨剤のpHが5.5
〜9の範囲であることが好ましく、6〜8.5の方がよ
り好ましい。pH10以上では、酸化珪素膜表面と界面
活性剤の反発が大きくなり、多量に添加しても研磨速度
の荷重依存性が見られない。その結果、パターン凸部を
選択的に研磨できないために、凸部を選択的に研磨する
平坦化特性を実現できない。また、pH9以上では、凸
部を選択的に研磨することが可能な研磨速度の荷重依存
性を実現するために必要な界面活性剤添加量が多いため
に、結果的に粘度が高くなってしまい、パターン依存性
の少ないグローバル平坦性を実現できない。一方、pH
5.5以下では、酸化セリウム粒子が凝集しやすいため
に安定性がなく、充分な研磨速度も得られなくなる。本
発明で、研磨剤のpHはpHメータ(例えば東亜電波
(株)製 HM−11)により測定する。
When the pH is 5.5 or more, the surface potential of the silicon oxide film increases negatively. In the region of pH 5.5 or more, a surfactant such as ammonium polyacrylate is dissociated. By using an anionic surfactant as an additive as a surfactant, a moderate load dependency can be obtained for the polishing rate due to the surface potential of the film to be polished and the electric repulsion of the surfactant. As the pH of the polishing agent is lower, the electric repulsion between the surface of the silicon oxide film and the anionic surfactant is weaker, and the load of the polishing rate is seen with a smaller amount of the surfactant added. Since the viscosity increases with the addition amount of the surfactant, the surfactant is added in order to make the viscosity in the range of 1.0 to 1.4 mPa · s and realize the flattening characteristics with little pattern dependency. PH of the abrasive after the polishing is 5.5
The range is preferably from 9 to 9, and more preferably from 6 to 8.5. When the pH is 10 or more, the repulsion between the surface of the silicon oxide film and the surfactant becomes large, and even if a large amount is added, load dependency of the polishing rate is not observed. As a result, since the pattern protrusions cannot be selectively polished, the flattening characteristics for selectively polishing the protrusions cannot be realized. If the pH is 9 or more, the amount of the surfactant added to realize the load dependency of the polishing rate at which the convex portions can be selectively polished is large, and as a result, the viscosity becomes high. In addition, global flatness with little pattern dependence cannot be realized. On the other hand, pH
If it is less than 5.5, the cerium oxide particles tend to aggregate, so that there is no stability, and a sufficient polishing rate cannot be obtained. In the present invention, the pH of the abrasive is measured by a pH meter (for example, HM-11 manufactured by Toa Denpa Co., Ltd.).

【0016】本発明の研磨剤では、酸化珪素膜と窒化珪
素膜の研磨速度比も大きいために、シャロー・トレンチ
分離の研磨に適用することもできる。その原因として、
以下のような作用がある。pH5.5〜8.5の範囲で
は、窒化珪素膜の表面電位がプラス〜ゼロであり、酸化
珪素膜との表面電位との違いが大きい。陰イオン性界面
活性剤との電気的反発の差によって、窒化珪素膜表面の
方が界面活性剤に覆われ易くなり、少ない界面活性剤添
加量で研磨速度が低下する。その結果、酸化珪素膜と窒
化珪素膜の研磨速度比が大きくなり、シャロー・トレン
チ分離への適用が可能になる。pHが8.5以上では、
窒化珪素膜の表面電位がマイナス側になり、酸化珪素膜
との表面電位差が小さくなるために、研磨速度比が低減
してしまう。特にpHが10以上では、研磨速度比が界
面活性剤を添加しない酸化セリウムスラリーよりも小さ
くなってしまい、界面活性剤を添加する効果がなくな
る。また、一般的にシリカ系スラリーに比べ、低い粒子
濃度で使用される酸化セリウム粒子を含むスラリーで
は、シャロー・トレンチ分離等の微細パターンの凸部が
削れにくいという問題があるが、界面活性剤が被研磨膜
表面を覆うことによって、酸化セリウム粒子が微細な凸
部に効果的に作用するようになることによって解決され
る。
Since the polishing rate of the silicon oxide film and the silicon nitride film is large in the polishing agent of the present invention, it can be applied to polishing of shallow trench isolation. As the cause,
The following functions are provided. In the range of pH 5.5 to 8.5, the surface potential of the silicon nitride film is plus to zero, and the difference from the surface potential of the silicon nitride film is large. Due to the difference in electrical repulsion from the anionic surfactant, the surface of the silicon nitride film is more likely to be covered with the surfactant, and the polishing rate is reduced with a small amount of the added surfactant. As a result, the polishing rate ratio between the silicon oxide film and the silicon nitride film increases, and application to shallow trench isolation becomes possible. If the pH is 8.5 or higher,
Since the surface potential of the silicon nitride film becomes negative and the surface potential difference from the silicon oxide film becomes small, the polishing rate ratio decreases. In particular, when the pH is 10 or more, the polishing rate ratio becomes smaller than that of the cerium oxide slurry to which no surfactant is added, and the effect of adding the surfactant is lost. Slurries containing cerium oxide particles, which are generally used at a lower particle concentration than silica-based slurries, have a problem in that projections of fine patterns such as shallow trench separation are less likely to be removed. The problem is solved by covering the surface of the film to be polished so that the cerium oxide particles effectively act on the fine projections.

【0017】研磨定盤の研磨布上に研磨剤を供給しなが
ら、被研磨膜を有する基板を研磨布に押圧した状態で研
磨定盤と基板を相対的に動かすことによって被研磨膜を
研磨する研磨方法において、被研磨膜を有する基板の研
磨布への押しつけ圧力は、主に界面活性剤添加量及びp
Hによって決定される研磨速度の荷重依存特性に応じ
て、パターン凹部に対し凸部が選択的に研磨される範囲
に設定される必要がある。研磨布への押しつけ圧力は、
100〜1000gf/cm2 であることが好ましく、
200〜500gf/cm2 であることがより好まし
い。研磨速度のウエハ面内均一性及びパターンの平坦性
を満足するためには、200〜500gf/cm2 であ
ることがより好ましい。研磨布への押しつけ圧力は、1
000gf/cm2 より大きいと研磨キズが発生しやす
くなり、100gf/cm2 未満では充分な研磨速度が
得られない。
The film to be polished is polished by moving the polishing platen and the substrate relatively while the substrate having the film to be polished is pressed against the polishing cloth while supplying an abrasive onto the polishing cloth on the polishing platen. In the polishing method, the pressing pressure of the substrate having the film to be polished against the polishing cloth is mainly determined by the amount of the surfactant added and p.
In accordance with the load-dependent characteristic of the polishing rate determined by H, it is necessary to set the range in which the convex portions are selectively polished with respect to the pattern concave portions. The pressing pressure on the polishing cloth is
It is preferably from 100 to 1000 gf / cm 2 ,
More preferably, it is 200 to 500 gf / cm 2 . In order to satisfy the in-plane uniformity of the polishing rate and the flatness of the pattern, the polishing rate is more preferably 200 to 500 gf / cm 2 . The pressing pressure on the polishing cloth is 1
If it is more than 000 gf / cm 2 , polishing flaws tend to occur, and if it is less than 100 gf / cm 2 , a sufficient polishing rate cannot be obtained.

