JP2000154733A - Closed brayton cycle gas turbine device - Google Patents

Closed brayton cycle gas turbine device

Info

Publication number
JP2000154733A
JP2000154733A JP10329823A JP32982398A JP2000154733A JP 2000154733 A JP2000154733 A JP 2000154733A JP 10329823 A JP10329823 A JP 10329823A JP 32982398 A JP32982398 A JP 32982398A JP 2000154733 A JP2000154733 A JP 2000154733A
Authority
JP
Japan
Prior art keywords
gas
gas turbine
compressor
inlet
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10329823A
Other languages
Japanese (ja)
Inventor
Takeshi Osako
雄志 大迫
Toshiyuki Matsumura
敏之 松村
Seiji Eguchi
誠治 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10329823A priority Critical patent/JP2000154733A/en
Publication of JP2000154733A publication Critical patent/JP2000154733A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To shorten time up to self-sustaining of a system and to miniaturize a starting motor by providing a passage communicating from an air reserving tank of operating gas made into high pressure to a gas turbine entrance and a passage communicating with a heater entrance and disposing a device for controlling supply of operating gas on each passage. SOLUTION: Entrance gas supply lines 5, 4 for supplying operating gas 15 from an air reserving tank 11 to a gas turbine 6 and a heater 8, respectively, are provided between the air reserving tank 11 and an entrance of the gas turbine 6 and between the air reserving tank 11 and an entrance of the heater 8, respectively. In each line 5, 4, entrance opening and closing valves 14, 13 are interposed. When a system is started, a gas compressor 7 is driven by a starting motor 12, operating gas 15a is compressed, and an output is generated in also the gas turbine 6 by supplying high pressure operating gas from the air reserving tank 11 to the gas turbine 6 via the gas supply line 5 at almost the same time as this compression. At the same time, the heater 8 is operated and operating gas 15b of high pressure can be early supplied to the gas turbine 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、閉鎖ループを形成
して循環する作動ガスで駆動されるガスタービンによ
り、作動ガスを昇圧させるガス圧縮機を作動させると共
に、同ガス圧縮機を作動させる出力を越えて外部出力を
発生させるようにしたクローズドブレイトンサイクルガ
スタービン装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine driven by a working gas circulating in a closed loop to operate a gas compressor for pressurizing the working gas and an output for operating the gas compressor. And a closed Brayton cycle gas turbine apparatus which generates an external output beyond the above.

【0002】[0002]

【従来の技術】図5及び図6に基づいて従来のクローズ
ドブレイトンサイクルガスタービン装置の概要について
説明する。従来のクローズドガスタービンを示した図5
の系統図に於いて、6はガスタービン、7はガス圧縮機
で、同ガス圧縮機7はガスタービン6の外部出力を取り
出す出力軸16の途中に取付けられている。
2. Description of the Related Art An outline of a conventional closed Brayton cycle gas turbine device will be described with reference to FIGS. FIG. 5 showing a conventional closed gas turbine
In the system diagram, reference numeral 6 denotes a gas turbine, 7 denotes a gas compressor, and the gas compressor 7 is mounted in the middle of an output shaft 16 for taking out an external output of the gas turbine 6.

【0003】8は加熱器、9は再生熱交換器で、同再生
熱交換器9はガスタービン6の排熱によりガス圧縮機7
で昇圧された作動ガス15を予熱し、この予熱された作
動ガス15は加熱器8で外部から熱Q1 を受けて加熱さ
れ、ガスタービン6の入口から作動ガス15b として供
給される。
[0003] Reference numeral 8 denotes a heater, 9 denotes a regenerative heat exchanger, and the regenerative heat exchanger 9 uses a gas compressor 7 by exhaust heat of the gas turbine 6.
In preheating the pressurized working gas 15, the pre-heated working gas 15 is heated from outside by the heater 8 by the heat Q 1, it is supplied as working gas 15 b from the inlet of the gas turbine 6.

【0004】他方、ガスタービン6で昇圧され、同ガス
タービン6から排出されて再生熱交換器9に至った作動
ガス15は、前記した様にガス圧縮機7で昇圧された作
動ガス15を予熱することにより熱量を放出し、更に冷
却機10で水等の冷却媒体により冷却されて同冷却媒体
に熱Q2 を放出し、ガス圧縮機7の入口へ作動ガス15
a として帰還する。
On the other hand, the working gas 15 pressurized by the gas turbine 6 and discharged from the gas turbine 6 to reach the regenerative heat exchanger 9 preheats the working gas 15 pressurized by the gas compressor 7 as described above. Then, the heat quantity is released, and further cooled by a cooling medium such as water in the cooling machine 10 to release the heat Q 2 to the cooling medium, and the working gas 15 is supplied to the inlet of the gas compressor 7.
It is fed back as a.

【0005】かくして作動ガス15は、ガス圧縮機7で
圧縮され(可逆断熱変化)、再生熱交換器9及び加熱器
8で加熱され(可逆等圧変化)、ガスタービン6で膨張
され(可逆断熱変化)、再生熱交換器9及び冷却機10
で冷却され(可逆等圧変化)ガス圧縮機7へ帰還するク
ローズドブレイトンサイクルを形成している。
Thus, the working gas 15 is compressed by the gas compressor 7 (reversible adiabatic change), heated by the regenerative heat exchanger 9 and the heater 8 (reversible isobaric change), and expanded by the gas turbine 6 (reversible adiabatic change). Change), regenerative heat exchanger 9 and cooler 10
To form a closed Brayton cycle which returns to the gas compressor 7 (reversible pressure change).

