JP2000147226A - Production of optical element and optical element - Google Patents

Production of optical element and optical element

Info

Publication number
JP2000147226A
JP2000147226A JP10325634A JP32563498A JP2000147226A JP 2000147226 A JP2000147226 A JP 2000147226A JP 10325634 A JP10325634 A JP 10325634A JP 32563498 A JP32563498 A JP 32563498A JP 2000147226 A JP2000147226 A JP 2000147226A
Authority
JP
Japan
Prior art keywords
resin
optical
optical element
lattice
optical substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10325634A
Other languages
Japanese (ja)
Inventor
Junji Terada
順司 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10325634A priority Critical patent/JP2000147226A/en
Publication of JP2000147226A publication Critical patent/JP2000147226A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an optical element having a laminated structure consisting of plural different materials easily and with high accuracy. SOLUTION: An optical substrate 1 whose face opposite to a face to be subjected to resin filling is covered with a cover 3 is slowly lowered into a vessel 5 filled with a UV-curing resin 6. In the same way, a molding die 2 whose face opposite to a face to be subjected to resin filling is covered with a cover 4 is slowly lowered into the vessel 5. The optical substrate 1 and the molding die 2 are slowly brought closer to each other, an interval for ensuring a prescribed resin thickness is held between the optical substrate 1 and the molding tool 2 and parallelism is maintained between them. The optical substrate 1 and the molding tool 2 are then slowly pulled up from the surface of the resin. After confirming the presence of the UV-curing resin 6 in the desired curing position, only the part to be cured is irradiated with UV radiation of an appropriated dose.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学素子の製造方法
及び光学素子に関し、特に異なる材質を複数積層させた
回析光学素子の製造方法及び光学素子に関するものであ
る。
The present invention relates to a method for manufacturing an optical element and an optical element, and more particularly to a method for manufacturing a diffraction optical element in which a plurality of different materials are laminated, and an optical element.

【0002】[0002]

【従来の技術】従来より屈折系のみによって構成される
光学系においては、分散特性の異なるガラス材を組み合
わせることによって色収差を減らしている。例えば、望
遠鏡等の対物レンズでは、分散の小さいガラス材を正レ
ンズ、分散の大きいガラス材を負レンズとし、これらを
組み合わせて用いることで軸上に現れる色収差を補正し
ている。このため、レンズの構成枚数が制限される場合
や使用できるガラス材が限られている場合などでは色収
差が十分に補正できないことがあった。
2. Description of the Related Art Conventionally, in an optical system constituted only by a refraction system, chromatic aberration is reduced by combining glass materials having different dispersion characteristics. For example, in an objective lens such as a telescope, a glass material having a small dispersion is a positive lens, and a glass material having a large dispersion is a negative lens. By using these in combination, chromatic aberration appearing on the axis is corrected. For this reason, when the number of constituent lenses is limited, or when the usable glass material is limited, the chromatic aberration cannot be sufficiently corrected in some cases.

【0003】ガラス材の組み合わせにより色収差を補正
する方法として、SPIE Vol.1354 International Lens D
esign Conference(1990)等の文献に、光学系の一部に回
析作用を有する回析光学素子を設けることで、色収差を
減らす方法が開示されている。この方法は、図5(a)
に示す屈折光学素子と図5(b)に示す回析光学素子と
では、分散が逆方向に発生するという物理現象を利用し
たものである。
As a method of correcting chromatic aberration by combining glass materials, SPIE Vol.1354 International Lens D
Documents such as esign Conference (1990) disclose a method of reducing chromatic aberration by providing a diffraction optical element having a diffraction action in a part of an optical system. This method is shown in FIG.
The refractive optical element shown in FIG. 5 and the diffraction optical element shown in FIG. 5B use a physical phenomenon that dispersion occurs in the opposite direction.

【0004】回析光学素子としては、例えば、所定次数
の回析光に光量を集中できるキノフォーム型やキノフォ
ーム型を階段状に近似したバイナリ型の格子断面形状を
有する移送型の回析光学素子が知られている。このよう
な回析光学素子において、同心円状の格子周期を素子中
心から周辺に向けて変化させることで屈折光学素子と同
様の収斂作用や発散作用を持たせることができる。
As the diffraction optical element, for example, a kinoform type which can concentrate the amount of light to diffraction light of a predetermined order, or a transfer type diffraction optic having a binary type lattice cross-sectional shape approximating a kinoform type in a stepwise manner. Devices are known. In such a diffractive optical element, by changing the concentric lattice period from the center of the element toward the periphery, the same convergent function and divergent function as the refractive optical element can be provided.

【0005】キノフォーム型やバイナリー型の回析光学
素子において、素子の屈折率がnであったとき、格子高
さdを、 d=mλ/(n−1)・・・(1) と設定することによって、波長λにおけるm次の回析光
の回析効率を最も高くすることができる。ここで、回析
効率とは特定次数の回析光に配分される光量の割合であ
り、特定次数の回析光の光量に対する入射光全体の光量
の比で表される。
In a kinoform or binary diffraction optical element, when the refractive index of the element is n, the grating height d is set as follows: d = mλ / (n−1) (1) By doing so, the diffraction efficiency of the m-th order diffracted light at the wavelength λ can be maximized. Here, the diffraction efficiency is a ratio of the amount of light distributed to the diffracted light of a specific order, and is expressed by a ratio of the light amount of the entire incident light to the light amount of the diffracted light of the specific order.