【0018】一般に酸化セリウムは、炭酸塩、硫酸塩、
蓚酸塩等のセリウム化合物を焼成することによって得ら
れる。TEOS−CVD法等で形成される酸化珪素絶縁
膜は酸化セリウムの1次粒子径が大きく、かつ結晶歪が
少ないほど、すなわち結晶性がよいほど高速研磨が可能
であるが、研磨傷が入りやすい傾向がある。そこで、本
発明で用いる酸化セリウム粒子は、その製造方法を限定
するものではないが、酸化セリウム一次粒子径中央値は
5〜600nmであることが好ましく、30〜500n
mであることがより好ましい。また、半導体チップ研磨
に使用することから、アルカリ金属およびハロゲン類の
含有率は1ppm以下に抑えることが好ましい。本発明
で、一次粒子径は走査型電子顕微鏡(例えば(株)日立
製作所製 S−900型)による観察で測定する。本発
明の研磨剤は高純度のもので、Na、K、Si、Mg、
Ca、Zr、Ti、Ni、Cr、Feはそれぞれ1pp
m以下、Alは10ppm以下である。本発明におい
て、酸化セリウム粒子を作製する方法として、その製造
方法を限定するものではないが焼成法が使用できる。た
だし、研磨傷が入らない粒子を作製するためにできるだ
け結晶性を上げない低温焼成が好ましい。焼成された酸
化セリウムは、乾式粉砕、湿式粉砕等で粉砕され、所定
の粒度分布を得ることができる。
Generally, cerium oxide is carbonate, sulfate,
It is obtained by calcining a cerium compound such as oxalate. The silicon oxide insulating film formed by a TEOS-CVD method or the like can perform high-speed polishing as the primary particle diameter of cerium oxide is larger and the crystal distortion is smaller, that is, the crystallinity is better, but polishing scratches are easily formed. Tend. Therefore, the cerium oxide particles used in the present invention are not limited to the production method, but the median cerium oxide primary particle diameter is preferably 5 to 600 nm, and 30 to 500 n
m is more preferable. Further, since it is used for polishing a semiconductor chip, the content of alkali metals and halogens is preferably suppressed to 1 ppm or less. In the present invention, the primary particle size is measured by observation with a scanning electron microscope (for example, Model S-900 manufactured by Hitachi, Ltd.). The abrasive of the present invention is of high purity, and contains Na, K, Si, Mg,
Ca, Zr, Ti, Ni, Cr and Fe are each 1 pp
m or less, and Al is 10 ppm or less. In the present invention, the method for producing cerium oxide particles is not limited to the production method, but a firing method can be used. However, low-temperature sintering that does not increase the crystallinity as much as possible is preferable in order to produce particles that do not cause polishing scratches. The calcined cerium oxide is pulverized by dry pulverization, wet pulverization, or the like, so that a predetermined particle size distribution can be obtained.

【0019】本発明における酸化セリウムスラリーは、
上記の方法により製造された酸化セリウム粒子を含有す
る水溶液又はこの水溶液から回収した酸化セリウム粒
子、水及び必要に応じて分散剤からなる組成物を分散さ
せることによって得られる。ここで、酸化セリウム粒子
の濃度には制限は無いが、懸濁液の取り扱い易さから
0.5〜10重量%の範囲が好ましい。また分散剤とし
ては、金属イオン類を含まないものとして、アクリル酸
重合体及びそのアンモニウム塩、メタクリル酸重合体及
びそのアンモニウム塩、ポリビニルアルコール等の水溶
性有機高分子類、ラウリル硫酸アンモニウム、ポリオキ
シエチレンラウリルエーテル硫酸アンモニウム等の水溶
性陰イオン性界面活性剤、ポリオキシエチレンラウリル
エーテル、ポリエチレングリコールモノステアレート等
の水溶性非イオン性界面活性剤、モノエタノールアミ
ン、ジエタノールアミン等の水溶性アミン類などが挙げ
られる。ポリアクリル酸アンモニウム塩、特に重量平均
分子量2000〜20000のポリアクリル酸アンモニ
ウム塩が好ましい。これらの分散剤の添加量は、スラリ
ー中の粒子の分散性及び沈降防止性などから酸化セリウ
ム粒子100重量部に対して0.01重量部から5重量
部の範囲が好ましく、その分散効果を高めるためには分
散処理時に分散機の中に粒子と同時に入れることが好ま
しい。
The cerium oxide slurry of the present invention comprises:
It is obtained by dispersing an aqueous solution containing cerium oxide particles produced by the above method or a composition comprising cerium oxide particles recovered from this aqueous solution, water and, if necessary, a dispersant. Here, the concentration of the cerium oxide particles is not limited, but is preferably in the range of 0.5 to 10% by weight from the viewpoint of easy handling of the suspension. As the dispersant, those containing no metal ions include acrylic acid polymers and their ammonium salts, methacrylic acid polymers and their ammonium salts, water-soluble organic polymers such as polyvinyl alcohol, ammonium lauryl sulfate, and polyoxyethylene. Examples include water-soluble anionic surfactants such as ammonium lauryl ether sulfate, water-soluble nonionic surfactants such as polyoxyethylene lauryl ether and polyethylene glycol monostearate, and water-soluble amines such as monoethanolamine and diethanolamine. Can be Ammonium polyacrylate, particularly ammonium polyacrylate having a weight average molecular weight of 2,000 to 20,000, is preferred. The addition amount of these dispersants is preferably in the range of 0.01 part by weight to 5 parts by weight based on 100 parts by weight of the cerium oxide particles in view of the dispersibility and anti-settling properties of the particles in the slurry, and enhances the dispersing effect. For this purpose, it is preferable that the particles are simultaneously placed in the disperser during the dispersion treatment.

【0020】これらの酸化セリウム粒子を水中に分散さ
せる方法としては、通常の攪拌機による分散処理の他
に、ホモジナイザー、超音波分散機、ボールミルなどを
用いることができる。特に酸化セリウム粒子を1μm以
下の微粒子として分散させるためには、ボールミル、振
動ボールミル、遊星ボールミル、媒体攪拌式ミルなどの
湿式分散機を用いることが好ましい。また、スラリーの
アルカリ性を高めたい場合には、分散処理時又は処理後
にアンモニア水などの金属イオンを含まないアルカリ性
物質を添加することができる。
As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a ball mill, or the like can be used in addition to the usual dispersion treatment using a stirrer. In particular, in order to disperse cerium oxide particles as fine particles of 1 μm or less, it is preferable to use a wet disperser such as a ball mill, a vibrating ball mill, a planetary ball mill, and a medium stirring mill. When it is desired to increase the alkalinity of the slurry, an alkaline substance not containing metal ions, such as aqueous ammonia, can be added during or after the dispersion treatment.