【0006】なお、ガス圧縮機7の上流には、貯気用圧
縮機1を経て貯気タンク11に至り、同貯気タンク11
から開閉弁2を経て戻るガス供給ライン3が並行状に組
み込まれており、起動時及び出力変化時にガスタービン
6の負荷に応じてシステム内を循環する作動ガス15の
量を調節可能に構成されている。
[0006] Upstream of the gas compressor 7, the gas reaches the storage tank 11 via the storage compressor 1, and the storage tank 11
And a gas supply line 3 returning from the valve via an on-off valve 2 is installed in parallel, so that the amount of the working gas 15 circulating in the system can be adjusted according to the load on the gas turbine 6 at the time of startup and output change. ing.

【0007】また、ガスタービン6とガス圧縮機7を機
械的に連結した出力軸16には起動モータ12が連結さ
れており、作動ガス15が加熱器8で充分に加熱されな
いことによりガスタービン6がガス圧縮機7を駆動する
ことが出来ないシステムの起動時において、出力不足を
補うように構成されている。
A starting motor 12 is connected to an output shaft 16 which mechanically connects the gas turbine 6 and the gas compressor 7, and the working gas 15 is not sufficiently heated by the heater 8, so that the gas turbine 6 Is configured to compensate for the output shortage at the time of starting the system in which the gas compressor 7 cannot be driven.

【0008】そしてこのシステムにおいては、前記作動
ガス15として、一般的にヘリウムガス(He)及びヘ
リウムガス(He)とキセノンガス(Xe)との混合ガ
ス(He+Xe)が用いられている。
In this system, helium gas (He) and a mixed gas of helium gas (He) and xenon gas (Xe) (He + Xe) are generally used as the working gas 15.

【0009】前記従来のものにおいて、このシステムを
起動する際には、まず、開閉弁2を開き、あらかじめ貯
気用圧縮機1により高圧にして貯気タンク11内に保存
していた作動ガス15をガス圧縮機7の入口に供給す
る。
In the prior art, when the system is started, first, the on-off valve 2 is opened, and the working gas 15 previously stored in the storage tank 11 at a high pressure by the storage compressor 1 is opened. Is supplied to the inlet of the gas compressor 7.

【0010】これと同時に起動モータ12をスタート
し、ガス圧縮機7を駆動して作動ガス15a を圧縮し、
この作動ガス15を再生熱交換器9を通して加熱器8に
供給する。
[0010] At the start the start motor 12 at the same time, compressing the working gas 15 a by driving the gas compressor 7,
This working gas 15 is supplied to the heater 8 through the regenerative heat exchanger 9.

【0011】加熱器8はこの作動ガス15が供給される
と同時に点火され、再生熱交換器9から送られてきた作
動ガス15を徐々に加熱して高温高圧の作動ガス15b
としてガスタービン6に供給する。
The heater 8 is ignited at the same time that the working gas 15 is supplied, and gradually heats the working gas 15 sent from the regenerative heat exchanger 9 to produce a high-temperature and high-pressure working gas 15 b.
To the gas turbine 6.

【0012】この高温高圧の作動ガス15b がガスター
ビン6に供給されて初めてガスタービン6は出力し始
め、作動ガス15b が徐々に、更に高温化することに伴
ってガスタービン6の出力は増加する。
The gas turbine 6 starts to output only after the high-temperature and high-pressure working gas 15b is supplied to the gas turbine 6, and the output of the gas turbine 6 is gradually increased as the working gas 15b gradually increases in temperature. To increase.

【0013】そしてガスタービン6の出力がガス圧縮機
7の必要入力を上回ったとき、起動モータ12の出力は
完全に不要となり、起動モータ12を切り離してガスタ
ービン6を自立させ、ガスタービン6によりガス圧縮機
7を駆動すると共に、同ガス圧縮機7の駆動力を越える
余剰のガスタービン出力が軸出力として利用されること
になる。
When the output of the gas turbine 6 exceeds the required input of the gas compressor 7, the output of the starting motor 12 becomes completely unnecessary, and the starting motor 12 is disconnected to make the gas turbine 6 self-supporting. When the gas compressor 7 is driven, an excess gas turbine output exceeding the driving force of the gas compressor 7 is used as the shaft output.

【0014】[0014]

【発明が解決しようとする課題】前記した様に従来のシ
ステムは一連の操作で起動が完了することになるが、こ
の経過を時間軸上に展開すると図6(a)、(b)の様
に示される。
As described above, in the conventional system, the start-up is completed by a series of operations. If this progress is developed on a time axis, as shown in FIGS. 6 (a) and 6 (b). Is shown in

【0015】すなわち、貯気タンクに保存していた作動
ガスがガス圧縮機に供給されてガス圧縮機流量が発生し
てから、同作動ガスが再生熱交換器、加熱器を経てガス
タービンガス供給を開始し、ガスタービン流量が発生す
るまでには一定の時間がかかり、いわゆる時間遅れとい
う不具合がある。
That is, after the working gas stored in the storage tank is supplied to the gas compressor to generate a gas compressor flow rate, the working gas is supplied to the gas turbine gas supply via the regenerative heat exchanger and the heater. Starts, and a certain time is required until the gas turbine flow rate is generated, which is a so-called time delay.