【0006】ところで、位相型回析光学素子の特定次数
の回析光の回析効率は、例えば図6のような特性を持っ
ている。図6において、横軸は波長、縦軸は回析効率を
表している。この回析光学素子は、図6に示すように特
定波長λD(λL≦λD≦λU)において、特定次数の
回析光の回析効率が最も高くなるように設定されるた
め、それ以外の波長での回析効率は波長λDにおける回
析高率に比して相対的に低くなる。これは、格子高さd
が波長λDにおいて式1を用いて最適化されるため、そ
の他の波長において最適値でなくなるからである。この
λDのような格子高さdを決定するのに用いた波長を設
計波長、対象となる回析光の次数を設計次数と呼ぶこと
にする。
Incidentally, the diffraction efficiency of the diffraction light of a specific order of the phase type diffraction optical element has a characteristic as shown in FIG. 6, for example. In FIG. 6, the horizontal axis represents wavelength and the vertical axis represents diffraction efficiency. As shown in FIG. 6, the diffraction optical element is set so that the diffraction efficiency of the diffracted light of a specific order is highest at a specific wavelength λD (λL ≦ λD ≦ λU). Is relatively lower than the diffraction efficiency at the wavelength λD. This is the grid height d
Is optimized using Equation 1 at the wavelength λD, so that the value is not optimal at other wavelengths. The wavelength used to determine the grating height d such as λD is called a design wavelength, and the order of the target diffraction light is called a design order.

【0007】例えば、設計波長を555nm、設計次数
を1次とし、回析光学素子を輪帯状の8段の階段構造に
より形成したとき、設計波長での回析効率は約95%に
なり、波長650nmにおける1次回析光の回析効率は
約88%、波長440nmにおける1次回析光の回析効
率は約80%になる。回析効率が100%に満たない分
は、設計次数以外の回析光になる。
For example, when the design wavelength is 555 nm, the design order is 1st, and the diffraction optical element is formed by a ring-shaped eight-step structure, the diffraction efficiency at the design wavelength becomes about 95%, The diffraction efficiency of the primary light at 650 nm is about 88%, and the diffraction efficiency of the primary light at a wavelength of 440 nm is about 80%. The diffraction light whose diffraction efficiency is less than 100% is diffraction light other than the design order.

【0008】この内、設計次数から離れた次数の回析光
は、設計次数の回析光の結像位置に対して大幅にずれる
ので、結像には寄与せず、全面にフレアのような状態で
付加される。一方、設計次数近傍の次数(具体的には設
計次数±1次)の回析光は、結像性能を評価するような
空間周波数領域では解像しないが、完全にぼけた状態で
もなく、低い空間周波数領域では結像する。このため、
この次数の回析光の回析効率が大きいと、設計次数の回
析光の回りにかなり大きなサイドローブのあるようなス
ポットとなり、光学性能が悪化するという問題がある。
[0008] Of these, the diffracted light of the order distant from the design order is significantly displaced from the image forming position of the diffracted light of the design order. Added in state. On the other hand, the diffracted light of the order near the design order (specifically, the design order ± 1 order) does not resolve in the spatial frequency region where the imaging performance is evaluated, but is not completely blurred and low. An image is formed in the spatial frequency domain. For this reason,
If the diffraction efficiency of the diffracted light of this order is large, the spot becomes a spot having a considerably large side lobe around the diffracted light of the designed order, and there is a problem that the optical performance deteriorates.

【0009】つまり、回析光学素子を光学系に利用して
良好な光学性能を得るためには、設計次数の回析光の回
析効率を、使用全波長帯域にわたって高く維持すると共
に、特に設計次数近傍の回析光の回析効率を低く抑える
必要がある。
That is, in order to obtain good optical performance by using a diffraction optical element in an optical system, the diffraction efficiency of diffraction light of the design order must be kept high over the entire wavelength band to be used, and the design efficiency must be particularly high. It is necessary to keep the diffraction efficiency of diffraction light near the order low.

【0010】[0010]

【発明が解決しようとする課題】設計次数近傍次数の回
析光の回析効率を低く抑え、設計次数の回析光の回析効
率を広い波長帯域にわたって高く維持するため、分散の
異なる材質を複数重ね合わせた回析光学素子が、特開平
9−127322号公報に開示されている。
In order to keep the diffraction efficiency of diffracted light of the order near the design order low and to maintain the diffraction efficiency of the diffracted light of the design order high over a wide wavelength band, materials having different dispersions are used. A diffraction optical element in which a plurality of diffraction optical elements are superimposed is disclosed in Japanese Patent Application Laid-Open No. Hei 9-127322.

【0011】このような2層或いはそれ以上の多層構造
を有する回析光学素子を紫外線硬化樹脂を用いて形成又
は接合する製造方法としては、従来、公知であるレプリ
カ成形法がある。
As a method of forming or joining such a diffractive optical element having a multilayer structure of two or more layers using an ultraviolet curable resin, there is a conventionally known replica molding method.

【0012】例えば、特開平9−12733公報では凹
凸形状を形成した結晶基板の面上に2P法により光学素
子を形成している。
For example, in Japanese Patent Application Laid-Open No. Hei 9-12733, an optical element is formed by a 2P method on a surface of a crystal substrate having an uneven shape.

【0013】また、同様に周期的な溝を形成した結晶基
板に接着剤を介して光学素子を接合している。
Similarly, an optical element is bonded via an adhesive to a crystal substrate on which periodic grooves are formed.

【0014】更に、特開平7−92319号公報では基
板にエッチングにより凹凸の格子溝を形成し、その溝部
にアクリル系樹脂を塗布している。
Further, in Japanese Unexamined Patent Publication No. Hei 7-92319, an uneven lattice groove is formed in a substrate by etching, and an acrylic resin is applied to the groove.