【0021】本発明の酸化セリウム研磨剤は、上記スラ
リ−をそのまま使用してもよいが、N,N−ジエチルエ
タノ−ルアミン、N,N−ジメチルエタノ−ルアミン、
アミノエチルエタノ−ルアミン等の添加剤を添加して研
磨剤とすることができる。
In the cerium oxide abrasive of the present invention, the above slurry may be used as it is, but N, N-diethylethanolamine, N, N-dimethylethanolamine,
Additives such as aminoethylethanolamine can be added to make an abrasive.

【0022】界面活性剤は、共重合成分としてアンモニ
ウム塩を含む高分子分散剤等の水溶性陰イオン性界面活
性剤から選ばれた少なくとも1種類以上の界面活性剤を
使用する。水溶性陰イオン性界面活性剤としては、金属
イオンを含まないものとして、メタクリル酸重合体及び
そのアンモニウム塩、ポリビニルアルコール等の水溶性
の有機高分子類、ラウリル硫酸アンモニウム、ポリオキ
シエチレンラウリルエーテル硫酸アンモニウム等を使用
することができる。また、その他に水溶性非イオン性界
面活性剤、水溶性陰イオン性界面活性剤、水溶性陽イオ
ン性界面活性剤等を併用してもよい。これらの界面活性
剤添加量は、酸化セリウムスラリー100重量部に対し
て、0.1重量部〜10重量部の範囲が好ましい。ま
た、界面活性剤の分子量は、100〜50000が好ま
しく、2000〜20000がより好ましい。界面活性
剤の添加方法としては、研磨直前に酸化セリウムスラリ
ーに混合するのが好ましい。研磨装置のスラリー供給配
管内で充分混合するような構造を施した場合には、酸化
セリウムスラリー及び界面活性剤水溶液の供給速度を個
別に調整し、配管内で所定濃度になるように混合するこ
とも可能である。界面活性剤添加後に長時間保存した場
合、酸化セリウムスラリーの粒度分布が変化する場合が
あるが、研磨速度及び研磨傷等の研磨特性には顕著な影
響が見られないため、界面活性剤の添加方法には制限は
ない。
As the surfactant, at least one surfactant selected from water-soluble anionic surfactants such as a polymer dispersant containing an ammonium salt as a copolymer component is used. Examples of the water-soluble anionic surfactant include those free of metal ions, such as methacrylic acid polymers and their ammonium salts, water-soluble organic polymers such as polyvinyl alcohol, ammonium lauryl sulfate, and polyoxyethylene lauryl ether ammonium sulfate. Can be used. In addition, a water-soluble nonionic surfactant, a water-soluble anionic surfactant, a water-soluble cationic surfactant, or the like may be used in combination. The addition amount of these surfactants is preferably in the range of 0.1 part by weight to 10 parts by weight based on 100 parts by weight of the cerium oxide slurry. The molecular weight of the surfactant is preferably from 100 to 50,000, more preferably from 2,000 to 20,000. As a method for adding the surfactant, it is preferable to mix the surfactant with the cerium oxide slurry immediately before polishing. When a structure that mixes well in the slurry supply pipe of the polishing apparatus is provided, adjust the supply rates of the cerium oxide slurry and the surfactant aqueous solution individually and mix them to a predetermined concentration in the pipe. Is also possible. If the cerium oxide slurry is stored for a long time after the addition of the surfactant, the particle size distribution of the cerium oxide slurry may change, but the polishing rate and polishing characteristics such as scratches are not significantly affected. There are no restrictions on the method.

【0023】こうして作製された研磨剤中の粒子の平均
粒径は、100〜2000nmであることが好ましい
く、150〜1500nmであることがより好ましい。
酸化セリウム粒子の平均粒径が100nm未満であると
研磨速度が低くなりすぎ、2000nmを越えると被研
磨膜に傷が発生しやすくなるからである。本発明で、研
磨剤中粒子の粒径の測定は、レーザ回折式粒度分布計
(例えば(株)MALVERN製 MASTER SI
ZER)で測定する。
The average particle size of the particles in the abrasive thus prepared is preferably 100 to 2000 nm, more preferably 150 to 1500 nm.
If the average particle size of the cerium oxide particles is less than 100 nm, the polishing rate becomes too low, and if it exceeds 2000 nm, the film to be polished is apt to be damaged. In the present invention, the particle size of the particles in the abrasive is measured by a laser diffraction type particle size distribution meter (for example, MASTER SI manufactured by MALVERN Co., Ltd.).
(ZER).

【0024】本発明の酸化セリウム研磨剤が使用される
無機絶縁膜の作製方法として、定圧CVD法、プラズマ
CVD法等が挙げられる。定圧CVD法による酸化珪素
絶縁膜形成は、Si源としてモノシラン:SiH4 、酸
素源として酸素:O2 を用いる。このSiH4 −O2
酸化反応を400℃程度以下の低温で行わせることによ
り得られる。高温リフローによる表面平坦化を図るため
にリン:Pをドープするときには、SiH4 −O2 −P
3 系反応ガスを用いることが好ましい。プラズマCV
D法は、通常の熱平衡下では高温を必要とする化学反応
が低温でできる利点を有する。プラズマ発生法には、容
量結合型と誘導結合型の2つが挙げられる。反応ガスと
しては、Si源としてSiH4 、酸素源としてN2 Oを
用いたSiH4 −N2 O系ガスとテトラエトキシシラン
(TEOS)をSi源に用いたTEOS−O2 系ガス
(TEOS−プラズマCVD法)が挙げられる。基板温
度は250℃〜400℃、反応圧力は67〜400Pa
の範囲が好ましい。このように、本発明の酸化珪素絶縁
膜にはリン、ホウ素等の元素がド−プされていても良
い。同様に、低圧CVD法による窒化珪素膜形成は、S
i源としてジクロルシラン:SiH2 Cl2 、窒素源と
してアンモニア:NH3 を用いる。このSiH2Cl2
−NH3 系酸化反応を900℃の高温で行わせることに
より得られる。プラズマCVD法は、Si源としてSi
4 、窒素源としてNH3 を用いたSiH4 −NH3
ガスが挙げられる。基板温度は300〜400℃が好ま
しい。
As a method of forming an inorganic insulating film using the cerium oxide abrasive of the present invention, there are a constant pressure CVD method, a plasma CVD method and the like. In forming a silicon oxide insulating film by a constant-pressure CVD method, monosilane: SiH 4 is used as a Si source, and oxygen: O 2 is used as an oxygen source. This is obtained by performing the SiH 4 —O 2 -based oxidation reaction at a low temperature of about 400 ° C. or less. When doping phosphorus: P for planarizing the surface by high temperature reflow, SiH 4 —O 2 —P
It is preferable to use an H 3 -based reaction gas. Plasma CV
The method D has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under ordinary thermal equilibrium. The plasma generation method includes two types, a capacitive coupling type and an inductive coupling type. As a reaction gas, a SiH 4 -N 2 O-based gas using SiH 4 as a Si source and N 2 O as an oxygen source and a TEOS-O 2 -based gas (TEOS-) using tetraethoxysilane (TEOS) as a Si source are used. Plasma CVD). Substrate temperature is 250-400 ° C, reaction pressure is 67-400Pa
Is preferable. Thus, the silicon oxide insulating film of the present invention may be doped with elements such as phosphorus and boron. Similarly, silicon nitride film formation by low pressure CVD
Dichlorosilane: SiH 2 Cl 2 is used as an i source, and ammonia: NH 3 is used as a nitrogen source. This SiH 2 Cl 2
It can be obtained by performing an -NH 3 -based oxidation reaction at a high temperature of 900 ° C. The plasma CVD method uses Si as a Si source.
H 4, include SiH 4 -NH 3 based gas using the NH 3 as a nitrogen source. The substrate temperature is preferably from 300 to 400C.