【0016】そしてこの時間遅れを持ってガスタービン
が起動し、ガスタービン出力がガス圧縮機入力を越えて
いわゆるガスタービン軸出力が得られ、これを契機に起
動モータを切り離してシステムの自立を完成するまでに
更に時間を要するので、起動モータが始動してからこの
システムの自立完成に至る間の駆動力を受け持つ起動モ
ータは、その出力が大きいものを用意しなければならな
いという不具合を伴うものであった。
Then, the gas turbine is started with this time delay, the output of the gas turbine exceeds the input of the gas compressor, so-called gas turbine shaft output is obtained. Since it takes more time to complete the operation, the starting motor responsible for the driving force between the start of the starting motor and the completion of self-sustaining of the system has the disadvantage that a large output must be prepared. there were.

【0017】本発明はこの様な従来のものにおける不具
合を解消し、システムの自立に至る時間を短縮して起動
モータの小型化を図り、設備の設置及び運用における経
済効果を向上させるようにしたものを提供することを課
題とするものである。
The present invention solves such problems in the prior art, shortens the time required for the system to become independent, reduces the size of the starting motor, and improves the economic effect in installation and operation of equipment. It is an object to provide things.

【0018】[0018]

【課題を解決するための手段】本発明は前記した課題を
解決すべくなされたもので、ガス圧縮機とガスタービン
を機械的に連結し、ガス圧縮機吐出側からガスタービン
入口に至り、かつ、ガスタービン出口からガス圧縮機吸
込側に至る作動ガスの閉鎖流路を形成すると共に、同閉
鎖流路内にあってガス圧縮機吸込側に高圧化した作動ガ
スを供給する貯気タンクを連絡したものにおいて、前記
高圧化した作動ガスの貯気タンクからガスタービン入口
に連絡する経路と加熱器入口に連絡する経路を設け、そ
れぞれの経路には作動ガスの供給を制御する装置を配設
したクローズドブレイトンサイクルガスタービン装置を
提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a structure in which a gas compressor and a gas turbine are mechanically connected to each other, from a gas compressor discharge side to a gas turbine inlet, and , Forming a closed flow path for working gas from the gas turbine outlet to the gas compressor suction side, and connecting an air storage tank in the closed flow path that supplies high-pressure working gas to the gas compressor suction side. In the above-mentioned structure, a path communicating from the high-pressure working gas storage tank to the gas turbine inlet and a path communicating with the heater inlet are provided, and each path is provided with a device for controlling the supply of the working gas. A closed Brayton cycle gas turbine device is provided.

【0019】すなわち本発明によれば、前記閉鎖流路内
にあって高圧化した作動ガスの貯気タンクから作動ガス
の供給を制御する装置を介してガスタービン入口、及び
加熱器入口にそれぞれ連絡する経路を設けているので、
ガスタービンはその始動に際して同経路を経て高圧化し
た作動ガスをガスタービン入口及び加熱器入口に供給す
ることにより、ガス圧縮機入力とほぼ同時にガスタービ
ン出力が得られ、同ガスタービン出力がガス圧縮機入力
を越える点が早くなり、ガスタービンを起動モータ等の
補助手段から切り離して自立させる起動時間を短縮し、
起動モータ等の補助手段の小型化を図るようにしたもの
である。
That is, according to the present invention, the gas turbine inlet and the heater inlet are connected to each other via the device for controlling the supply of the working gas from the high-pressure working gas storage tank in the closed channel. Because there is a route to
At the start of the gas turbine, the working gas, which has been increased in pressure through the same path, is supplied to the gas turbine inlet and the heater inlet, so that the gas turbine output can be obtained almost simultaneously with the input of the gas compressor. The point at which the machine input is exceeded becomes earlier, and the gas turbine is separated from auxiliary means such as a starter motor to shorten the start-up time to become independent,
The size of auxiliary means such as a starting motor is reduced.

【0020】また、本発明はガス圧縮機とガスタービン
を機械的に連結し、ガス圧縮機吐出側からガスタービン
入口に至りガスタービン出口からガス圧縮機吸込側に至
る作動ガスの閉鎖流路を形成したものにおいて、前記ガ
ス圧縮機吐出側とガスタービン入口の間には前記閉鎖流
路内にあってガスタービン入口に高圧化した作動ガスを
供給する貯気タンクを設け、同作動ガスを供給する経路
には作動ガスの供給を制御する装置を配設したクローズ
ドブレイトンサイクルガスタービン装置を提供するもの
である。
Further, the present invention mechanically connects the gas compressor and the gas turbine, and provides a closed flow path for working gas from the gas compressor discharge side to the gas turbine inlet and from the gas turbine outlet to the gas compressor suction side. A gas storage tank is provided between the discharge side of the gas compressor and the gas turbine inlet to supply a high-pressure working gas to the gas turbine inlet in the closed flow path, and the working gas is supplied. The present invention provides a closed Brayton cycle gas turbine device in which a device for controlling the supply of the working gas is disposed in the path of the closed Brayton cycle.

【0021】すなわち、本発明によれば、前記閉鎖流路
内にあって高圧化した作動ガスの貯気タンクからガス圧
縮機吐出側とガスタービン入口の間に高圧化した作動ガ
スを供給する経路を設けているので、例えば負荷の上昇
に際して、同高圧化した作動ガスをガス圧縮機吐出側か
らガスタービン入口に加えることにより、ガス圧縮機で
必要とするガス流量よりガスタービンに供給されるガス
流量を過渡的に増加させて、ガスタービン出力の上昇を
確保するようにしたものである。
That is, according to the present invention, a path for supplying a pressurized working gas from a gas storage tank of a pressurized working gas in the closed flow passage between a discharge side of the gas compressor and a gas turbine inlet. For example, when the load is increased, the working gas with the same pressure is added from the discharge side of the gas compressor to the gas turbine inlet, so that the gas supplied to the gas turbine from the gas flow rate required by the gas compressor is provided. The flow rate is transiently increased to secure an increase in gas turbine output.