【0015】また、他の例として、特開平7−2372
29号公報では成形型と母材の間に活性エネルギ線硬化
樹脂を毛細管現象を利用して充填し、活性エネルギ線を
照射して硬化、成形させているしかしながら、上記従来
技術として挙げた特開平9−12733号公報や特開平
7−92319号公報ではいずれも樹脂の充填方法につ
いて詳しく開示しておらず、2P法で形成する或いは樹
脂を塗布する程度の記載に留まっている。
Another example is disclosed in Japanese Patent Application Laid-Open No. 7-2372.
In Japanese Patent No. 29, an active energy ray-curable resin is filled between a mold and a base material by using a capillary phenomenon, and is irradiated with active energy rays to be cured and molded. No. 9-12733 and Japanese Patent Application Laid-Open No. 7-92319 do not disclose in detail how to fill the resin, but only describe the formation by the 2P method or the application of the resin.

【0016】格子面又は成形面に樹脂を滴下又は塗布に
より任意の厚みに樹脂を充填する場合、樹脂の粘度が高
いと凹凸面であるため樹脂内に泡が混入しやすくなる。
反対に、樹脂の粘度が低いと泡の混入はないものの樹脂
厚を厚くできない欠点がある。
When filling the resin to an arbitrary thickness by dropping or coating the resin on the lattice surface or the molding surface, if the viscosity of the resin is high, bubbles are easily mixed into the resin because of the uneven surface.
On the other hand, when the viscosity of the resin is low, there is a drawback that the resin thickness cannot be increased although bubbles are not mixed.

【0017】また、特開平7−237229号公報では
毛細管現象を利用して樹脂を充填すると記載されてい
る。
Japanese Patent Application Laid-Open No. 7-237229 describes that the resin is filled by utilizing the capillary phenomenon.

【0018】この方法では確かに樹脂内部への泡の混入
はなくなるものの、2層或いはそれ以上の多層構造を有
する回析光学素子を紫外線硬化樹脂を用いて製造する際
に全てにこの樹脂充填方法を利用することはできない。
Although this method certainly eliminates the incorporation of bubbles into the interior of the resin, the method of filling the resin into the diffractive optical element having a multi-layer structure of two or more layers using an ultraviolet-curable resin is all necessary. Cannot be used.

【0019】例えば、格子形状を有する光学基材面と成
形型面との隙間が毛細現象を利用できる程度に存在する
としても充填する樹脂の粘度が高いと隙間に充填され
ず、又は充填されたとしても非常に長い時間を要するた
め生産的でないという欠点がある。
For example, even if there is a gap between the surface of the optical base material having the lattice shape and the surface of the molding die to such an extent that the capillary phenomenon can be used, if the viscosity of the resin to be filled is high, the gap is not filled or filled. However, there is a disadvantage that it is not productive because it takes a very long time.

【0020】本発明は、上記課題に鑑みてなされ、その
目的は、異なる材質を複数重ね合わた積層構造の光学素
子を高精度且つ容易に製造できる光学素子の製造方法並
びに光学素子を提供することである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing an optical element and an optical element capable of easily and accurately manufacturing an optical element having a laminated structure in which a plurality of different materials are stacked. is there.

【0021】[0021]

【課題を解決するための手段】上述の課題を解決し、目
的を達成するために、本発明の光学素子の製造方法は、
光学基材の格子形状面に対して所定の隙間を隔てて対向
するように対向部材を配置し、前記光学基材の格子形状
面と前記対向部材との所定の隙間を保持した状態で、該
光学基材と対向部材とを樹脂溶液中に浸した後、該隙間
に存在する樹脂を硬化させることにより該樹脂を該光学
基材に接合する。
In order to solve the above-mentioned problems and to achieve the object, a method for manufacturing an optical element according to the present invention comprises:
An opposing member is disposed so as to face the lattice-shaped surface of the optical substrate with a predetermined gap therebetween, and in a state where a predetermined gap between the lattice-shaped surface of the optical substrate and the opposing member is held, After immersing the optical base material and the facing member in a resin solution, the resin present in the gap is cured to join the resin to the optical base material.

【0022】また、本発明の光学素子の製造方法は、光
学基材の格子形状面に対して所定の隙間を隔てて対向す
るように対向部材を配置し、前記光学基材の格子形状面
と前記対向部材との所定の隙間を保持した状態で固定
し、該所定の隙間に樹脂溶液を圧力を加えて強制的に流
入させた後、該隙間に存在する樹脂を硬化させることに
より該樹脂を該光学基材に接合する。
Further, in the method of manufacturing an optical element according to the present invention, an opposing member is disposed so as to oppose a lattice-shaped surface of the optical base material with a predetermined gap therebetween, and the opposing member is arranged to be opposed to the lattice-shaped surface of the optical base material. After fixing the resin while maintaining a predetermined gap with the opposing member, forcing the resin solution into the predetermined gap by applying pressure, and then curing the resin existing in the gap, the resin is removed. It is bonded to the optical substrate.

【0023】[0023]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて添付図面を参照して詳細に説明する。 [第1の実施形態]図1は第1の実施形態の光学素子の
製造方法を示し、本発明の特徴を最もよく表す図であ
る。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. [First Embodiment] FIG. 1 shows a method of manufacturing an optical element according to a first embodiment, and is a view best representing the features of the present invention.