【0025】所定の基板として、半導体基板すなわち回
路素子と配線パターンが形成された段階の半導体基板、
回路素子が形成された段階の半導体基板等の半導体基板
上に酸化珪素膜或いは酸化珪素膜及び窒化珪素膜が形成
された基板が使用できる。このような半導体基板上に形
成された酸化珪素膜層を上記酸化セリウム研磨剤で研磨
することによって、酸化珪素膜層表面の凹凸を解消し、
半導体基板全面に渡って平滑な面とする。シャロー・ト
レンチ分離の場合には、酸化珪素膜層の凹凸を解消しな
がら下層の窒化珪素層まで研磨することによって、素子
分離部に埋め込んだ酸化珪素膜のみを残す。この際、ス
トッパーとなる窒化珪素との研磨速度比が大きければ、
研磨のプロセスマージンが大きくなる。また、シャロー
・トレンチ分離に使用するためには、研磨時に傷発生が
少ないことも必要である。ここで、研磨する装置として
は、半導体基板を保持するホルダーと研磨布(パッド)
を貼り付けた(回転数が変更可能なモータ等を取り付け
てある)定盤を有する一般的な研磨装置が使用できる。
研磨布としては、一般的な不織布、発泡ポリウレタン、
多孔質フッ素樹脂などが使用でき、特に制限がない。ま
た、研磨布には研磨剤が溜まる様な溝加工を施すことが
好ましい。研磨条件には制限はないが、定盤の回転速度
は半導体が飛び出さない様に100rpm以下の低回転
が好ましい。被研磨膜を有する半導体基板の研磨布への
押しつけ圧力が100〜1000gf/cm2 であるこ
とが好ましく、研磨速度のウエハ面内均一性及びパター
ンの平坦性を満足するためには、200〜500gf/
cm2 であることがより好ましい。研磨している間、研
磨布には研磨剤をポンプ等で連続的に供給する。この供
給量には制限はないが、研磨布の表面が常に研磨剤で覆
われていることが好ましい。
As the predetermined substrate, a semiconductor substrate, that is, a semiconductor substrate in which circuit elements and wiring patterns are formed,
A substrate in which a silicon oxide film or a silicon oxide film and a silicon nitride film are formed over a semiconductor substrate such as a semiconductor substrate at a stage where circuit elements are formed can be used. By polishing the silicon oxide film layer formed on such a semiconductor substrate with the above cerium oxide abrasive, unevenness on the surface of the silicon oxide film layer is eliminated,
The surface is smooth over the entire surface of the semiconductor substrate. In the case of the shallow trench isolation, the silicon oxide film layer is polished down to the lower silicon nitride layer while eliminating the unevenness of the silicon oxide film layer, thereby leaving only the silicon oxide film embedded in the element isolation portion. At this time, if the polishing rate ratio with the silicon nitride serving as the stopper is large,
The polishing process margin increases. In addition, in order to use it for shallow trench isolation, it is necessary that scratch generation during polishing is small. Here, as a polishing apparatus, a holder for holding a semiconductor substrate and a polishing cloth (pad) are used.
A general polishing apparatus having a surface plate on which is attached (a motor or the like whose rotation speed can be changed) is attached can be used.
As a polishing cloth, general nonwoven fabric, foamed polyurethane,
A porous fluororesin or the like can be used, and there is no particular limitation. Further, it is preferable that the polishing cloth is subjected to a groove processing such that an abrasive is accumulated. The polishing conditions are not limited, but the rotation speed of the platen is preferably low rotation of 100 rpm or less so that the semiconductor does not jump out. The pressing pressure of the semiconductor substrate having the film to be polished against the polishing cloth is preferably 100 to 1000 gf / cm 2 , and in order to satisfy the uniformity of the polishing rate within the wafer surface and the flatness of the pattern, 200 to 500 gf / cm 2. /
cm 2 is more preferable. During polishing, an abrasive is continuously supplied to the polishing cloth by a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing cloth is always covered with the abrasive.

【0026】研磨終了後の半導体基板は、流水中で良く
洗浄後、スピンドライヤ等を用いて半導体基板上に付着
した水滴を払い落としてから乾燥させることが好まし
い。このようにして、Si基板上にシャロー・トレンチ
分離を形成したあと、酸化珪素絶縁膜層及びその上にア
ルミニウム配線を形成し、その上に形成した酸化珪素膜
を平坦化する。平坦化された酸化珪素膜層の上に、第2
層目のアルミニウム配線を形成し、その配線間および配
線上に再度上記方法により酸化珪素膜を形成後、上記酸
化セリウム研磨剤を用いて研磨することによって、絶縁
膜表面の凹凸を解消し、半導体基板全面に渡って平滑な
面とする。この工程を所定数繰り返すことにより、所望
の層数の半導体を製造する。
After the polishing is completed, the semiconductor substrate is preferably washed well in running water, and then dried using a spin drier or the like to remove water droplets adhering to the semiconductor substrate. After forming the shallow trench isolation on the Si substrate in this manner, a silicon oxide insulating film layer and an aluminum wiring thereon are formed, and the silicon oxide film formed thereon is planarized. A second layer is formed on the planarized silicon oxide film layer.
A silicon oxide film is formed by the above method again between the wirings and on the wirings, and then polished using the cerium oxide abrasive to eliminate irregularities on the surface of the insulating film, thereby forming a semiconductor layer. The surface is smooth over the entire surface of the substrate. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured.

