JP2000146705A - Method of measuring phase distribution by using grating shearing interferometer - Google Patents

Method of measuring phase distribution by using grating shearing interferometer

Info

Publication number
JP2000146705A
JP2000146705A JP10312824A JP31282498A JP2000146705A JP 2000146705 A JP2000146705 A JP 2000146705A JP 10312824 A JP10312824 A JP 10312824A JP 31282498 A JP31282498 A JP 31282498A JP 2000146705 A JP2000146705 A JP 2000146705A
Authority
JP
Japan
Prior art keywords
light
order
phase
interference fringes
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10312824A
Other languages
Japanese (ja)
Inventor
Ikusou Shiyu
郁葱 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10312824A priority Critical patent/JP2000146705A/en
Publication of JP2000146705A publication Critical patent/JP2000146705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an algorithm which is hardly affected by light of 0th order in a phase distribution measuring method using the grating shearing interferometer. SOLUTION: This method, using a grating shearing interferometer which has two equally formed phase type diffraction gratings 1 and 2 arranged in parallel to each other while having their pitches in the same direction, the phase type diffraction grating 2 which can shift in the pitch direction is used to measure the phase distribution of light E which is made incident on this interferometer. The method has a process for measuring the intensity distribution of 2N+1 interference fringes by shifting the phase type diffraction grating 2 by p/2N.j (j=0, 1, 2..., 2N), where (p) is the pitch of the gratings and N is a natural number of 3 or more, and a process for finding the phase distribution of the light E based on the N intensity distributions obtained by averaging the intensity distributions of (k)th (k=0, 1, 2... N) interference fringes and intensity distributions of (k+N)th interference fringes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光波の位相分布を
精密に計測するための干渉計に関し、特にグレーティン
グシアリング干渉計によって測定した干渉縞の強度分布
を処理するアルゴリズムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer for accurately measuring the phase distribution of a light wave, and more particularly to an algorithm for processing the intensity distribution of interference fringes measured by a grating shearing interferometer.

【0002】[0002]

【従来の技術】光波の位相分布を精密に計測するため
に、従来より、グレーティングシアリング干渉計が使用
されている。グレーティングシアリング干渉計とは、実
質的に同一に形成された2枚の位相型回折格子を、互い
に平行に、且つ格子のピッチ方向を同一の方向に向けて
配置し、2枚の回折格子のうちの少なくともいずれか一
方を、ピッチ方向にシフト可能に配置したものである。
ここで、第1の位相型回折格子をm次光として通過し、
第2の位相型回折格子を−m次光として通過した光を、
m次結像光と呼ぶこととする。グレーティングシアリン
グ干渉計は、1次結像光と−1次結像光との干渉による
干渉縞の強度分布を測定し、この測定を、一方の位相型
回折格子をシフトしながら繰り返すことによって、干渉
計に入射する光の位相分布を測定するものである。
2. Description of the Related Art A grating shearing interferometer has been conventionally used to accurately measure the phase distribution of a light wave. A grating shearing interferometer is a device in which two phase-type diffraction gratings formed substantially identically are arranged parallel to each other and the pitch direction of the gratings is oriented in the same direction. Is arranged so as to be shiftable in the pitch direction.
Here, the light passes through the first phase type diffraction grating as m-order light,
Light that has passed through the second phase type diffraction grating as -m order light,
It is referred to as an m-th order imaging light. The grating shearing interferometer measures the intensity distribution of interference fringes due to interference between the primary imaging light and the primary imaging light, and repeats this measurement while shifting one of the phase-type diffraction gratings. It measures the phase distribution of light incident on the meter.

【0003】そして、従来より用いられている計測方法
のうち、例えば5バケット法とは、格子のピッチをpと
するとき、一方の位相型回折格子をp/8・j(j=
0,1,2,3,4)ずつシフトして、都合5個の干渉
縞の強度分布Ijを測定し、次式によって、波面の位相
分布θ″を求めるものであった。
[0003] Among the conventionally used measurement methods, for example, the 5-bucket method is such that when the pitch of the grating is p, one of the phase type diffraction gratings is p / 8 · j (j =
0, 1, 2, 3, 4), the intensity distribution I j of five convenient interference fringes is measured, and the phase distribution θ ″ of the wavefront is obtained by the following equation.

【0004】[0004]