【0024】図1に示すように、1は格子形状を有する
光学基材であるところのランタン系ガラス(n=1.6
4,ν=60)、2は回析格子の2層目を形成するため
の成形型で、本例では光学基材1の面に対向する面が平
面である。3、4はそれぞれ格子形状を有する光学基材
1と成形型2の樹脂充填面と反対面に樹脂が付着するの
を防止するためのカバー、5は充填材6で満たされた容
器、6は充填材であるところの紫外線硬化樹脂で、ここ
では変性エポキシアクリレート(n=1.58,ν=3
0)である。
As shown in FIG. 1, reference numeral 1 denotes a lanthanum-based glass (n = 1.6), which is an optical substrate having a lattice shape.
4, ν = 60), 2 is a mold for forming the second layer of the diffraction grating, and in this example, the surface facing the surface of the optical substrate 1 is a plane. Reference numerals 3 and 4 denote covers for preventing the resin from adhering to the optical substrate 1 having the lattice shape and the surface opposite to the resin-filled surface of the molding die 2, reference numeral 5 denotes a container filled with the filler 6, and reference numeral 6 denotes a container. An ultraviolet-curing resin which is a filler, and here a modified epoxy acrylate (n = 1.58, ν = 3
0).

【0025】次に、図1を参照して2層からなる回析光
学素子の製造方法について説明する。
Next, a method of manufacturing a diffraction optical element having two layers will be described with reference to FIG.

【0026】紫外線硬化樹脂6を満たした容器5の中
に、カバー3で樹脂を充填する面とは反対面を覆った光
学基材をゆっくりと浸していく。
The optical substrate covered with the cover 3 on the opposite side to the surface to be filled with the resin is slowly immersed in the container 5 filled with the ultraviolet curing resin 6.

【0027】この時、紫外線硬化樹脂6の中に泡が混入
しないように使用している紫外線硬化樹脂の粘度と光学
基材1の材質や形状に適した速度で浸漬させる。
At this time, immersion is performed at a speed suitable for the viscosity of the UV-curable resin used and the material and shape of the optical substrate 1 so as to prevent bubbles from being mixed into the UV-curable resin 6.

【0028】ここでは、紫外線硬化樹脂の粘度を温度制
御して2500cpsに設定してある。
Here, the viscosity of the ultraviolet curable resin is set to 2500 cps by controlling the temperature.

【0029】同様に、紫外線硬化樹脂6の中にカバー4
で成形型2の樹脂を充填する面とは反対面を覆った成形
型2をゆっくりと浸していく。
Similarly, the cover 4 is placed in the ultraviolet curing resin 6.
Then, the molding die 2 covering the surface of the molding die 2 opposite to the surface to be filled with the resin is slowly immersed.

【0030】次に、不図示の外部測定制御装置により、
光学基材1と成形型2をゆっくりと近づけ光学基材1と
成形型2の間に所定の樹脂厚を形成できる距離を保ち、
且つ光学基材1と成形型2の平行度を保つ。
Next, an external measurement control device (not shown)
The optical substrate 1 and the molding die 2 are slowly brought close to each other, and a distance capable of forming a predetermined resin thickness between the optical substrate 1 and the molding die 2 is maintained.
In addition, the parallelism between the optical substrate 1 and the mold 2 is maintained.

【0031】本例では、光学基材1と成形型2の距離を
2μmとし、光学基材1と成形型2の平行度をニュート
ンリングで2本以内とした。
In this example, the distance between the optical substrate 1 and the mold 2 was 2 μm, and the parallelism between the optical substrate 1 and the mold 2 was within two Newton rings.

【0032】この状態で光学基材1と成形型2を徐々に
液面より引き上げる。
In this state, the optical substrate 1 and the mold 2 are gradually pulled up from the liquid surface.

【0033】紫外線硬化樹脂6の粘度や光学基材1と成
形型2の距離などによって紫外線硬化樹脂6が光学基材
1と成形型2を引き上げる速度によって液面に戻る速度
が異なるので適切な速度に調整して引き上げる。
The speed at which the UV-curable resin 6 returns to the liquid surface depends on the speed at which the UV-curable resin 6 pulls up the optical substrate 1 and the molding die 2 depending on the viscosity of the UV-curable resin 6 and the distance between the optical substrate 1 and the molding die 2. Adjust and raise.

【0034】不図示ではあるが、光学基材1と成形型2
を液面より引き上げ、紫外線硬化樹脂6が所望の硬化形
成位置にあることを確認して、図1の紙面に垂直方向と
上下方向から硬化させたい部位にのみ紫外線を適切な照
射量で照射する。
Although not shown, the optical substrate 1 and the molding die 2
Is pulled up from the liquid surface, and it is confirmed that the ultraviolet curing resin 6 is at a desired curing formation position, and ultraviolet rays are irradiated with an appropriate irradiation amount only to a portion to be cured from the vertical direction and the vertical direction on the paper surface of FIG. .

【0035】また、光学素材1は、紫外線照射において
紫外線硬化樹脂6の表面に未光硬化部が生じないように
不活性ガス、本例では窒素ガス雰囲気中に晒してある。
そして、図1の紙面に垂直方向と上下方向に表裏の両方
向より紫外線を照射し、硬化時間を30秒とする。
The optical material 1 is exposed to an inert gas atmosphere, in this embodiment, a nitrogen gas atmosphere, so that an unlight-cured portion is not formed on the surface of the ultraviolet-curable resin 6 by ultraviolet irradiation.
Then, ultraviolet rays are irradiated on the paper surface of FIG. 1 both vertically and vertically from both sides, and the curing time is set to 30 seconds.