【0022】[0022]

【発明の実施の形態】本発明の実施の第1形態を図1及
び図2により説明する。なお、本実施の形態において、
前記した従来のものと同一部分については図中に同一の
符号を付して示し、本実施の形態における特徴ある構成
を重点的に説明し、従来のものと重複する説明は省略す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. In the present embodiment,
The same parts as those of the above-described conventional one are denoted by the same reference numerals in the drawings, and the characteristic configuration in the present embodiment will be mainly described, and the description overlapping with the conventional one will be omitted.

【0023】即ち、本実施の形態においては、貯気タン
ク11とガスタービン6の入口との間に貯気タンク11
からガスタービン6に直接的に作動ガス15を供給する
ガスタービン入口ガス供給ライン5を設けると共に、同
貯気タンク11と加熱器8の入口との間に貯気タンク1
1から加熱器8に直接的に作動ガス15を供給する加熱
器入口ガス供給ライン4を設け、同ガスタービン入口ガ
ス供給ライン5及び加熱器入口ガス供給ライン4のそれ
ぞれにガスタービン入口開閉弁14及び加熱器入口開閉
弁13を設けている。
That is, in the present embodiment, the storage tank 11 is located between the storage tank 11 and the inlet of the gas turbine 6.
And a gas turbine inlet gas supply line 5 for directly supplying a working gas 15 to a gas turbine 6, and a storage tank 1 between the storage tank 11 and the inlet of the heater 8.
A heater inlet gas supply line 4 for directly supplying a working gas 15 from 1 to the heater 8 is provided, and a gas turbine inlet opening / closing valve 14 is provided in each of the gas turbine inlet gas supply line 5 and the heater inlet gas supply line 4. And a heater inlet opening / closing valve 13.

【0024】従って本実施の形態においては、そのシス
テムの起動に際し、まず、起動モータ12でガス圧縮機
7を駆動して作動ガス15a を圧縮するが、これとほぼ
同時にガスタービン入口ガス供給ライン5を経て貯気タ
ンク11から高圧の作動ガスをガスタービン6に供給す
ることにより、ガスタービン6にも出力を発生させるこ
とができる。
[0024] Thus in the present embodiment, upon startup of the system, firstly, it compresses the working gas 15 a by driving the gas compressor 7 starts the motor 12, substantially at the same time as this gas turbine inlet gas supply line By supplying high-pressure working gas from the gas storage tank 11 to the gas turbine 6 via the gas turbine 5, an output can also be generated in the gas turbine 6.

【0025】同時に、加熱器8を点火し、かつ、加熱器
入口ガス供給ライン4を経て貯気タンク11から高圧の
作動ガスを加熱器8に供給することにより、高圧の作動
ガス15b をいち早くガスタービン6に供給することが
できる。
[0025] At the same time, to ignite the heater 8, and the heater inlet gas supply line 4 via the gas storage tank 11 by supplying a high-pressure working gas to the heater 8, quickly working gas 15 b of the high-pressure The gas can be supplied to the gas turbine 6.

【0026】すなわち、図2にも示す様に、ガス圧縮機
流量とガスタービン流量とがほぼ同時に発生してガス圧
縮機入力とガスタービン出力とが得られ、ガスタービン
出力がガス圧縮機入力を越える点が前倒しとなるので、
起動モータ12は出力を低減すると共に、自立までの起
動時間の短縮を行うことができ、小型化を図ることがで
きる。
That is, as shown in FIG. 2, the gas compressor flow rate and the gas turbine flow rate occur almost simultaneously, and the gas compressor input and the gas turbine output are obtained. Because the point beyond is brought forward,
The starting motor 12 can reduce the output, shorten the starting time until the motor becomes independent, and reduce the size.

【0027】次に本発明の実施の第2形態について図3
及び図4に基づいて説明する。なお、本実施の形態にお
いても、前記した従来のもの、及び実施の第1形態のも
のと同一の部分には同一の符号を付して示し、重複する
説明は省略する。
Next, a second embodiment of the present invention will be described with reference to FIG.
A description will be given based on FIG. Also in the present embodiment, the same parts as those of the above-described conventional one and the first embodiment are denoted by the same reference numerals, and overlapping description will be omitted.

【0028】即ち本実施の形態においては、従来、ガス
圧縮機7の入口に通じる様に配置されていた貯気タンク
11からのガス供給ライン3を廃止し、同ガス供給ライ
ン3をガス圧縮機7の吐出側で、ガスタービン6の入口
との間に配置替えしたものである。
That is, in the present embodiment, the gas supply line 3 from the air storage tank 11 which is conventionally arranged so as to communicate with the inlet of the gas compressor 7 is eliminated, and the gas supply line 3 is replaced with the gas compressor. 7 is disposed between the discharge side 7 and the inlet of the gas turbine 6.

【0029】本実施の形態においてはこの様に、貯気タ
ンク11からのガス供給ライン3は、ガス圧縮機7の吐
出側でガスタービン6の入口との間に配置しているの
で、負荷を上げる場合において、貯気タンク11から作
動ガスをシステム内に供給すると、図4において破線で
示すように、ガス圧縮機7で必要とするガス流量に対し
て実線Gで示すガスタービン6における作動ガス流量1
b は、過渡的に増加し、出力軸回転数Nで示すように
ガスタービン6の出力が増加するため、ガス圧縮機7の
必要入力の比率が小さくなる。
In this embodiment, as described above, the gas supply line 3 from the gas storage tank 11 is disposed between the discharge side of the gas compressor 7 and the inlet of the gas turbine 6, so that the load is reduced. When the working gas is supplied into the system from the storage tank 11 in the case of raising, the working gas in the gas turbine 6 indicated by a solid line G with respect to the gas flow rate required by the gas compressor 7 as shown by a broken line in FIG. Flow rate 1
5 b transiently increases and the output of the gas turbine 6 increases as indicated by the output shaft rotation speed N, so that the required input ratio of the gas compressor 7 decreases.