【発明が解決しようとする課題】グレーティングシアリ
ング干渉計を構成する各々の位相型回折格子の段差の高
さは、0次光の強度が0となるように設計されている。
しかしながら、実際の段差は設計値通りの高さになると
は限らず、もしも実際の段差が設計値と異なるときに
は、0次光が存在することとなるから、干渉縞の強度に
影響を与え、測定精度の低下を招くこととなる。したが
って本発明は、グレーティングシアリング干渉計を用い
た位相分布の計測方法において、0次光による影響を受
けにくいアルゴリズムを提供することを課題とする。
The height of the step of each phase type diffraction grating constituting the grating shearing interferometer is designed so that the intensity of the zero-order light becomes zero.
However, the actual step does not always have the height as designed, and if the actual step is different from the designed value, the zero-order light will be present. This leads to a decrease in accuracy. Therefore, an object of the present invention is to provide an algorithm that is less affected by zero-order light in a phase distribution measurement method using a grating shearing interferometer.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、すなわち、実質的に同
一に形成された2枚の位相型回折格子を、互いに平行
に、且つ格子のピッチ方向を同一の方向に向けて配置
し、該2枚の位相型回折格子のうちの少なくともいずれ
か一方を、前記ピッチ方向にシフト可能に配置したグレ
ーティングシアリング干渉計を用い、該干渉計に入射す
る光の位相分布を計測する方法において、前記格子のピ
ッチをpとし、Nを3以上の自然数とするとき、前記い
ずれか一方の位相型回折格子を、p/2N・j(j=
0,1,2,‥‥,2N)ずつシフトして、都合2N+
1個の干渉縞の強度分布を測定する工程と、第k番目
(k=0,1,2,‥‥,N)の干渉縞の強度分布と、
第k+N番目の干渉縞の強度分布とを平均して得られる
都合N個の強度分布に基づいて、前記光の位相分布を求
める工程とを有することを特徴とする、グレーティング
シアリング干渉計を用いた位相分布の計測方法である。
なお、平均に代えて合計を用いたとしても、本質的に差
異がないこと明らかである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, that is, two phase-type diffraction gratings formed substantially identically are arranged in parallel with each other and in parallel with each other. Are arranged in the same direction, and at least one of the two phase-type diffraction gratings is provided with a grating shearing interferometer arranged so as to be shiftable in the pitch direction. In the method for measuring the phase distribution of incident light, when the pitch of the grating is p and N is a natural number of 3 or more, one of the phase type diffraction gratings is set to p / 2N · j (j =
0, 1, 2,..., 2N) by 2N +
Measuring the intensity distribution of one interference fringe, the intensity distribution of the k-th (k = 0, 1, 2,..., N) interference fringe;
Obtaining a phase distribution of the light based on N convenient intensity distributions obtained by averaging the intensity distributions of the (k + N) th interference fringes, using a grating shearing interferometer. This is a method for measuring the phase distribution.
It is clear that there is essentially no difference even if the sum is used instead of the average.

【0006】その際、N=4として一方の位相型回折格
子をp/8・j(j=0,1,2,‥‥,8)ずつシフ
トして、都合9個の干渉縞の強度分布Ijを測定し、次
の(2)式によって、光の位相分布θ′を求めことがで
きる。
At this time, one phase type diffraction grating is shifted by p / 8 · j (j = 0, 1, 2, ‥‥, 8) by setting N = 4, and the intensity distribution of nine interference fringes is conveniently obtained. By measuring I j , the phase distribution θ ′ of light can be obtained by the following equation (2).

【0007】[0007]

【発明の実施の形態】本発明の実施の形態を図面によっ
て説明する。図1は本発明方法を適用するグレーティン
グシアリング干渉計を示す。第1の位相型回折格子1
と、第2の位相型回折格子2とは、実質的に同一に形成
されており、両回折格子1,2は、互いに平行に配置さ
れ、且つ格子のピッチ方向を同一の方向に向けて配置さ
れている。図1では、干渉計に入射する光Eの方向、す
なわち波面の進行方向をwとし、波面方向wに直交する
2方向をx方向とy方向とし、このうち格子のピッチ方
向をx方向としている。第2の位相型回折格子2は、ピ
ッチ方向すなわちx方向にシフトできるように、ピエゾ
素子3によって駆動されている。2枚の回折格子を通過
した光は、入射光Eの波面に応じた干渉縞を作り、その
干渉縞はCCDカメラ4によって撮像される。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a grating shearing interferometer to which the method of the present invention is applied. First phase type diffraction grating 1
And the second phase type diffraction grating 2 are formed substantially identically, the two diffraction gratings 1 and 2 are arranged in parallel with each other, and the pitch directions of the gratings are oriented in the same direction. Have been. In FIG. 1, the direction of the light E incident on the interferometer, that is, the traveling direction of the wavefront is defined as w, and two directions orthogonal to the wavefront direction w are defined as x and y directions, and the pitch direction of the grating is defined as x direction. . The second phase diffraction grating 2 is driven by a piezo element 3 so as to be able to shift in the pitch direction, that is, in the x direction. The light that has passed through the two diffraction gratings forms interference fringes corresponding to the wavefront of the incident light E, and the interference fringes are imaged by the CCD camera 4.

【0008】また、上記の構成では、入射光Eのx方向
の波面の差分のみを知ることができる。そこで、入射光
Eと干渉計との位置関係を光軸回りに90°回転するこ
とにより、y方向の波面の差分を知ることができ、これ
らの結果を積分することによって、入射光の位相分布を
求めることができる。入射光と干渉計との位置関係を光
軸回りに90°回転する方法としては、干渉計を固定し
て入射光を回転しても良いし、入射光を固定して干渉計
の方を回転しても良い。
In the above configuration, only the difference between the wavefronts of the incident light E in the x direction can be known. Therefore, by rotating the positional relationship between the incident light E and the interferometer by 90 ° around the optical axis, the difference between the wavefronts in the y direction can be known. By integrating these results, the phase distribution of the incident light can be obtained. Can be requested. As a method of rotating the positional relationship between the incident light and the interferometer by 90 ° around the optical axis, the interferometer may be fixed and the incident light may be rotated, or the incident light may be fixed and the interferometer is rotated. You may.