【0036】引き続き、この光学基材1と成形型2の引
き上げと紫外線照射による硬化工程を間欠的に又は連続
的に行う。
Subsequently, the step of lifting the optical substrate 1 and the mold 2 and the step of curing by ultraviolet irradiation are performed intermittently or continuously.

【0037】次に、完全に光学基材1と成形型2を引き
上げ、余分な紫外線硬化樹脂6を除去する。
Next, the optical substrate 1 and the mold 2 are completely lifted, and the extra ultraviolet curable resin 6 is removed.

【0038】基材1の格子面上に形成した2層目の回析
光学素子面と成形型2を剥離し光学基材1とカバー3と
を剥離して図2に示す所望の2層からなる回析光学素子
を得る。
The surface of the second-layer diffraction optical element formed on the lattice plane of the substrate 1 is separated from the mold 2 and the optical substrate 1 and the cover 3 are separated from the desired two layers shown in FIG. To obtain a diffraction optical element.

【0039】上述の製法により2層からなる回析光学素
子を形成すると、紫外線硬化樹脂の粘度に関係なく泡が
混入しない回析光学素子が得られる。また、格子を有す
る光学基材と成形型の距離を精度良く平行度を保ちなが
ら2層からなる回析光学素子が得られる。
When a diffractive optical element having two layers is formed by the above-described method, a diffractive optical element in which bubbles are not mixed regardless of the viscosity of the ultraviolet curable resin can be obtained. Further, a diffraction optical element consisting of two layers can be obtained while maintaining the parallelism with high precision between the optical base having the grating and the mold.

【0040】本例では、成形型2として平面型を用いた
が、これに限らず例えば曲面型でも同じ効果を得ること
ができる。
In this embodiment, a flat mold is used as the molding die 2. However, the present invention is not limited to this. For example, the same effect can be obtained with a curved mold.

【0041】また、紫外線硬化樹脂の粘度が高くても樹
脂内に泡が混入するのを防ぎかつ樹脂厚を任意に調整で
きる。 [第2の実施形態]第2の実施形態では、上記第1の実
施形態の回析格子の2層目を形成するための成形型の代
わりに、光学基材1の格子面に対向する面形状を平面で
なく光学基材1と同様な格子形状を有する光学基材を用
いる。
Even if the viscosity of the ultraviolet curable resin is high, it is possible to prevent bubbles from being mixed into the resin and to adjust the resin thickness arbitrarily. [Second Embodiment] In the second embodiment, instead of the mold for forming the second layer of the diffraction grating of the first embodiment, the surface facing the lattice surface of the optical substrate 1 is used. An optical substrate having a lattice shape similar to that of the optical substrate 1 instead of a plane is used.

【0042】光学基材1の格子面に対向する光学基材と
して、ここでは光学基材1と同じランタン系ガラス(n
=1.64,ν=60)を用いる。
As an optical substrate opposed to the lattice plane of the optical substrate 1, here, the same lanthanum-based glass (n
= 1.64, ν = 60).

【0043】また、光学基材1とそれに対向した光学基
材との距離を0μmとし光学基材1とそれに対向した光
学基材の平行度は同じくニュートンリングで2本以内と
する。それ以外は第1の実施形態と同じ条件にて製造す
る。
The distance between the optical substrate 1 and the optical substrate facing the optical substrate 1 is set to 0 μm, and the parallelism between the optical substrate 1 and the optical substrate facing the optical substrate 1 is also set to within two Newton rings. Otherwise, it is manufactured under the same conditions as in the first embodiment.

【0044】第2の実施形態の製法では、図3に示す3
層からなる回析光学素子が形成され、第1の実施形態と
同様の効果が得られる。 [第3の実施形態]図4は第3の実施形態の光学素子の
製造方法を示し、本発明の特徴を最もよく表す図であ
る。
In the manufacturing method according to the second embodiment, the method shown in FIG.
A diffractive optical element composed of layers is formed, and the same effects as in the first embodiment can be obtained. [Third Embodiment] FIG. 4 shows a method of manufacturing an optical element according to a third embodiment and is a view best representing the features of the present invention.

【0045】図4に示すように、第3の実施形態では、
紫外線硬化樹脂6を充填させる光学基材1と成形型2は
図1と同じであるがそれらをカバーするカバー3とカバ
ー4は紫外線硬化樹脂6の液面と接触できるように容器
5に固定させるための不図示のアタッチメントを搭載し
た。
As shown in FIG. 4, in the third embodiment,
The optical substrate 1 and the mold 2 into which the ultraviolet curable resin 6 is filled are the same as those in FIG. 1, but the covers 3 and 4 covering them are fixed to the container 5 so as to be able to contact the liquid surface of the ultraviolet curable resin 6. (Not shown).

【0046】5は紫外線硬化樹脂6を満たした容器であ
るが、図1のように光学基材1と成形型2を樹脂液中に
全部浸すことがないので図1より小さい容器になってい
る。7は加圧機で不図示の速度を制御する駆動機構が搭
載されている。
Reference numeral 5 denotes a container filled with an ultraviolet curable resin 6, which is smaller than that shown in FIG. 1 because the optical substrate 1 and the mold 2 are not completely immersed in the resin liquid as shown in FIG. . Reference numeral 7 denotes a pressurizing machine having a drive mechanism for controlling a speed (not shown).

【0047】加圧機7を押し下げることで容器5内の紫
外線硬化樹脂6を上昇させて光学基材1と成形型2の隙
間に充填させる。8は容器5とアタッチメントを備えた
カバーとを隔離するための着脱可能な仕切り板である。
The ultraviolet curing resin 6 in the container 5 is raised by depressing the pressurizing machine 7 to fill the gap between the optical substrate 1 and the mold 2. Reference numeral 8 denotes a detachable partition plate for separating the container 5 from the cover provided with the attachment.