【0030】そのため、本実施の形態においては回転数
と出力は必ず上昇する方向に作用し、一時的にも低下す
ることはなく、しかも短時間に応答し、負荷変化に対す
る追従性が一段と向上するものである。
For this reason, in the present embodiment, the rotation speed and the output always act in the rising direction, do not temporarily decrease, respond in a short time, and the followability to the load change is further improved. Things.

【0031】なお、負荷を下げる場合は、この逆に作用
し、前記した負荷上昇時と同様に短時間に素早く応答し
て負荷変化に対する追従性が高くなる。
When the load is reduced, the operation is reversed, and the response to the load change is improved by quickly responding in a short time as in the case of the load increase.

【0032】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。
Although the present invention has been described with reference to the illustrated embodiments, the present invention is not limited to such embodiments.
It goes without saying that various changes may be made to the specific structure within the scope of the present invention.

【0033】[0033]

【発明の効果】以上説明したように本発明によれば、ガ
ス圧縮機とガスタービンを機械的に連結し、ガス圧縮機
吐出側からガスタービン入口に至り、かつ、ガスタービ
ン出口からガス圧縮機吸込側に至る作動ガスの閉鎖流路
を形成すると共に、同閉鎖流路内にあってガス圧縮機吸
込側に高圧化した作動ガスを供給する貯気タンクを連絡
したクローズドブレイトンサイクルガスタービン装置に
おいて、前記高圧化した作動ガスの貯気タンクからガス
タービン入口に連絡する経路と加熱器入口に連絡する経
路を設け、それぞれの経路には作動ガスの供給を制御す
る装置を配設して構成されているので、ガスタービンは
その始動に際して、前記ガスタービン入口に連絡する経
路及び加熱器入口に連絡する経路を経て、高圧化した作
動ガスをガスタービン入口及び加熱器入口に供給するこ
とにより、ガス圧縮機入力とほぼ同時にガスタービン出
力が得られ、同ガスタービン出力がガス圧縮機入力を越
える点が早くなり、ガスタービンを起動モータ等の補助
手段から切り離して自立させる起動時間を短縮し、起動
モータ等の補助手段の小型化を図ることができたもので
ある。
As described above, according to the present invention, the gas compressor is mechanically connected to the gas turbine, the gas compressor is discharged from the gas compressor inlet to the gas turbine inlet, and the gas compressor is discharged from the gas turbine outlet to the gas compressor. In the closed Brayton cycle gas turbine device, which forms a closed flow path of the working gas reaching the suction side and communicates with a storage tank in the same closed flow path that supplies the high-pressure working gas to the gas compressor suction side. A path connecting the high-pressure working gas storage tank to the gas turbine inlet and a path connecting the heater inlet, and each path is provided with a device for controlling the supply of the working gas. When the gas turbine is started, the gas turbine passes through the path connected to the gas turbine inlet and the path connected to the heater inlet, and passes the pressurized working gas to the gas turbine. By supplying the gas to the gas inlet and the heater inlet, the gas turbine output can be obtained almost at the same time as the gas compressor input, and the point at which the gas turbine output exceeds the gas compressor input is accelerated. It is possible to shorten the starting time for the self-standing device to be separated from the means and to reduce the size of auxiliary means such as a starting motor.

【0034】また、請求項2の発明によれば、ガス圧縮
機とガスタービンを機械的に連結し、ガス圧縮機吐出側
からガスタービン入口に至りガスタービン出口からガス
圧縮機吸込側に至る作動ガスの閉鎖流路を形成したクロ
ーズドブレイトンサイクルガスタービン装置において、
前記ガス圧縮機吐出側とガスタービン入口の間には前記
閉鎖流路内にあってガスタービン入口に高圧化した作動
ガスを供給する貯気タンクを設け、同作動ガスを供給す
る経路には作動ガスの供給を制御する装置を配設して構
成されているので、例えば負荷の上昇に際して、同高圧
化した作動ガスをガス圧縮機吐出側からガスタービン入
口に加えることにより、ガス圧縮機で必要とするガス流
量よりガスタービンに供給されるガス流量を過渡的に増
加させて、ガスタービン出力の上昇を確保し、かつ、ガ
ス圧縮機の必要入力の比率を小さくして負荷変化に対す
る追従性を一段と向上することができたものである。
According to the second aspect of the present invention, the gas compressor and the gas turbine are mechanically connected, and the operation from the gas compressor discharge side to the gas turbine inlet and from the gas turbine outlet to the gas compressor suction side is performed. In a closed Brayton cycle gas turbine device forming a closed gas flow path,
An air storage tank is provided between the discharge side of the gas compressor and the gas turbine inlet to supply a high-pressure working gas to the gas turbine inlet in the closed flow path. Since the system is provided with a device for controlling the gas supply, for example, when the load is increased, the working gas having the same pressure is added to the gas turbine inlet from the gas compressor discharge side, so that the gas compressor is required. Transiently increase the gas flow rate supplied to the gas turbine from the gas flow rate to ensure a rise in the gas turbine output, and reduce the ratio of the required input of the gas compressor to improve the ability to follow load changes. It was something that could be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態に係るクローズドブレ
イトンサイクルガスタービン装置の系統図である。
FIG. 1 is a system diagram of a closed Brayton cycle gas turbine device according to a first embodiment of the present invention.