【0009】以下の説明において、2枚の回折格子1,
2を通過した後の回折光を結像光と呼び、1枚目の回折
格子1をm次光として通過し、2枚目の回折格子2を−
m次光として通過した結像光をm次結像光と呼ぶことと
する。また、±3次までの結像光E0、E1、E-1
3、E-3までを考慮して、より高次の結像光は無視す
ることとし、3次結像光E3と−3次結像光E-3との干
渉による干渉縞も無視することとする。
In the following description, two diffraction gratings 1
2 is called imaging light, the first diffraction grating 1 is passed as m-order light, and the second diffraction grating 2 is-.
The imaging light that has passed as the m-th order light is referred to as the m-th order imaging light. Further, imaging light E 0 , E 1 , E −1 , up to ± 3 order,
Taking into account the up E 3, E -3, higher order imaging light and ignoring, ignore the interference fringes due to interference between the 3 image-forming light E 3 and -3 image formation light E -3 I decided to.

【0010】位相差が0の領域とρの領域とが、デュー
ティー比1にて周期的に繰り返す2値の位相型回折格子
に、光が垂直入射すると、 m:回折光の強度比 ρ:位相型回折格子の位相差 m:回折次数 となる。
When light is vertically incident on a binary phase type diffraction grating in which a region having a phase difference of 0 and a region having ρ are periodically repeated at a duty ratio of 1, A m : intensity ratio of diffracted light ρ: phase difference of phase type diffraction grating m: diffraction order

【0011】式(3)より、0次光の光量を0とするた
めには、ρ=π,3π,5π,‥‥などに設定すれば良
いが、実際には回折格子の製造上の公差があるために、
ρ≠π,3π,5π,‥‥となるおそれがあり、すなわ
ち0次光の光量が0とならないおそれがある。したがっ
て考慮対象となる干渉縞は、(a)1次と−1次、
(b)0次と1次、 及び(c)0次と−1次、
(d)0次と3次、 及び(e)0次と−3次、
(f)1次と3次、 及び(g)−1次と−3次、
(h)1次と−3次、 及び(i)−1次と3次、の結
像光の組み合わせによる都合9種類の干渉縞である。但
し、これらの干渉縞の位相分布のうち、(b)は(c)
と等しく、(d)は(e)と等しく、(f)は(g)と
等しく、(h)は(i)と等しい。
From equation (3), to set the light quantity of the zero-order light to 0, it is sufficient to set ρ = π, 3π, 5π, ‥‥, etc. Because there is
There is a possibility that ρ ≠ π, 3π, 5π, ‥‥, that is, the light amount of the zero-order light may not become zero. Therefore, the interference fringes to be considered are (a) primary and −1 order,
(B) 0th and 1st order, and (c) 0th and -1st order,
(D) 0th and 3rd order, and (e) 0th and -3rd order,
(F) primary and tertiary, and (g) -1 and -3,
There are nine types of convenient interference fringes due to combinations of (h) primary and tertiary and (i) -1 and tertiary imaging light. However, of the phase distribution of these interference fringes, (b) is (c)
(D) is equal to (e), (f) is equal to (g), and (h) is equal to (i).

【0012】これらの干渉縞のうち、1次と−1次とに
よる干渉縞の位相分布θが、必要な信号であり、その他
の干渉縞の位相分布はノイズである。また、本発明の目
的とするところは、回折格子の製造上の公差によって0
次光が存在する場合にも、0次結像光を含む組み合わ
せ、すなわち、0次と±1次、及び0次と±3次の干渉
縞の位相分布を、分布のない直流信号として、ノイズと
ならないようにするアルゴリズムを提供するところにあ
る。
[0012] Of these interference fringes, the phase distribution θ of the interference fringes due to the first order and the -1st order is a necessary signal, and the phase distribution of the other interference fringes is noise. Further, an object of the present invention is to set the zero due to the manufacturing tolerance of the diffraction grating.
Even in the presence of the secondary light, the combination including the zero-order imaging light, that is, the phase distribution of the 0th-order and ± 1st-order and the 0th-order and ± 3rd-order interference fringes is regarded as a distribution-free DC signal as noise. The algorithm is to provide an algorithm that prevents this from happening.

【0013】上記(3)式は、第1の位相型回折格子を
通過した時点での強度比であるが、第2の位相型回折格
子を通過する際にも、ほぼ同様の強度比となる。したが
って、2枚の回折格子を通過した後の結像光の強度比は
(Am2となるから、振幅比はAmとなる。したがっ
て、m次結像光の光波Emは、 k:光の波数 wm:波面の位置 と表わされる。
The above equation (3) is the intensity ratio at the time of passing through the first phase type diffraction grating, but becomes substantially the same when passing through the second phase type diffraction grating. . Thus, since the two diffraction gratings the intensity ratio of the imaging light which has passed through the (A m) 2, the amplitude ratio is A m. Thus, the light wave E m of the m-th imaging light, k: wave number of light w m : position of wave front

【0014】0次結像光の波面w0を、 w0=w(x,y) とし、1次結像光と−1次結像光とのx方向のシヤ量を
Δとすると、m次結像光の波面wmは、 wm=w(x+mΔ/2,y) である。
Assuming that the wavefront w 0 of the zero -order imaging light is w 0 = w (x, y) and the shear amount in the x direction between the primary imaging light and the −1st-order imaging light is Δ, m The wavefront w m of the next imaging light is: w m = w (x + mΔ / 2, y)

【0015】結像光どうしの干渉による干渉縞強度I
は、 θm,n:m次光とn次光との干渉による干渉縞の位相分
布 θm,n≡k(wm−wn) となる。
Interference fringe intensity I due to interference between imaging light beams
Is θ m, n : The phase distribution of interference fringes due to interference between the m- th light and the n-th light θ m, n ≡k (w m −w n ).