【0048】次に、図4を参照して2層からなる回析光
学素子の製造方法を詳細に説明する。
Next, a method of manufacturing a diffraction optical element having two layers will be described in detail with reference to FIG.

【0049】カバー3で樹脂を充填面とは反対面を覆っ
た光学基材1と、カバー4で成形型2の樹脂を充填する
面とは反対面を覆った成形型2とを紫外線硬化樹脂6を
満たした容器5にアタッチメントにより取り付け、光学
基材1と成形型2の間に所定の樹脂厚を形成できる距離
を保ち、且つ光学基材1と成形型2の平行度を保つよう
に不図示の外部測定制御装置にて保持する。本例では、
光学基材1と成形型2を数μm隔てて平行性を保ってい
る。
The cover 3 covers the optical substrate 1 on the opposite side to the resin-filled surface, and the cover 4 covers the molding die 2 on the opposite side to the resin-filled surface of the molding die 2. Attachment is made to the container 5 filled with the mold 6 with an attachment so that a distance for forming a predetermined resin thickness between the optical base 1 and the mold 2 is maintained, and that the optical base 1 and the mold 2 are maintained in parallel. It is held by the external measurement control device shown. In this example,
The optical substrate 1 and the mold 2 are kept parallel by a distance of several μm.

【0050】次に、仕切り板8を取り外し、加圧機7を
押し下げてゆっくりと紫外線硬化樹脂6に圧力を加えて
いき紫外線硬化樹脂6の液面を徐々に光学基材1と成形
型2に近づけていく。更に加圧機7を押し下げて光学基
材1と成形型2と紫外線硬化樹脂6の液面とを接触させ
た後、この数μmの隙間に紫外線硬化樹脂6を充填させ
る。
Next, the partition plate 8 is removed, the pressure machine 7 is depressed, and pressure is slowly applied to the ultraviolet curable resin 6 to gradually bring the liquid surface of the ultraviolet curable resin 6 closer to the optical substrate 1 and the mold 2. To go. Further, after the pressurizing machine 7 is pressed down to bring the optical substrate 1, the mold 2 and the liquid surface of the ultraviolet curable resin 6 into contact with each other, the ultraviolet curable resin 6 is filled into the gap of several μm.

【0051】この時、光学基材1と成形型2の隙間に入
る紫外線硬化樹脂6の中に泡が混入しないように使用す
る紫外線硬化樹脂の粘度と光学基材1と成形型2の材
質、形状に適した速度で加圧機7を押し下げていく。
At this time, the viscosity of the ultraviolet curable resin used to prevent bubbles from entering the ultraviolet curable resin 6 entering the gap between the optical substrate 1 and the mold 2 and the materials of the optical substrate 1 and the mold 2 The press 7 is pushed down at a speed suitable for the shape.

【0052】隙間に紫外線硬化樹脂6が充填された後、
光学基材1と成形型2の平行性を保持しつつ、成形型2
の光学基材1と対向する面と反対の外側から硬化させた
い部位にのみ紫外線を適切な照射量で照射する。
After the gap is filled with the ultraviolet curing resin 6,
While maintaining the parallelism between the optical substrate 1 and the molding die 2, the molding die 2
UV light is applied at an appropriate dose only to the portion to be cured from the outside opposite to the surface facing the optical substrate 1.

【0053】硬化後アタッチメントを外し、光学基材1
と成形型2を容器5から外し、次に成形型2を剥離する
ことで2層からなる回析光学素子が形成される。
After curing, the attachment is removed and the optical substrate 1 is removed.
Then, the mold 2 is removed from the container 5, and then the mold 2 is peeled off to form a two-layer diffraction optical element.

【0054】尚、第2の実施形態で示したような光学基
材1とそれに対向した光学基材との距離を0μmとした
回析光学素子を形成する場合は、初めに光学基材1とそ
れに対向した光学基材との距離を前述と同様に数μm隔
てておき、続いて、加圧機7をゆっくり押し下げ隙間に
紫外線硬化樹脂6を充填する。
When forming a diffraction optical element in which the distance between the optical substrate 1 and the optical substrate facing the optical substrate 1 as shown in the second embodiment is 0 μm, first, the optical substrate 1 The distance from the optical substrate facing the optical substrate is set at a distance of several μm in the same manner as described above, and then the pressing machine 7 is slowly pushed down to fill the gap with the ultraviolet curing resin 6.

【0055】次に、光学基材1とそれに対向した光学基
材との距離を徐々に縮めてその距離を0μmにする。そ
の後、紫外線を照射して硬化、剥離して2層からなる回
析光学素子を形成する。
Next, the distance between the optical substrate 1 and the optical substrate facing the optical substrate 1 is gradually reduced to make the distance 0 μm. Then, it is irradiated with ultraviolet rays, cured, and peeled off to form a two-layer diffraction optical element.

【0056】ここで用いた光学基材1と成形型2及び光
学基材1とそれに対向した光学基材、紫外線硬化樹脂6
は第1、第2実施形態と同じものを使用する。
The optical substrate 1 and the mold 2 used here, the optical substrate 1, the optical substrate facing the optical substrate 1, and the ultraviolet curable resin 6
Are the same as those in the first and second embodiments.