【図2】図1のものにおける時間軸上の変化を示し、
(a)はガスタービン及びガス圧縮機のガス流量並びに
ガスタービンのガス温度の状況を示す説明図、(b)は
ガス圧縮機入力及びガスタービン出力の状況を示す説明
図である。
FIG. 2 shows the change on the time axis in FIG. 1;
(A) is an explanatory view showing the state of the gas flow rate of the gas turbine and the gas compressor and the gas temperature of the gas turbine, and (b) is an explanatory view showing the state of the gas compressor input and the gas turbine output.

【図3】本発明の実施の第2形態に係るクローズドブレ
イトンサイクルガスタービン装置の系統図である。
FIG. 3 is a system diagram of a closed Brayton cycle gas turbine device according to a second embodiment of the present invention.

【図4】図3のものにおける時間変化に対するガスター
ビン及びガス圧縮機の作動ガス流量の変化、並びに出力
軸回転数の変化を示す説明図である。
4 is an explanatory diagram showing a change in the working gas flow rate of the gas turbine and the gas compressor and a change in the output shaft rotation speed with respect to a time change in FIG.

【図5】従来のクローズドブレイトンサイクルガスター
ビン装置の系統図である。
FIG. 5 is a system diagram of a conventional closed Brayton cycle gas turbine device.

【図6】図6のものにおける時間軸上の変化を示し、
(a)はガスタービン及びガス圧縮機のガス流量並びに
ガスタービンのガス温度の状況を示す説明図、(b)は
ガス圧縮機入力及びガスタービン出力の状況を示す説明
図である。
6 shows a change on the time axis in FIG. 6;
(A) is an explanatory view showing the state of the gas flow rate of the gas turbine and the gas compressor and the gas temperature of the gas turbine, and (b) is an explanatory view showing the state of the gas compressor input and the gas turbine output.

【符号の説明】[Explanation of symbols]

1 貯気用圧縮機 2 開閉弁 3 ガス供給ライン 4 加熱器入口ガス供給ライン 5 ガスタービン入口ガス供給ライン 6 ガスタービン 7 ガス圧縮機 8 加熱器 9 再生熱交換器 10 冷却機 11 貯気タンク 12 起動モータ 13 加熱器入口開閉弁 14 ガスタービン入口開閉弁 15 作動ガス 16 出力軸 REFERENCE SIGNS LIST 1 gas storage compressor 2 on-off valve 3 gas supply line 4 heater inlet gas supply line 5 gas turbine inlet gas supply line 6 gas turbine 7 gas compressor 8 heater 9 regenerative heat exchanger 10 cooler 11 air storage tank 12 Start motor 13 Heater inlet on-off valve 14 Gas turbine inlet on-off valve 15 Working gas 16 Output shaft

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス圧縮機とガスタービンを機械的に連
結し、ガス圧縮機吐出側からガスタービン入口に至り、
かつ、ガスタービン出口からガス圧縮機吸込側に至る作
動ガスの閉鎖流路を形成すると共に、同閉鎖流路内にあ
ってガス圧縮機吸込側に高圧化した作動ガスを供給する
貯気タンクを連絡したクローズドブレイトンサイクルガ
スタービン装置において、前記高圧化した作動ガスの貯
気タンクからガスタービン入口に連絡する経路と加熱器
入口に連絡する経路を設け、それぞれの経路には作動ガ
スの供給を制御する装置を配設したことを特徴とするク
ローズドブレイトンサイクルガスタービン装置。
1. A gas compressor and a gas turbine are mechanically connected to each other, from a discharge side of the gas compressor to an inlet of the gas turbine,
In addition, a closed flow path for working gas from the gas turbine outlet to the gas compressor suction side is formed, and a storage tank for supplying a high-pressure working gas to the gas compressor suction side in the closed flow path is provided. In the connected closed Brayton cycle gas turbine device, a path connecting the high-pressure working gas storage tank to the gas turbine inlet and a path connecting the heater inlet are provided, and each path controls the supply of the working gas. A closed Brayton cycle gas turbine device, comprising:
【請求項2】 ガス圧縮機とガスタービンを機械的に連
結し、ガス圧縮機吐出側からガスタービン入口に至りガ
スタービン出口からガス圧縮機吸込側に至る作動ガスの
閉鎖流路を形成したクローズドブレイトンサイクルガス
タービン装置において、前記ガス圧縮機吐出側とガスタ
ービン入口の間には前記閉鎖流路内にあってガスタービ
ン入口に高圧化した作動ガスを供給する貯気タンクを設
け、同作動ガスを供給する経路には作動ガスの供給を制
御する装置を配設したことを特徴とするクローズドブレ
イトンサイクルガスタービン装置。
2. A closed type in which a gas compressor and a gas turbine are mechanically connected to each other to form a closed flow path of working gas from a gas compressor discharge side to a gas turbine inlet and from a gas turbine outlet to a gas compressor suction side. In the Brayton cycle gas turbine device, an air storage tank is provided between the discharge side of the gas compressor and the gas turbine inlet to supply a high-pressure working gas to the gas turbine inlet in the closed flow path. A device for controlling the supply of the working gas is disposed in a path for supplying the working gas.
JP10329823A 1998-11-19 1998-11-19 Closed brayton cycle gas turbine device Pending JP2000154733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10329823A JP2000154733A (en) 1998-11-19 1998-11-19 Closed brayton cycle gas turbine device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10329823A JP2000154733A (en) 1998-11-19 1998-11-19 Closed brayton cycle gas turbine device