【0016】ここで、第2の回折格子2をx方向にΔx
だけシフトすると、m次結像光の位相は、 Δφ:m次結像光の位相シフト量 p:回折格子のピッチ だけシフトする。
Here, the second diffraction grating 2 is moved in the x direction by Δx
, The phase of the m-order imaging light becomes Δφ: Phase shift amount of m-order imaging light p: Shift by the pitch of diffraction grating

【0017】したがって、m次結像光の光波Emは、 となり、結像光どうしの干渉による干渉縞強度Iは、 Δm,n:次数差、Δm,n≡|m−n| となる。[0017] Thus, the light wave E m of the m-th imaging light, And the interference fringe intensity I due to the interference between the imaging light is Δ m, n : order difference, Δ m, n ≡ | mn−

【0018】さて、(7)式において、1次光と−1次
光とによる干渉縞の強度分布が、元の強度分布に復する
ためには、 2π・[1−(−1)]・Δx/p=2π 故に、 Δx=p/2 となる。すなわち、1次光と−1次光とによる干渉縞
は、p/2のピッチにて変化する。それ故従来は、2枚
の回折格子のシフト量の上限をp/2としていた。
In the equation (7), in order for the intensity distribution of the interference fringes due to the primary light and the −1st light to return to the original intensity distribution, 2π · [1-(− 1)] · Δx / p = 2π Therefore, Δx = p / 2. That is, the interference fringes due to the first-order light and the minus first-order light change at a pitch of p / 2. Therefore, conventionally, the upper limit of the shift amount of the two diffraction gratings is set to p / 2.

【0019】しかるに、例えば1次光と0次光とによる
干渉縞の強度分布が、元の強度分布に復するためには、 2π・[1−0]・Δx/p=2π 故に、 Δx=p となる。すなわち、0次光と±1次光とによる干渉縞
は、pのピッチにて変化する。また、3次光と0次光と
による干渉縞の強度分布が、元の強度分布に復するため
には、 2π・[3−0]・Δx/p=2π 故に、 Δx=p/3 となる。すなわち、0次光と±3次光とによる干渉縞
は、p/3のピッチにて変化する。
However, for example, in order for the intensity distribution of the interference fringes by the first-order light and the zero-order light to return to the original intensity distribution, 2π · [1-0] · Δx / p = 2π p. That is, the interference fringes due to the zero-order light and the ± first-order light change at a pitch of p. Further, in order for the intensity distribution of the interference fringes due to the third-order light and the zero-order light to return to the original intensity distribution, 2π · [3-0] · Δx / p = 2π Therefore, Δx = p / 3 Become. That is, the interference fringes due to the 0th-order light and the ± 3rd-order light change at a pitch of p / 3.

【0020】そこで、シフト量がp/2だけ異なる1対
のデータの平均を取ることとすると、1次光と−1次光
とによる干渉縞の強度分布は、両データで同じであるか
ら、単に同一の強度分布を2倍して2で割っただけとな
る。しかるに0次光と±1次光とによる干渉縞の強度分
布は、両データで位相が反転しているから、交流成分は
0となる。同様に、0次光と±3次光とによる干渉縞の
強度分布も、両データで位相が反転しているから、交流
成分は0となる。すなわち0次光との干渉による干渉縞
の交流成分は、すべて0となる。
Therefore, if an average of a pair of data whose shift amounts are different by p / 2 is to be averaged, the intensity distribution of interference fringes by the primary light and the −1st light is the same for both data. Simply doubling the same intensity distribution and dividing by two. However, in the intensity distribution of the interference fringes due to the zero-order light and the ± first-order light, the AC component is zero because the phases are inverted in both data. Similarly, the intensity distribution of the interference fringes due to the zero-order light and the ± third-order light also has an AC component of zero because the phases are inverted between the two data. That is, the AC components of the interference fringes due to the interference with the zero-order light are all zero.

【0021】他方、例えば3次光と1次光とによる干渉
縞の強度分布が、元の強度分布に復するためには、 2π・[3−1]・Δx/p=2π 故に、 Δx=p/2 となる。すなわち、±1次光と±3次光(複号同順)と
による干渉縞は、p/2のピッチにて変化する。したが
ってシフト量がp/2だけ異なる1対のデータの平均を
取ることとしても、元のデータと同じになる。
On the other hand, for example, in order for the intensity distribution of the interference fringes due to the third-order light and the first-order light to return to the original intensity distribution, 2π · [3-1] · Δx / p = 2π Therefore, Δx = p / 2. That is, the interference fringes due to the ± 1st-order light and ± 3rd-order light (in the same order of the decoding) change at a pitch of p / 2. Therefore, even if an average of a pair of data whose shift amounts are different by p / 2 is taken, the result is the same as the original data.