【0027】本発明の酸化セリウム研磨剤は、半導体基
板に形成された酸化珪素膜や窒化珪素膜だけでなく、所
定の配線を有する配線板に形成された酸化珪素膜、ガラ
ス、窒化珪素等の無機絶縁膜、フォトマスク・レンズ・
プリズムなどの光学ガラス、ITO等の無機導電膜、ガ
ラス及び結晶質材料で構成される光集積回路・光スイッ
チング素子・光導波路、光ファイバ−の端面、シンチレ
−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ
用LEDサファイア基板、SiC、GaP、GaAS等
の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッ
ド等を研磨するために使用される。
The cerium oxide abrasive of the present invention can be used not only for a silicon oxide film or a silicon nitride film formed on a semiconductor substrate but also for a silicon oxide film formed on a wiring board having predetermined wiring, glass, silicon nitride, or the like. Inorganic insulating film, photomask, lens,
Optical glasses such as prisms, inorganic conductive films such as ITO, optical integrated circuits, optical switching elements, optical waveguides composed of glass and crystalline materials, optical fiber end faces, optical single crystals such as scintillators, and solids It is used for polishing a laser single crystal, a blue laser LED sapphire substrate, a semiconductor single crystal such as SiC, GaP, GaAs, a magnetic disk glass substrate, a magnetic head, and the like.

【0028】[0028]

【実施例】実施例1 (酸化セリウム粒子の作製)炭酸セリウム水和物2kg
を白金製容器に入れ、800℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100μmで
あった。焼成粉末粒子表面を走査型電子顕微鏡で観察し
たところ、酸化セリウムの粒界が観察された。粒界に囲
まれた酸化セリウム一次粒子径(結晶子)を測定したと
ころ、体積分布の中央値が190nm、最大値が500
nmであった。酸化セリウム粉末1kgを粉砕した。粉
砕粒子について走査型電子顕微鏡で観察したところ、一
次粒子径と同等サイズの小さな粒子の他に、1〜3μm
の大きな粉砕残り粒子と0.5〜1μmの粉砕残り粒子
が混在していた。
EXAMPLES Example 1 (Preparation of cerium oxide particles) 2 kg of cerium carbonate hydrate
Was placed in a platinum container, and calcined at 800 ° C. for 2 hours in the air to obtain about 1 kg of a yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The particle diameter of the calcined powder was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter (crystallite) of cerium oxide surrounded by the grain boundaries was measured, the median of the volume distribution was 190 nm, and the maximum was 500 nm.
nm. 1 kg of cerium oxide powder was pulverized. When the crushed particles were observed with a scanning electron microscope, in addition to the small particles having the same size as the primary particle diameter, 1 to 3 μm
And the remaining uncrushed particles of 0.5 to 1 μm were mixed.

【0029】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、撹拌しながら超音波分散を10分間施し
た。得られたスラリーをろ過し、さらに脱イオン水を加
えることにより5wt.%スラリーを得た。スラリーp
Hは8.3であった。上記の酸化セリウムスラリー(固
形分:5重量%)600gと界面活性剤としてpH6.
5で分子量5000のポリアクリル酸(100%)アン
モニウム塩水溶液(40重量%)135gと脱イオン水
2265gを混合して、界面活性剤を添加した酸化セリ
ウム研磨剤(固形分:1重量%)を作製した。その研磨
剤pHは7.0であり、ウベローデ粘度計及び比重計の
測定値から算出した粘度は1.19mPa・sであっ
た。また、研磨剤中の粒子をレーザ回折式粒度分布計で
測定するために、適当な濃度に希釈して測定した結果、
粒子径の中央値が260nmであった。
(Preparation of cerium oxide slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and deionized water 8977
g was mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The resulting slurry was filtered, and 5 wt. % Slurry was obtained. Slurry p
H was 8.3. 600 g of the above cerium oxide slurry (solid content: 5% by weight) and pH 6.0 as a surfactant.
5, 135 g of an aqueous solution of polyacrylic acid (100%) ammonium salt having a molecular weight of 5,000 (40% by weight) and 2265 g of deionized water were mixed, and a cerium oxide abrasive (solid content: 1% by weight) to which a surfactant was added was added. Produced. The pH of the abrasive was 7.0, and the viscosity calculated from the values measured by an Ubbelohde viscometer and a specific gravity meter was 1.19 mPa · s. In addition, in order to measure the particles in the abrasive with a laser diffraction type particle size distribution meter, as a result of measuring diluted to an appropriate concentration,
The median value of the particle diameter was 260 nm.

【0030】(絶縁膜層の研磨)基板取り付け用の吸着
パッドを貼り付けたホルダーにTEOS−プラズマCV
D法で作製した酸化珪素絶縁膜を形成させた直径200
mmSiウエハをセットし、多孔質ウレタン樹脂製の研
磨パッドを貼り付けた定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工荷重が300g/cm2 になる
ように設定した。定盤上に上記の酸化セリウム研磨剤
(固形分:1重量%)を200cc/minの速度で滴
下しながら、定盤及びウエハを50rpmで2分間回転
させ、絶縁膜を研磨した。研磨後のウエハを純水で良く
洗浄後、乾燥した。同様に、低圧CVD法で作製した窒
化珪素膜を同じ条件で研磨した。光干渉式膜厚測定装置
を用いて、研磨前後の膜厚変化を測定した結果、この研
磨により酸化珪素膜は300nm(研磨速度:150n
m/min)、窒化珪素膜は6nm(研磨速度:3nm
/min)が削られ、研磨速度比は50であった。
(Polishing of Insulating Film Layer) A TEOS-plasma CV was placed on a holder to which a suction pad for attaching a substrate was attached.
Diameter 200 with silicon oxide insulating film formed by method D
An mmSi wafer was set, a holder was placed on a surface plate on which a polishing pad made of a porous urethane resin was stuck, with the insulating film face down, and the processing load was set to be 300 g / cm 2 . While the cerium oxide abrasive (solid content: 1% by weight) was dropped on the surface plate at a rate of 200 cc / min, the surface plate and the wafer were rotated at 50 rpm for 2 minutes to polish the insulating film. The polished wafer was thoroughly washed with pure water and then dried. Similarly, a silicon nitride film formed by a low-pressure CVD method was polished under the same conditions. As a result of measuring a change in film thickness before and after polishing using an optical interference type film thickness measuring device, the silicon oxide film was found to be 300 nm (polishing rate: 150 n) by this polishing.
m / min) and a silicon nitride film of 6 nm (polishing rate: 3 nm)
/ Min) and the polishing rate ratio was 50.