Publications (1)

Publication Number Publication Date
JP2000154733A true JP2000154733A (en) 2000-06-06

Family

ID=18225638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10329823A Pending JP2000154733A (en) 1998-11-19 1998-11-19 Closed brayton cycle gas turbine device

Country Status (1)

Country Link
JP (1) JP2000154733A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092701A1 (en) * 2000-05-30 2001-12-06 Commonwealth Scientific And Industrial Research Organisation Heat engines and associated methods of producing mechanical energy and their application to vehicles
WO2002080189A1 (en) * 2001-03-30 2002-10-10 Pebble Bed Modular Reactor (Proprietary) Limited A nuclear power plant and a method of conditioning its power generation circuit
WO2002095768A1 (en) * 2001-05-25 2002-11-28 Pebble Bed Modular Reactor (Proprietary) Limited A brayton cycle nuclear power plant and a method of starting the brayton cycle
WO2009119917A3 (en) * 2008-03-28 2011-05-12 Mitsubishi Heavy Industries, Ltd. Method of controlling turbine equipment and turbine equipment
WO2009119916A3 (en) * 2008-03-28 2011-05-12 Mitsubishi Heavy Industries, Ltd. Method of controlling turbine equipment and turbine equipment
CN102893007A (en) * 2009-12-28 2013-01-23 弗雷德里克·奥利维耶·泰弗诺 Heat engine with external heat source and associated power generation unit and vehicle
CN106195984A (en) * 2016-06-30 2016-12-07 西安热工研究院有限公司 Novel coal supercritical carbon dioxide Brayton cycle single-stage shunting electricity generation system
CN106195983A (en) * 2016-06-30 2016-12-07 西安热工研究院有限公司 Novel coal supercritical carbon dioxide Brayton cycle electricity generation system
CN106247305A (en) * 2016-09-14 2016-12-21 西安热工研究院有限公司 A kind of double supercritical carbon dioxide Bretton combined cycle thermal power generation system
EP3563049A4 (en) * 2016-12-28 2020-08-12 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10907510B2 (en) 2016-12-28 2021-02-02 Malta Inc. Storage of excess heat in cold side of heat engine
US10907513B2 (en) 2010-03-04 2021-02-02 Malta Inc. Adiabatic salt energy storage
US10907548B2 (en) 2016-12-29 2021-02-02 Malta Inc. Use of external air for closed cycle inventory control
US10920667B2 (en) 2016-12-28 2021-02-16 Malta Inc. Pump control of closed cycle power generation system
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US11156385B2 (en) 2012-09-27 2021-10-26 Malta Inc. Pumped thermal storage cycles with working fluid management
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11352951B2 (en) 2016-12-30 2022-06-07 Malta Inc. Variable pressure turbine
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
JP2023500196A (en) * 2019-11-04 2023-01-05 シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Pressure control for closed Joule cycle processes
US11655759B2 (en) 2016-12-31 2023-05-23 Malta, Inc. Modular thermal storage
US11678615B2 (en) 2018-01-11 2023-06-20 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
US11852043B2 (en) 2019-11-16 2023-12-26 Malta Inc. Pumped heat electric storage system with recirculation
US11982228B2 (en) 2021-08-12 2024-05-14 Malta Inc. Pumped heat energy storage system with steam cycle