【0022】同様に、3次光と−1次光とによる干渉縞
の強度分布が、元の強度分布に復するためには、 2π・[3−(−1)]・Δx/p=2π 故に、 Δx=p/4 となる。すなわち、3次光と−1次光とによる干渉縞、
あるいは1次光と−3次光とによる干渉縞は、p/4の
ピッチにて変化する。したがってシフト量がp/2だけ
異なる1対のデータの平均を取ることとしても、元のデ
ータと同じになる。
Similarly, in order for the intensity distribution of the interference fringes due to the third-order light and the −1st-order light to return to the original intensity distribution, 2π · [3-(− 1)] · Δx / p = 2π Therefore, Δx = p / 4. That is, interference fringes due to the third-order light and the -1st-order light,
Alternatively, the interference fringes due to the primary light and the tertiary light change at a pitch of p / 4. Therefore, even if an average of a pair of data whose shift amounts are different by p / 2 is taken, the result is the same as the original data.

【0023】以上のように、シフト量がp/2だけ異な
る1対のデータの平均を取ることとすると、0次光との
干渉は、次数差が奇数となるために、干渉縞の交流成分
はすべて0となる。他方、次数差が偶数となるその他の
干渉縞についてのデータは変化がないから、0次光によ
る影響を削除することができる。
As described above, if an average of a pair of data whose shift amounts are different from each other by p / 2 is to be averaged, the interference with the zero-order light has an odd-order difference, and therefore the AC component of the interference fringe Are all 0. On the other hand, since there is no change in the data on other interference fringes having an even difference in the order, the influence of the zero-order light can be eliminated.

【0024】次に、1次光と−1次光による干渉縞は、
p/2のピッチにて変化する。そこで、p/2の区間を
4等分して、第2の回折格子2をp/8づつシフトする
場合について説明する。この場合、従来の手法では5個
のデータだけを取るために、5バケット法と呼ばれてい
る。しかるに本発明では、pだけの区間を8等分して都
合9個のデータを取り、次いでシフト量がp/2だけ異
なる1対のデータの平均を取る。したがって2重5バケ
ット法と呼ぶことができる。
Next, interference fringes due to the primary light and the −1st light are
It changes at a pitch of p / 2. Therefore, a case in which the section of p / 2 is divided into four equal parts and the second diffraction grating 2 is shifted by p / 8 will be described. In this case, since the conventional method takes only five data, it is called a five-bucket method. However, in the present invention, the section of only p is divided into eight equal parts to obtain nine pieces of data, and then the average of a pair of data having shift amounts different by p / 2 is obtained. Therefore, it can be called a double 5-bucket method.

【0025】いま、 Δx=jp/8(j=0〜8) とした場合の干渉縞の強度分布を、それぞれ、 Ij(j=0〜8) とすると、 となる。If the intensity distribution of interference fringes when Δx = jp / 8 (j = 0 to 8) is I j (j = 0 to 8), Becomes

【0026】シフト量がp/2だけ異なる1対のデータ
の平均に代えて、合計を取ると、 となる。既述のごとく、次数差Δm,nが奇数のときに
は、右辺第2項は0となり、すなわち交流成分が消去さ
れる。
When the sum is taken instead of the average of a pair of data in which the shift amount differs by p / 2, Becomes As described above, when the order difference Δ m, n is an odd number, the second term on the right side becomes 0, that is, the AC component is eliminated.

【0027】簡単のために、結像光の振幅Amを±1次
光の振幅A1で規格化して、A1=1とすると、 となる。但し、θ≡θ1,-1である。
[0027] For simplicity, normalized by the amplitude A 1 of the amplitude A m of the imaging light ± 1-order light, when A 1 = 1, Becomes However, θ≡θ 1, -1 .

【0028】sinθの項を集めると、 となる。同様に、cosθの項を集めると、 となる。すなわち、直流成分の項と次数差が4次となる
項が消去される。
When the terms of sin θ are collected, Becomes Similarly, if we collect cosθ terms, Becomes That is, a term having a fourth order difference from the DC component term is eliminated.

【0029】上記両式より、 となる。From the above equations, Becomes

【0030】必要とする干渉縞の位相分布はθである
が、(2)式で定義されるθ′を用いることとすると、 となる。したがってθ′を用いることによる誤差Δθ′
は、 となる。
The required phase distribution of the interference fringes is θ. If θ ′ defined by equation (2) is used, Becomes Therefore, the error Δθ ′ by using θ ′
Is Becomes

【0031】他方、従来は前記(1)式によるθ″を用
いていた。そこで、(8)式を(1)式に代入すると、 k≡21/2/2 となる。
On the other hand, conventionally, θ ″ according to the above equation (1) is used. Therefore, when equation (8) is substituted into equation (1), k≡2 1/2 / 2.

【0032】したがって、(1)式のθ″を用いること
による誤差をΔθ″とすると、 となる。
Therefore, assuming that the error caused by using θ ″ in equation (1) is Δθ ″, Becomes

【0033】(11)式に示されるように、θ′を用い
ることによる誤差要因は、±1次光と±3次光(複号同
順)との干渉縞だけであり、0次光の影響は除外されて
いる。しかるにθ″を用いることによる誤差要因は、±
1次光と±3次光(複号同順)との干渉縞のほか、0次
光と±1次光との干渉縞、及び0次光と±3次光との干
渉縞がある。それ故、従来の5バケット法に代えて、本
発明による2重5バケット法を用いることにより、測定
精度の向上を図ることができる。
As shown in equation (11), the only error factor due to the use of θ 'is the interference fringe between the ± 1st-order light and the ± 3rd-order light (in the same order as the sign), and Effects have been excluded. However, the error factor due to the use of θ ″ is ±
In addition to interference fringes between the primary light and the ± third-order light (in the same order as the double sign), there are interference fringes between the zero-order light and the ± first-order light and interference fringes between the zero-order light and the ± third-order light. Therefore, by using the double 5-bucket method according to the present invention instead of the conventional 5-bucket method, measurement accuracy can be improved.