【0031】実施例2 (酸化セリウム粒子の作製)炭酸セリウム水和物2kg
を白金製容器に入れ、700℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100μmで
あった。焼成粉末粒子表面を走査型電子顕微鏡で観察し
たところ、酸化セリウムの粒界が観察された。粒界に囲
まれた酸化セリウム一次粒子径を測定したところ、体積
分布の中央値が30nm、最大値が80nmであった。
酸化セリウム粉末1kgを粉砕した。粉砕粒子について
走査型電子顕微鏡で観察したところ、一次粒子径と同等
サイズの小さな粒子の他に、2〜4ミクロンの大きな粉
砕残り粒子と0.5〜1.2μmの粉砕残り粒子が混在
していた。
Example 2 (Preparation of cerium oxide particles) Cerium carbonate hydrate 2 kg
Was placed in a platinum container, and calcined at 700 ° C. for 2 hours in the air to obtain about 1 kg of a yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The particle diameter of the calcined powder was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the central value of the volume distribution was 30 nm and the maximum value was 80 nm.
1 kg of cerium oxide powder was pulverized. Observation of the pulverized particles with a scanning electron microscope revealed that, in addition to small particles having the same size as the primary particle diameter, large pulverized residual particles of 2 to 4 microns and pulverized residual particles of 0.5 to 1.2 μm were mixed. Was.

【0032】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、撹拌しながら超音波分散を10分間施し
た。得られたスラリーをろ過し、さらに脱イオン水を加
えることにより5wt.%研磨剤を得た。スラリーpH
は8.3であった。上記の酸化セリウムスラリー(固形
分:5重量%)600gと界面活性剤としてpH6.5
で分子量5000のポリアクリル酸(100%)アンモ
ニウム塩水溶液(40重量%)210gと脱イオン水2
190gを混合して、界面活性剤を添加した酸化セリウ
ム研磨剤(固形分:1重量%)を作製した。その研磨剤
pHは6.8であり、ウベローデ粘度計及び比重計の測
定値から算出した粘度は1.50mPa・sであった。
また、研磨剤中の粒子をレーザ回折式粒度分布計で測定
するために、適当な濃度に希釈して測定した結果、粒子
径の中央値が350nmであった。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and deionized water 8977
g was mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The resulting slurry was filtered, and 5 wt. % Abrasive was obtained. Slurry pH
Was 8.3. 600 g of the above cerium oxide slurry (solid content: 5% by weight) and pH 6.5 as a surfactant.
G of polyacrylic acid (100%) ammonium salt aqueous solution (40% by weight) having a molecular weight of 5000 and deionized water 2
190 g was mixed to prepare a cerium oxide abrasive (solid content: 1% by weight) to which a surfactant was added. The pH of the polishing slurry was 6.8, and the viscosity calculated from the values measured by an Ubbelohde viscometer and a specific gravity meter was 1.50 mPa · s.
Further, in order to measure the particles in the abrasive with a laser diffraction particle size distribution analyzer, the particles were diluted to an appropriate concentration and measured. As a result, the median value of the particle diameter was 350 nm.

【0033】(絶縁膜層の研磨)基板取り付け用の吸着
パッドを貼り付けたホルダーにTEOS−プラズマCV
D法で作製した酸化珪素絶縁膜を形成させた直径200
mmSiウエハをセットし、多孔質ウレタン樹脂製の研
磨パッドを貼り付けた定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工荷重が300g/cm2 になる
ように設定した。定盤上に上記の酸化セリウム研磨剤
(固形分:1重量%)を200cc/minの速度で滴
下しながら、定盤及びウエハを50rpmで2分間回転
させ、絶縁膜を研磨した。研磨後のウエハを純水で良く
洗浄後、乾燥した。同様に、低圧CVD法で作製した窒
化珪素膜を同じ条件で研磨した。光干渉式膜厚測定装置
を用いて、研磨前後の膜厚変化を測定した結果、この研
磨により酸化珪素膜は390nm(研磨速度:195n
m/min)、窒化珪素膜は6nm(研磨速度:3nm
/min)が削られ、研磨速度比は65であった。
(Polishing of insulating film layer) A TEOS-plasma CV was placed on a holder to which a suction pad for attaching a substrate was attached.
Diameter 200 with silicon oxide insulating film formed by method D
An mmSi wafer was set, a holder was placed on a surface plate on which a polishing pad made of a porous urethane resin was stuck, with the insulating film face down, and the processing load was set to be 300 g / cm 2 . While the cerium oxide abrasive (solid content: 1% by weight) was dropped on the surface plate at a rate of 200 cc / min, the surface plate and the wafer were rotated at 50 rpm for 2 minutes to polish the insulating film. The polished wafer was thoroughly washed with pure water and then dried. Similarly, a silicon nitride film formed by a low-pressure CVD method was polished under the same conditions. As a result of measuring the change in film thickness before and after polishing using an optical interference type film thickness measuring device, the silicon oxide film was 390 nm thick by this polishing (polishing speed: 195 n
m / min) and a silicon nitride film of 6 nm (polishing rate: 3 nm)
/ Min) and the polishing rate ratio was 65.

【0034】実施例3 (酸化セリウム粒子の作製)炭酸セリウム水和物2kg
を白金製容器に入れ、800℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100μmで
あった。焼成粉末粒子表面を走査型電子顕微鏡で観察し
たところ、酸化セリウムの粒界が観察された。粒界に囲
まれた酸化セリウム一次粒子径を測定したところ、体積
分布の中央値が190nm、最大値が500nmであっ
た。酸化セリウム粉末1kgを粉砕した。粉砕粒子につ
いて走査型電子顕微鏡で観察したところ、一次粒子径と
同等サイズの小さな粒子の他に、1〜3μmの大きな粉
砕残り粒子と0.5〜1μmの粉砕残り粒子が混在して
いた。
Example 3 (Preparation of cerium oxide particles) 2 kg of cerium carbonate hydrate
Was placed in a platinum container, and calcined at 800 ° C. for 2 hours in the air to obtain about 1 kg of a yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The particle diameter of the calcined powder was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median of the volume distribution was 190 nm and the maximum was 500 nm. 1 kg of cerium oxide powder was pulverized. Observation of the pulverized particles with a scanning electron microscope revealed that in addition to the small particles having the same size as the primary particle diameter, large pulverized residual particles of 1 to 3 μm and pulverized residual particles of 0.5 to 1 μm were mixed.