【0057】第3の実施形態の製法により2層又は3層
からなる回析光学素子を形成すると、第1の実施形態の
効果に加えて、第1の実施形態のように回析光学素子を
紫外線硬化樹脂に浸さないため、光学基材1とそれに対
向する成形型2や光学基材の取り扱い易さ及び平行度又
はその距離の制御性に優れているという効果がある。
When a diffractive optical element having two or three layers is formed by the manufacturing method of the third embodiment, the diffractive optical element as in the first embodiment can be used in addition to the effects of the first embodiment. Since the optical substrate 1 is not immersed in the ultraviolet curable resin, there is an effect that the optical substrate 1 and the mold 2 and the optical substrate facing the optical substrate 1 are easy to handle and have excellent parallelism or controllability of the distance.

【0058】また、紫外線硬化樹脂の中に回析光学素子
を浸さないため樹脂液が汚れない。また、容器が小さく
できるため液量が少なくて済む。更に、液性状、例えば
液温を制御しやすいという効果がある。
Further, since the diffractive optical element is not immersed in the ultraviolet curable resin, the resin liquid is not stained. Further, since the container can be made smaller, the amount of liquid can be reduced. Further, there is an effect that the liquid property, for example, the liquid temperature can be easily controlled.

【0059】また、紫外線硬化樹脂を樹脂液面より高い
位置で硬化させることにより、光学基材面に付着してい
る余分な紫外線硬化樹脂の硬化を防ぐことができる。
Further, by curing the ultraviolet curable resin at a position higher than the surface of the resin liquid, it is possible to prevent the excessive ultraviolet curable resin adhering to the optical substrate surface from being cured.

【0060】尚、本発明は、その趣旨を逸脱しない範囲
で実施形態を修正又は変形したものに適用可能である。
The present invention can be applied to a modified or modified embodiment without departing from the spirit of the invention.

【0061】[0061]

【発明の効果】以上説明したように、本発明によれば、
異なる材質を複数重ね合わせて構成される光学素子が材
料の制約を受けることなく高精度且つ容易に製造でき
る。
As described above, according to the present invention,
An optical element configured by stacking a plurality of different materials can be easily manufactured with high accuracy without being restricted by materials.

【0062】[0062]

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態の光学素子の製造方法を示し、
本発明の特徴を最もよく表す図である。
FIG. 1 shows a method for manufacturing an optical element according to a first embodiment,
FIG. 3 is a diagram best representing the features of the present invention.

【図2】本発明の製造方法によって製造される2層回析
光学素子の拡大断面図である。
FIG. 2 is an enlarged sectional view of a two-layer diffraction optical element manufactured by the manufacturing method of the present invention.

【図3】本発明の製造方法によって製造される3層回析
光学素子の拡大断面図である。
FIG. 3 is an enlarged sectional view of a three-layer diffraction optical element manufactured by the manufacturing method of the present invention.

【図4】第3の実施形態の光学素子の製造方法を示し、
本発明の特徴を最もよく表す図である。
FIG. 4 shows a method for manufacturing an optical element according to a third embodiment,
FIG. 3 is a diagram best representing the features of the present invention.

【図5】屈折光学素子と回析光学素子の分散の発生の仕
方を示した図である。
FIG. 5 is a diagram showing how dispersion occurs between a refractive optical element and a diffraction optical element.

【図6】位相型回析光学素子の回析効率の波長依存性を
示した図である。
FIG. 6 is a diagram showing the wavelength dependence of the diffraction efficiency of a phase type diffraction optical element.

【符号の説明】[Explanation of symbols]

1 光学基材 2 成形型 3、4 カバー 5 容器 6 紫外線硬化樹脂 7 加圧機 8 仕切り板 DESCRIPTION OF SYMBOLS 1 Optical base material 2 Mold 3, 4 Cover 5 Container 6 Ultraviolet curing resin 7 Pressing machine 8 Partition plate