【0034】次に具体的な数値を挙げて説明する。
(3)式より、0次光の光量を0とするためには、ρ=
π,3π,5πなどに設定すれば良い。短波長の光に対
しても適度の段差を持つように、ρ=3πに設定したと
すると、 λ:光の波長 d:位相型回折格子の段差の高さ n:位相型回折格子の硝材 となる。したがって、 となるように、段差dを設計すれば良い。
Next, specific numerical values will be described.
From equation (3), in order to set the light quantity of the zero-order light to 0, ρ =
It may be set to π, 3π, 5π, or the like. Assuming that ρ = 3π is set so as to have an appropriate step even for light of short wavelength, λ: wavelength of light d: height of the step of the phase type diffraction grating n: glass material of the phase type diffraction grating Therefore, What is necessary is just to design step d so that it may become.

【0035】しかるに、段差dには製作上の公差を考慮
する必要がある。いま、段差dに±Δdだけの誤差が生
じたとすると、位相型回折格子の位相差ρは、 となる。例えば、 λ=193nm Δd=±30nm n=1.5 とすると、0次結像光、±1次結像光、±3次結像光の
振幅比A0、A1、A3は、Δd=30nmの場合も、Δ
d=−30nmの場合も、 となる。
However, it is necessary to consider a manufacturing tolerance for the step d. Now, assuming that an error of ± Δd occurs in the step d, the phase difference ρ of the phase type diffraction grating becomes Becomes For example, if λ = 193 nm Δd = ± 30 nm n = 1.5, the amplitude ratios A 0 , A 1 , and A 3 of the zero- order imaging light, the ± first-order imaging light, and the ± third-order imaging light are Δd = 30 nm, Δ
When d = −30 nm, Becomes

【0036】更に、結像光の振幅比AmをA1で規格化す
ると、 となる。
Furthermore, when the amplitude ratio A m of the imaging light is normalized by A 1, Becomes

【0037】±3次光に起因する測定誤差θ′は、(1
1)式で与えられるが、これとのアナロジーから、0次
光に起因する測定誤差Δθ0は、 によって見積もることができる。但しαは、適当な角度
である。
The measurement error θ ′ caused by the ± 3rd-order light is (1
From the analogy with this, the measurement error Δθ 0 due to the zero-order light is Can be estimated by Where α is an appropriate angle.

【0038】(13)式の極値を調べるために、Δθ0
をαで微分した結果を0と置くと、 cosα=−A0=−0.153 となるから、 α1=98.8°;α2=261.2° となる。実際には、α1が(13)式の最小値を与え、
α2が最大値を与えるから、その差は、 となる。
In order to check the extreme value of the equation (13), Δθ 0
If the result obtained by differentiating with respect to α is set to 0, cos α = −A 0 = −0.153, so that α 1 = 98.8 °; α 2 = 261.2 °. In practice, α 1 gives the minimum value of equation (13),
Since α 2 gives the maximum value, the difference is Becomes

【0039】すなわち、波面wの最大誤差(ピーク・バ
レー値)Δwp-vは、 Δwp-v=0.307/2π・λ =0.0489λ となるから、rms(自乗平均平方根)誤差Δw
rmsは、 Δwrms≒Δwp-v/5 ≒0.01λ となる。このように本発明による2重5バケット法によ
れは、0次光の光量が残っているとしても、その影響を
受けないので、従来の5バケット法と比べて、rms値
で0.01λ程度の測定誤差を除外することができる。
That is, since the maximum error (peak valley value) Δw pv of the wavefront w is Δw pv = 0.307 / 2π · λ = 0.0489λ, the rms (root mean square) error Δw
rms is Δw rms ≒ Δw pv / 5 0.01λ. As described above, according to the double 5-bucket method according to the present invention, even if the light quantity of the 0th-order light remains, it is not affected by the light quantity. Therefore, compared with the conventional 5-bucket method, the rms value is about 0.01λ. Can be excluded.

【0040】[0040]

【発明の効果】以上のように本発明方法によれば、回折
格子の製造上の公差などに起因して0次光が存在する場
合にも、0次光を含む干渉縞の位相分布は、一様な信号
となる。したがって、測定しようとする光の位相分布の
測定精度の向上を図ることができる。
As described above, according to the method of the present invention, the phase distribution of the interference fringes including the zero-order light can be obtained even when the zero-order light exists due to the manufacturing tolerance of the diffraction grating. It becomes a uniform signal. Therefore, the measurement accuracy of the phase distribution of the light to be measured can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を適用するグレーティングシアリン
グ干渉計の一例を示す、(A)側面図、(B)A図中B
−B線矢視図である。
FIG. 1A is a side view showing one example of a grating shearing interferometer to which the method of the present invention is applied, and FIG.
FIG.