【0035】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、撹拌しながら超音波分散を10分間施し
た。得られたスラリーをろ過し、さらに脱イオン水を加
えることにより5wt.%スラリーを得た。スラリーp
Hは8.3であった。上記の酸化セリウムスラリー(固
形分:5重量%)600gと界面活性剤としてpH8.
5で分子量18000のポリアクリル酸メチル(50
%)を共重合体として含むポリアクリル酸アンモニウム
(50%)塩水溶液(40重量%)225gと脱イオン
水2175gを混合して、界面活性剤を添加した酸化セ
リウム研磨剤(固形分:1重量%)を作製した。その研
磨剤pHは8.1であり、ウベローデ粘度計及び比重計
の測定値から算出した粘度は2.10mPa・sであっ
た。また、研磨剤中の粒子をレーザ回折式粒度分布計で
測定するために、適当な濃度に希釈して測定した結果、
粒子径の中央値が260nmであった。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and deionized water 8977
g was mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The resulting slurry was filtered, and 5 wt. % Slurry was obtained. Slurry p
H was 8.3. 600 g of the above cerium oxide slurry (solid content: 5% by weight) and pH 8.0 as a surfactant.
5 and a molecular weight of 18,000 polymethyl acrylate (50
%) As a copolymer, 225 g of an aqueous solution of ammonium polyacrylate (50%) salt (40% by weight) and 2175 g of deionized water were mixed, and a surfactant was added to the cerium oxide abrasive (solid content: 1% by weight). %). The pH of the polishing slurry was 8.1, and the viscosity calculated from the values measured by an Ubbelohde viscometer and a specific gravity meter was 2.10 mPa · s. In addition, in order to measure the particles in the abrasive with a laser diffraction type particle size distribution meter, as a result of measuring diluted to an appropriate concentration,
The median value of the particle diameter was 260 nm.

【0036】(絶縁膜層の研磨)基板取り付け用の吸着
パッドを貼り付けたホルダーにTEOS−プラズマCV
D法で作製した酸化珪素絶縁膜を形成させた直径200
mmSiウエハをセットし、多孔質ウレタン樹脂製の研
磨パッドを貼り付けた定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工荷重が300g/cm2 になる
ように設定した。定盤上に上記の酸化セリウム研磨剤
(固形分:1重量%)を200cc/minの速度で滴
下しながら、定盤及びウエハを50rpmで2分間回転
させ、絶縁膜を研磨した。研磨後のウエハを純水で良く
洗浄後、乾燥した。同様に、低圧CVD法で作製した窒
化珪素膜を同じ条件で研磨した。光干渉式膜厚測定装置
を用いて、研磨前後の膜厚変化を測定した結果、この研
磨により酸化珪素膜は310nm(研磨速度:155n
m/min)、窒化珪素膜は6nm(研磨速度:3nm
/min)が削られ、研磨速度比は51であった。
(Polishing of Insulating Film Layer) A TEOS-plasma CV was placed on a holder to which a suction pad for attaching a substrate was attached.
Diameter 200 with silicon oxide insulating film formed by method D
An mmSi wafer was set, a holder was placed on a surface plate on which a polishing pad made of a porous urethane resin was stuck, with the insulating film face down, and the processing load was set to be 300 g / cm 2 . While the cerium oxide abrasive (solid content: 1% by weight) was dropped on the surface plate at a rate of 200 cc / min, the surface plate and the wafer were rotated at 50 rpm for 2 minutes to polish the insulating film. The polished wafer was thoroughly washed with pure water and then dried. Similarly, a silicon nitride film formed by a low-pressure CVD method was polished under the same conditions. As a result of measuring the change in film thickness before and after polishing using an optical interference type film thickness measuring device, the silicon oxide film was 310 nm by this polishing (polishing speed: 155 n
m / min) and a silicon nitride film of 6 nm (polishing rate: 3 nm)
/ Min) and the polishing rate ratio was 51.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/304 622 H01L 21/304 622D 21/306 21/306 M (72)発明者 平井 圭三 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内 (72)発明者 赤堀 聡彦 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内 (72)発明者 栗原 美穂 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内 (72)発明者 吉田 誠人 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 町井 洋一 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 Fターム(参考) 3C058 AA07 CB10 DA02 4G076 AA02 AA26 AB09 CA05 CA26 DA30 5F043 AA31 AA35 BB22 BB23 BB28 DD06 DD16 DD30 EE08 FF07──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/304 622 H01L 21/304 622D 21/306 21/306 M (72) Inventor Keizo Hirai Hitachi, Ibaraki 4-13-1, Higashi-cho, Hitachi City, Ibaraki Research Laboratory, Hitachi Chemical Co., Ltd. (72) Inventor Toshihiko Akahori 4-3-1, Higashi-cho, Hitachi City, Ibaraki Prefecture, Japan Ibaraki Research Laboratory, Hitachi Chemical Co., Ltd. Miho 4-3-1-1, Higashi-machi, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd.Ibaraki Research Laboratory (72) Inventor Masato Yoshida 48 Tsudai, Tsukuba, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Yoichi 48 Wadai, Tsukuba, Ibaraki Prefecture F-term in Tsukuba Development Laboratory, Hitachi Chemical Co., Ltd. 3C058 AA07 CB10 DA02 4G076 AA02 AA26 AB09 C A05 CA26 DA30 5F043 AA31 AA35 BB22 BB23 BB28 DD06 DD16 DD30 EE08 FF07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】酸化セリウム粒子、水、陰イオン性界面活
性剤を含む研磨剤であり、そのpH及び粘度(mPa・
s)が、pHをx座標、粘度をy座標とした(x,y)
座標系において、A点(5.5,0.9)、B点(5.
5,3.0)、C点(10.0,3.0)、D点(9.
0,0.9)の4点で囲まれた領域範囲内にあることを
特徴とする研磨剤。
An abrasive containing cerium oxide particles, water and an anionic surfactant, and having a pH and a viscosity (mPa ·
s) is the x coordinate of the pH and the y coordinate of the viscosity (x, y)
In the coordinate system, point A (5.5, 0.9) and point B (5.
5, 3.0), point C (10.0, 3.0), point D (9.
(0, 0.9). A polishing agent which is within an area surrounded by four points (0, 0.9).
【請求項2】酸化セリウム粒子の一次粒子径が5〜60
0nmであり、粒子径の中央値が100〜2000nm
である請求項1記載の研磨剤。
2. The cerium oxide particles have a primary particle size of 5 to 60.
0 nm, and the median particle diameter is 100 to 2000 nm.
The abrasive according to claim 1, which is:
【請求項3】陰イオン性界面活性剤が、共重合成分とし
てアクリル酸アンモニウム塩を含む陰イオン性界面活性
剤である請求項1又は2記載の研磨剤。
3. The polishing agent according to claim 1, wherein the anionic surfactant is an anionic surfactant containing ammonium acrylate as a copolymer component.
【請求項4】酸化珪素膜研磨速度と窒化珪素膜研磨速度
の比(酸化珪素膜研磨速度/窒化珪素膜研磨速度)が、
5以上であることを特徴とする研磨剤。
4. The ratio of the polishing rate of the silicon oxide film to the polishing rate of the silicon nitride film (the polishing rate of the silicon oxide film / the polishing rate of the silicon nitride film) is:
An abrasive characterized by being 5 or more.
【請求項5】請求項1〜4各項記載のCMP研磨剤で所
定の基板を研磨する基板の研磨法。
5. A substrate polishing method for polishing a predetermined substrate with the CMP polishing slurry according to claim 1.
【請求項6】所定の基板が、少なくとも酸化珪素膜及び
窒化珪素膜が形成された半導体チップである請求項5記
載の基板の研磨法。
6. The method according to claim 5, wherein the predetermined substrate is a semiconductor chip on which at least a silicon oxide film and a silicon nitride film are formed.
【請求項7】研磨定盤の研磨布上に研磨剤を供給しなが
ら、被研磨膜を有する基板を研磨布に押圧した状態で研
磨定盤と基板を相対的に動かすことによって被研磨膜を
研磨する工程において、被研磨膜を有する基板の研磨布
への押しつけ圧力が100〜1000gf/cm2 であ
る請求項5又は6記載の基板の研磨法。
7. A polishing plate is moved on a polishing plate while the substrate having the film to be polished is pressed against the polishing cloth while the polishing agent is supplied onto the polishing cloth on the polishing plate. 7. The method for polishing a substrate according to claim 5, wherein, in the polishing step, a pressure of pressing the substrate having the film to be polished against the polishing cloth is 100 to 1000 gf / cm 2 .
JP33927098A 1998-11-30 1998-11-30 Polishing agent and polishing process using the same Withdrawn JP2000160137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33927098A JP2000160137A (en) 1998-11-30 1998-11-30 Polishing agent and polishing process using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33927098A JP2000160137A (en) 1998-11-30 1998-11-30 Polishing agent and polishing process using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008210142A Division JP2009010406A (en) 2008-08-18 2008-08-18 Abrasive powder and polishing method for substrate