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7062914B2 (en) 2000-05-30 2006-06-20 Commonwealth Scientific And Industrial Research Organization Heat engines and associated methods of producing mechanical energy and their application to vehicles
WO2001092701A1 (en) * 2000-05-30 2001-12-06 Commonwealth Scientific And Industrial Research Organisation Heat engines and associated methods of producing mechanical energy and their application to vehicles
WO2002080189A1 (en) * 2001-03-30 2002-10-10 Pebble Bed Modular Reactor (Proprietary) Limited A nuclear power plant and a method of conditioning its power generation circuit
US6977983B2 (en) 2001-03-30 2005-12-20 Pebble Bed Modular Reactor (Pty) Ltd. Nuclear power plant and a method of conditioning its power generation circuit
KR100857982B1 (en) * 2001-03-30 2008-09-10 페블 베드 모듈러 리엑터(프로프라이어터리) 리미티드 A nuclear power plant and a method of conditioning its power generation circuit
WO2002095768A1 (en) * 2001-05-25 2002-11-28 Pebble Bed Modular Reactor (Proprietary) Limited A brayton cycle nuclear power plant and a method of starting the brayton cycle
US9243566B2 (en) 2008-03-28 2016-01-26 Mitsubishi Heavy Industries, Ltd. Method of controlling turbine equipment and turbine equipment
WO2009119917A3 (en) * 2008-03-28 2011-05-12 Mitsubishi Heavy Industries, Ltd. Method of controlling turbine equipment and turbine equipment
WO2009119916A3 (en) * 2008-03-28 2011-05-12 Mitsubishi Heavy Industries, Ltd. Method of controlling turbine equipment and turbine equipment
CN102187064A (en) * 2008-03-28 2011-09-14 三菱重工业株式会社 Method of controlling turbine equipment and turbine equipment
US9334800B2 (en) 2008-03-28 2016-05-10 Mitsubishi Heavy Industries, Ltd. Method of controlling turbine equipment and turbine equipment
JP2013515912A (en) * 2009-12-28 2013-05-09 フレデリク オリヴィエ テヴノ Heat engine with external heat source and associated power generation unit and vehicle
CN102893007A (en) * 2009-12-28 2013-01-23 弗雷德里克·奥利维耶·泰弗诺 Heat engine with external heat source and associated power generation unit and vehicle
JP2016075290A (en) * 2009-12-28 2016-05-12 テヴノ フレデリク オリヴィエTHEVENOD, Frederic, Olivier Heat engine with external heat source, related output generating unit and vehicle
US11761336B2 (en) 2010-03-04 2023-09-19 Malta Inc. Adiabatic salt energy storage
US10907513B2 (en) 2010-03-04 2021-02-02 Malta Inc. Adiabatic salt energy storage
US11754319B2 (en) 2012-09-27 2023-09-12 Malta Inc. Pumped thermal storage cycles with turbomachine speed control
US11156385B2 (en) 2012-09-27 2021-10-26 Malta Inc. Pumped thermal storage cycles with working fluid management
CN106195984A (en) * 2016-06-30 2016-12-07 西安热工研究院有限公司 Novel coal supercritical carbon dioxide Brayton cycle single-stage shunting electricity generation system
CN106195983A (en) * 2016-06-30 2016-12-07 西安热工研究院有限公司 Novel coal supercritical carbon dioxide Brayton cycle electricity generation system
CN106195983B (en) * 2016-06-30 2019-01-04 西安热工研究院有限公司 Coal-fired supercritical carbon dioxide Brayton cycle electricity generation system
CN106247305A (en) * 2016-09-14 2016-12-21 西安热工研究院有限公司 A kind of double supercritical carbon dioxide Bretton combined cycle thermal power generation system
US10920667B2 (en) 2016-12-28 2021-02-16 Malta Inc. Pump control of closed cycle power generation system
EP3563049A4 (en) * 2016-12-28 2020-08-12 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US11591956B2 (en) 2016-12-28 2023-02-28 Malta Inc. Baffled thermoclines in thermodynamic generation cycle systems
US10907510B2 (en) 2016-12-28 2021-02-02 Malta Inc. Storage of excess heat in cold side of heat engine
US11371442B2 (en) 2016-12-28 2022-06-28 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11927130B2 (en) 2016-12-28 2024-03-12 Malta Inc. Pump control of closed cycle power generation system
US10920674B2 (en) 2016-12-28 2021-02-16 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11454168B2 (en) 2016-12-28 2022-09-27 Malta Inc. Pump control of closed cycle power generation system
EP4242430A3 (en) * 2016-12-28 2023-11-22 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11512613B2 (en) 2016-12-28 2022-11-29 Malta Inc. Storage of excess heat in cold side of heat engine
US10907548B2 (en) 2016-12-29 2021-02-02 Malta Inc. Use of external air for closed cycle inventory control
US11578622B2 (en) 2016-12-29 2023-02-14 Malta Inc. Use of external air for closed cycle inventory control
US11352951B2 (en) 2016-12-30 2022-06-07 Malta Inc. Variable pressure turbine
US11655759B2 (en) 2016-12-31 2023-05-23 Malta, Inc. Modular thermal storage
US11678615B2 (en) 2018-01-11 2023-06-20 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
JP2023500196A (en) * 2019-11-04 2023-01-05 シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Pressure control for closed Joule cycle processes
JP7459241B2 (en) 2019-11-04 2024-04-01 シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Pressure control for closed joule cycle processes
US11852043B2 (en) 2019-11-16 2023-12-26 Malta Inc. Pumped heat electric storage system with recirculation
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11578650B2 (en) 2020-08-12 2023-02-14 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11840932B1 (en) 2020-08-12 2023-12-12 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11846197B2 (en) 2020-08-12 2023-12-19 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11885244B2 (en) 2020-08-12 2024-01-30 Malta Inc. Pumped heat energy storage system with electric heating integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11982228B2 (en) 2021-08-12 2024-05-14 Malta Inc. Pumped heat energy storage system with steam cycle

Similar Documents

Publication Publication Date Title
JP2000154733A (en) Closed brayton cycle gas turbine device
JP3178961B2 (en) Compressed air energy storage method and system
US5148668A (en) Combined gas/steam turbine power station plant
US5386687A (en) Method of operating a gas turbine group
US6276123B1 (en) Two stage expansion and single stage combustion power plant
US5417053A (en) Partial regenerative dual fluid cycle gas turbine assembly
EP1245805A2 (en) Supercharged gas turbine
US4043120A (en) Starting arrangement for combined air and gas turbine power plant
CN103557079A (en) Gas turbine and operating method therefor
JPS60138368A (en) Air cycle air conditioner and cooling method
JPH0610705A (en) Method of operating gas turbine group
JPH10510902A (en) Brayton cycle industrial air compressor
WO2019011326A1 (en) Steam turbine quick start warming system, pre-warming system and warming method therefor
US20060232071A1 (en) Turbo set with starting device
CN210003340U (en) multistage expansion generator start-up phase exhaust gas regulation system
US5337554A (en) Method for reducing the pressure of a gas from a primary network
JPH0658167A (en) Gas turbine device
JP2003166428A (en) Gas turbine generator and gas fuel booster applied thereto
JPH07332109A (en) Compressed air storage type power generating plant
JP2003097293A (en) Power station and related starting method
JPH09144557A (en) Gas turbine plant
JP3368487B2 (en) Inlet air cooling device in gas turbine power generation system and method of operating the same
JPH03149321A (en) Helium gas power device
JPS63208624A (en) Output control device for gas turbine
US20240026824A1 (en) Cryogenic assisted bottoming cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507