【符号の説明】[Explanation of symbols]

1…第1位相型回折格子 2…第2位相型回折
格子 3…ピエゾ素子 4…CCDカメラ E…入射光 E0、E1、E-1、E
3、E-3…結像光
1 ... first phase type diffraction grating 2 ... second phase type diffraction grating 3 ... piezoelectric elements 4 ... CCD camera E ... incident light E 0, E 1, E -1 , E
3 , E -3 ... imaging light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】実質的に同一に形成された2枚の位相型回
折格子を、互いに平行に、且つ格子のピッチ方向を同一
の方向に向けて配置し、該2枚の位相型回折格子のうち
の少なくともいずれか一方を、前記ピッチ方向にシフト
可能に配置したグレーティングシアリング干渉計を用
い、該干渉計に入射する光の位相分布を計測する方法に
おいて、 前記格子のピッチをpとし、Nを3以上の自然数とする
とき、前記いずれか一方の位相型回折格子を、p/2N
・j(j=0,1,2,‥‥,2N)ずつシフトして、
都合2N+1個の干渉縞の強度分布を測定する工程と、 第k番目(k=0,1,2,‥‥,N)の干渉縞の強度
分布と、第k+N番目の干渉縞の強度分布とを平均して
得られる都合N個の強度分布に基づいて、前記光の位相
分布を求める工程とを有することを特徴とする、グレー
ティングシアリング干渉計を用いた位相分布の計測方
法。
1. Two phase-type diffraction gratings formed substantially identically are arranged parallel to each other and with the pitch direction of the gratings oriented in the same direction. At least one of them, using a grating shearing interferometer arranged so as to be shiftable in the pitch direction, in a method of measuring the phase distribution of light incident on the interferometer, wherein the pitch of the grating is p, and N is When a natural number of 3 or more, one of the phase type diffraction gratings is p / 2N
・ J (j = 0, 1, 2, ‥‥, 2N)
Measuring the intensity distribution of the 2N + 1 interference fringes, the intensity distribution of the k-th (k = 0, 1, 2,..., N) interference fringe, the intensity distribution of the k + N-th interference fringe, Obtaining a phase distribution of the light based on the N intensity distributions obtained by averaging the phase distributions, and measuring the phase distribution using a grating shearing interferometer.
【請求項2】前記いずれか一方の位相型回折格子を、p
/8・j(j=0,1,2,‥‥,8)ずつシフトし
て、都合9個の干渉縞の強度分布Ijを測定する工程
と、 次式によって、前記光の位相分布θを求める工程とを有
することを特徴とする、請求項1記載のグレーティング
シアリング干渉計を用いた位相分布の計測方法。
2. The method according to claim 1, wherein one of the phase type diffraction gratings is a p-type diffraction grating.
/ 8 · j (j = 0, 1, 2, ‥‥, 8) and measuring the intensity distribution I j of nine interference fringes, and the phase distribution θ of the light by the following equation: And measuring the phase distribution using the grating shearing interferometer according to claim 1.
JP10312824A 1998-11-04 1998-11-04 Method of measuring phase distribution by using grating shearing interferometer Pending JP2000146705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10312824A JP2000146705A (en) 1998-11-04 1998-11-04 Method of measuring phase distribution by using grating shearing interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10312824A JP2000146705A (en) 1998-11-04 1998-11-04 Method of measuring phase distribution by using grating shearing interferometer

Publications (1)

Publication Number Publication Date
JP2000146705A true JP2000146705A (en) 2000-05-26

Family

ID=18033873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10312824A Pending JP2000146705A (en) 1998-11-04 1998-11-04 Method of measuring phase distribution by using grating shearing interferometer

Country Status (1)

Country Link
JP (1) JP2000146705A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253907B2 (en) 2003-11-27 2007-08-07 Canon Kabushiki Kaisha Measuring method and apparatus using shearing interferometry, exposure method and apparatus using the same, and device manufacturing method
US7330237B2 (en) 2004-09-01 2008-02-12 Canon Kabushiki Kaisha Exposure apparatus equipped with interferometer and method of using same
CN100378443C (en) * 2004-12-09 2008-04-02 中国科学院上海光学精密机械研究所 White light bivision field wave surface measuring instrument
CN100401029C (en) * 2004-03-04 2008-07-09 中国科学院上海光学精密机械研究所 White light double-field shearing wave surface interferometer
US7403291B2 (en) 2004-09-16 2008-07-22 Canon Kabushiki Kaisha Method of calculating two-dimensional wavefront aberration
US7417712B2 (en) 2004-10-08 2008-08-26 Canon Kabushiki Kaisha Exposure apparatus having interferometer and device manufacturing method
US7538854B2 (en) 2005-02-17 2009-05-26 Canon Kabushiki Kaisha Measuring apparatus and exposure apparatus having the same
US7576870B2 (en) 2007-02-05 2009-08-18 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus, and device fabrication method
US7619748B2 (en) 2004-02-27 2009-11-17 Canon Kabushiki Kaisha Exposure apparatus mounted with measuring apparatus
US7623247B2 (en) 2005-05-17 2009-11-24 Canon Kabushiki Kaisha Wavefront-aberration measuring device and exposure apparatus including the device
JP2010249837A (en) * 2003-01-28 2010-11-04 Ultratech Inc Light-measuring method for surface
US8223314B2 (en) 2008-07-29 2012-07-17 Canon Kabushiki Kaisha Method for measuring wavefront aberration
US8373866B2 (en) 2008-03-07 2013-02-12 Canon Kabushiki Kaisha Wavefront aberration measuring apparatus, wavefront aberration measuring method, exposure apparatus, and device manufacturing method
US8400612B2 (en) 2009-06-08 2013-03-19 Canon Kabushiki Kaisha Wavefront aberration measurement apparatus, exposure apparatus, and method of manufacturing device
DE102017008368A1 (en) 2016-09-06 2018-03-08 Taiyo Yuden Co., Ltd. Displacement measuring apparatus and method for measuring an offset
CN108431694A (en) * 2015-12-22 2018-08-21 卡尔蔡司Smt有限责任公司 The apparatus and method of wavefront analysis