Publications (1)

Publication Number Publication Date
JP2000160137A true JP2000160137A (en) 2000-06-13

Family

ID=18325871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33927098A Withdrawn JP2000160137A (en) 1998-11-30 1998-11-30 Polishing agent and polishing process using the same

Country Status (1)

Country Link
JP (1) JP2000160137A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002028979A1 (en) * 2000-10-02 2002-04-11 Mitsui Mining & Smelting Co.,Ltd. Cerium based abrasive material and method for producing cerium based abrasive material
WO2002096999A1 (en) * 2001-05-25 2002-12-05 Ekc Technology K.K. Cerium oxide slurry, and method of manufacturing substrate
US6530968B2 (en) 2000-11-24 2003-03-11 Nec Electronics Corporation Chemical mechanical polishing slurry
JP2006253717A (en) * 1999-05-12 2006-09-21 Samsung Electronics Co Ltd Trench element separation method for ic device using highly selective cmp
WO2008032681A1 (en) 2006-09-13 2008-03-20 Asahi Glass Co., Ltd. Polishing agent for semiconductor integrated circuit device, polishing method, and method for manufacturing semiconductor integrated circuit device
JP2009212347A (en) * 2008-03-05 2009-09-17 Stella Chemifa Corp Microfabrication processing agent, and microfabrication processing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253717A (en) * 1999-05-12 2006-09-21 Samsung Electronics Co Ltd Trench element separation method for ic device using highly selective cmp
JP4593521B2 (en) * 1999-05-12 2010-12-08 三星電子株式会社 Trench element isolation method for integrated circuit device using high selectivity CMP
WO2002028979A1 (en) * 2000-10-02 2002-04-11 Mitsui Mining & Smelting Co.,Ltd. Cerium based abrasive material and method for producing cerium based abrasive material
US6689178B2 (en) 2000-10-02 2004-02-10 Mitsui Mining & Smelting Co., Ltd. Cerium based abrasive material and method for producing cerium based abrasive material
US6530968B2 (en) 2000-11-24 2003-03-11 Nec Electronics Corporation Chemical mechanical polishing slurry
WO2002096999A1 (en) * 2001-05-25 2002-12-05 Ekc Technology K.K. Cerium oxide slurry, and method of manufacturing substrate
JP2002353175A (en) * 2001-05-25 2002-12-06 Ekc Technology Kk Cerium oxide abrasive and manufacturing method for substrate
US6827752B2 (en) 2001-05-25 2004-12-07 Ekc Technology K.K. Cerium oxide slurry, and method of manufacturing substrate
WO2008032681A1 (en) 2006-09-13 2008-03-20 Asahi Glass Co., Ltd. Polishing agent for semiconductor integrated circuit device, polishing method, and method for manufacturing semiconductor integrated circuit device
JP2009212347A (en) * 2008-03-05 2009-09-17 Stella Chemifa Corp Microfabrication processing agent, and microfabrication processing method

Similar Documents

Publication Publication Date Title
KR100822116B1 (en) Cmp abrasive, liquid additive for cmp abrasive and method for polishing substrate
JPH10106994A (en) Cerium oxide abrasive agent and polishing method of substrate
JP2009182344A (en) Cerium oxide abrasive and method of polishing substrate
JPWO2011058816A1 (en) CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same
JP3725357B2 (en) Element isolation formation method
JP2006191134A (en) Abrasive powder and polishing method of substrate
JP2000160137A (en) Polishing agent and polishing process using the same
JPH10106988A (en) Cerium oxide abrasive agent and polishing method of substrate
JP2000160136A (en) Polishing agent and polishing process using the same
JPH10102040A (en) Cerium oxide abrasive and grinding of substrate
JPH10106987A (en) Cerium oxide abrasive agent and polishing method of substrate
JPH10106990A (en) Cerium oxide abrasive material and polishing method of substrate
JP2000109803A (en) Polishing agent for cmp and polishing of substrate
JP4407592B2 (en) Abrasive
JPH10102038A (en) Cerium oxide abrasive and grinding of substrate
JP2009266882A (en) Abrasive powder, polishing method of base using same, and manufacturing method of electronic component
JP2004200268A (en) Cmp polishing agent and polishing method of substrate
JP2003158101A (en) Cmp abrasive and manufacturing method therefor
JPH10106991A (en) Cerium oxide abrasive powder, and polishing method of substrate
JP2009010406A (en) Abrasive powder and polishing method for substrate
JPH10298538A (en) Cerium oxide abrasive material and polishing of substrate
JP2004158885A (en) Polishing agent and method for polishing substrate
JPH10106986A (en) Cerium oxide abrasive agent and polishing method of substrate
JP2001308043A (en) Cmp-polishing agent and polishing method for substrate
JP2001332516A (en) Cmp abrasive and method for polishing substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Effective date: 20080306

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

RD02 Notification of acceptance of power of attorney

Effective date: 20080523

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20080818

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081021

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20081114

Free format text: JAPANESE INTERMEDIATE CODE: A912

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101220