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光学基材の格子形状面に対して所定の隙
間を隔てて対向するように対向部材を配置し、前記光学
基材の格子形状面と前記対向部材との所定の隙間を保持
した状態で、該光学基材と対向部材とを樹脂溶液中に浸
した後、該隙間に存在する樹脂を硬化させることにより
該樹脂を該光学基材に接合することを特徴とする光学素
子の製造方法。
An opposing member is disposed so as to face a lattice-shaped surface of an optical substrate with a predetermined gap therebetween, and a predetermined gap between the lattice-shaped surface of the optical substrate and the opposing member is maintained. In this state, after immersing the optical base material and the opposing member in a resin solution, the resin present in the gap is cured to join the resin to the optical base material. Production method.
【請求項2】 光学基材の格子形状面に対して所定の隙
間を隔てて対向するように対向部材を配置し、前記光学
基材の格子形状面と前記対向部材との所定の隙間を保持
した状態で固定し、該所定の隙間に樹脂溶液を圧力を加
えて強制的に流入させた後、該隙間に存在する樹脂を硬
化させることにより該樹脂を該光学基材に接合すること
を特徴とする光学素子の製造方法。
2. An opposing member is disposed so as to face a lattice-shaped surface of an optical base material with a predetermined gap therebetween, and holds a predetermined gap between the lattice-shaped surface of the optical base material and the opposing member. After the resin solution is forced into the predetermined gap by applying pressure to the gap, the resin present in the gap is cured to join the resin to the optical base material. A method for manufacturing an optical element.
【請求項3】 前記対向部材は、格子形状面を有する光
学基材又は型部材であることを特徴とする請求項1又は
2に記載の光学素子の製造方法。
3. The method for manufacturing an optical element according to claim 1, wherein the facing member is an optical base material or a mold member having a lattice-shaped surface.
【請求項4】 前記光学基材面と対向部材との隙間に充
填した樹脂を該樹脂液面より高い位置で硬化させること
を特徴とする請求項2に記載の光学素子の製造方法。
4. The method for manufacturing an optical element according to claim 2, wherein a resin filled in a gap between the optical substrate surface and the facing member is cured at a position higher than the resin liquid surface.
【請求項5】 前記樹脂は紫外線硬化樹脂であり、前記
光学基材と対向部材の一部又は全部を該紫外線硬化樹脂
溶液中に浸した後、該隙間に存在する紫外線硬化樹脂に
紫外線を照射して硬化させることを特徴とする請求項1
乃至4のいずれか1項に記載の光学素子の製造方法。
5. The resin is an ultraviolet-curable resin, and after immersing part or all of the optical substrate and the facing member in the ultraviolet-curable resin solution, irradiates the ultraviolet-curable resin existing in the gap with ultraviolet light. 2. The method of claim 1, further comprising:
5. The method for manufacturing an optical element according to claim 1.
【請求項6】 前記格子形状面は、所定次数の回析光に
エネルギを集中させるブレーズ化された断面形状を有す
る環状格子であることを特徴とする請求項1乃至5のい
ずれか1項に記載の光学素子の製造方法。
6. The apparatus according to claim 1, wherein the lattice-shaped surface is an annular lattice having a blazed cross-sectional shape for concentrating energy on diffraction light of a predetermined order. A method for producing the optical element described in the above.
【請求項7】 前記格子形状が、矩形形状を有する環状
格子或いはストライプ状格子であることを特徴とする請
求項1乃至6のいずれか1項に記載の光学素子の製造方
法。
7. The method for manufacturing an optical element according to claim 1, wherein the lattice shape is an annular lattice having a rectangular shape or a stripe lattice.
【請求項8】 請求項1乃至7のいずれか1項に記載の
方法により製造された光学素子。
8. An optical element manufactured by the method according to claim 1. Description:
JP10325634A 1998-11-16 1998-11-16 Production of optical element and optical element Withdrawn JP2000147226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10325634A JP2000147226A (en) 1998-11-16 1998-11-16 Production of optical element and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10325634A JP2000147226A (en) 1998-11-16 1998-11-16 Production of optical element and optical element

Publications (1)

Publication Number Publication Date
JP2000147226A true JP2000147226A (en) 2000-05-26

Family

ID=18179043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10325634A Withdrawn JP2000147226A (en) 1998-11-16 1998-11-16 Production of optical element and optical element

Country Status (1)

Country Link
JP (1) JP2000147226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107523A (en) * 2000-10-02 2002-04-10 Canon Inc Diffractive optical element and optical system using the same
WO2003079061A1 (en) * 2002-03-18 2003-09-25 Nikon Corporation Diffraction optical element and method for manufacturing the same, and optical device
CN103389532A (en) * 2012-05-11 2013-11-13 佳能株式会社 Laminated diffraction optical element and production method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107523A (en) * 2000-10-02 2002-04-10 Canon Inc Diffractive optical element and optical system using the same
JP4590082B2 (en) * 2000-10-02 2010-12-01 キヤノン株式会社 Diffractive optical element and optical system using the same
WO2003079061A1 (en) * 2002-03-18 2003-09-25 Nikon Corporation Diffraction optical element and method for manufacturing the same, and optical device
US6999235B2 (en) 2002-03-18 2006-02-14 Nikon Corporation Diffractive optical element, method of producing same, and optical apparatus
CN100347569C (en) * 2002-03-18 2007-11-07 株式会社尼康 Diffraction optical element and method for manufacturing the same, and optical device
CN103389532A (en) * 2012-05-11 2013-11-13 佳能株式会社 Laminated diffraction optical element and production method thereof
US9557454B2 (en) 2012-05-11 2017-01-31 Canon Kabushiki Kaisha Laminated diffraction optical element and production method therefor

Similar Documents

Publication Publication Date Title
US6999235B2 (en) Diffractive optical element, method of producing same, and optical apparatus
EP0824713B1 (en) Micro relief element and preparation thereof
JP5293186B2 (en) Si-O-containing hydrogenated carbon film, optical device including the same, and manufacturing method thereof
EP0795139B1 (en) Method for making surface relief profilers
JP4697584B2 (en) Diffractive optical element and method of manufacturing diffractive optical element
JP7127116B2 (en) Diffraction light guide plate and method for manufacturing diffraction light guide plate
WO2009098846A1 (en) Diffraction optical element and method for manufacturing same
JP5579067B2 (en) Lens assembly manufacturing method and camera equipped with such an assembly
US20100328743A1 (en) Optical system
KR101493156B1 (en) Manufacturing method of apodizer and optical module
CN111065941A (en) Method for manufacturing diffraction grating
JP2000147226A (en) Production of optical element and optical element
JP2008134630A (en) Molded product and method of producing same
US20030218803A1 (en) Method for manufacturing diffraction optical element
JP2012252113A (en) Method for manufacturing wafer lens
JP2017211466A (en) Diffraction optical element
JP2003262713A (en) Diffraction optical element and method for manufacturing diffraction optical element
CN111971590B (en) Resin laminated optical body and method for producing same
KR100985568B1 (en) Method for fabricating lens using stemps
JP2003227913A (en) Diffraction optical element
JPH1123820A (en) Manufacture of diffracting optical element and optical equipment with the same diffracting optical element
WO2022207784A1 (en) Wafer-level optics assembly with holographic optical element
JP2003303449A (en) Optical memory element
JP2004302007A (en) Optical waveguide member and optical memory element
JP2003228984A (en) Optical memory element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207