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249837A (en) * 2003-01-28 2010-11-04 Ultratech Inc Light-measuring method for surface
US7253907B2 (en) 2003-11-27 2007-08-07 Canon Kabushiki Kaisha Measuring method and apparatus using shearing interferometry, exposure method and apparatus using the same, and device manufacturing method
US7619748B2 (en) 2004-02-27 2009-11-17 Canon Kabushiki Kaisha Exposure apparatus mounted with measuring apparatus
CN100401029C (en) * 2004-03-04 2008-07-09 中国科学院上海光学精密机械研究所 White light double-field shearing wave surface interferometer
US7330237B2 (en) 2004-09-01 2008-02-12 Canon Kabushiki Kaisha Exposure apparatus equipped with interferometer and method of using same
US8013980B2 (en) 2004-09-01 2011-09-06 Canon Kabushiki Kaisha Exposure apparatus equipped with interferometer and exposure apparatus using the same
US7403291B2 (en) 2004-09-16 2008-07-22 Canon Kabushiki Kaisha Method of calculating two-dimensional wavefront aberration
US7417712B2 (en) 2004-10-08 2008-08-26 Canon Kabushiki Kaisha Exposure apparatus having interferometer and device manufacturing method
CN100378443C (en) * 2004-12-09 2008-04-02 中国科学院上海光学精密机械研究所 White light bivision field wave surface measuring instrument
US7538854B2 (en) 2005-02-17 2009-05-26 Canon Kabushiki Kaisha Measuring apparatus and exposure apparatus having the same
US8223315B2 (en) 2005-02-17 2012-07-17 Canon Kabushiki Kaisha Measuring apparatus and exposure apparatus having the same
US7623247B2 (en) 2005-05-17 2009-11-24 Canon Kabushiki Kaisha Wavefront-aberration measuring device and exposure apparatus including the device
US7576870B2 (en) 2007-02-05 2009-08-18 Canon Kabushiki Kaisha Measurement apparatus, exposure apparatus, and device fabrication method
US8373866B2 (en) 2008-03-07 2013-02-12 Canon Kabushiki Kaisha Wavefront aberration measuring apparatus, wavefront aberration measuring method, exposure apparatus, and device manufacturing method
US8223314B2 (en) 2008-07-29 2012-07-17 Canon Kabushiki Kaisha Method for measuring wavefront aberration
US8400612B2 (en) 2009-06-08 2013-03-19 Canon Kabushiki Kaisha Wavefront aberration measurement apparatus, exposure apparatus, and method of manufacturing device
CN108431694A (en) * 2015-12-22 2018-08-21 卡尔蔡司Smt有限责任公司 The apparatus and method of wavefront analysis
CN108431694B (en) * 2015-12-22 2020-10-09 卡尔蔡司Smt有限责任公司 Apparatus and method for wavefront analysis
DE102017008368A1 (en) 2016-09-06 2018-03-08 Taiyo Yuden Co., Ltd. Displacement measuring apparatus and method for measuring an offset

Similar Documents

Publication Publication Date Title
JP2000146705A (en) Method of measuring phase distribution by using grating shearing interferometer
JP4724495B2 (en) Optical encoder
JP5507080B2 (en) Optical encoder having tilted optical detection element for suppressing harmonic components
JP2018515782A (en) Topographic phase control for overlay measurement
JPH09257519A (en) Optical encoder
JP3735441B2 (en) Exposure equipment
US8493569B2 (en) Optical encoder readhead configuration with phosphor layer
JPH074993A (en) Encoder apparatus
US7349102B2 (en) Methods and apparatus for reducing error in interferometric imaging measurements
US10295648B2 (en) Contamination and defect resistant optical encoder configuration including a normal of readhead plane at a non-zero pitch angle relative to measuring axis for providing displacement signals
US20190033100A1 (en) Contamination and defect resistant rotary optical encoder configuration for providing displacement signals
JP3312086B2 (en) Encoder device
JPH02206720A (en) Angle measuring instrument
JPH0625675B2 (en) Averaged diffraction moire position detector
US10302466B2 (en) Contamination and defect resistant optical encoder configuration including first and second illumination source diffraction gratings arranged in first and second parallel planes for providing displacement signals
JP3247791B2 (en) Encoder device
JP3270206B2 (en) Position shift and gap detection method
US10648838B2 (en) Contamination and defect resistant rotary optical encoder configuration including a rotary scale with yawed scale grating bars and structured illumination generating arrangement with a beam deflector configuration
JP3199549B2 (en) Encoder device
JP4404184B2 (en) Displacement detector
Ieki et al. Pitch-modulated phase grating and its application to displacement encoder
US10295378B2 (en) Contamination and defect resistant optical encoder configuration outputting structured illumination to a scale plane for providing displacement signals
JP3256628B2 (en) Encoder device
JPH0151926B2 (en)
JPS5999219A (en) Encoder using diffraction grating

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050811