JP2000143355A - Prepared unshaped refractory - Google Patents

Prepared unshaped refractory

Info

Publication number
JP2000143355A
JP2000143355A JP10311973A JP31197398A JP2000143355A JP 2000143355 A JP2000143355 A JP 2000143355A JP 10311973 A JP10311973 A JP 10311973A JP 31197398 A JP31197398 A JP 31197398A JP 2000143355 A JP2000143355 A JP 2000143355A
Authority
JP
Japan
Prior art keywords
weight
refractory
particle size
alumina
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10311973A
Other languages
Japanese (ja)
Other versions
JP4484173B2 (en
Inventor
Katsutoshi Sakakiya
勝利 榊谷
Motohiro Tanaka
基博 田中
Hiroshi Kamigaki
博 上垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Showa Kde Co Ltd
Original Assignee
Showa Kde Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Kde Co Ltd, Nisshin Steel Co Ltd filed Critical Showa Kde Co Ltd
Priority to JP31197398A priority Critical patent/JP4484173B2/en
Publication of JP2000143355A publication Critical patent/JP2000143355A/en
Application granted granted Critical
Publication of JP4484173B2 publication Critical patent/JP4484173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a prepared unshaped refractory capable of reusing more used refractories without carrying out surface modification. SOLUTION: This prepared unshaped refractory is obtained by crushing a used alumina-silica-based refractory having 40-80 wt.% of alumina content and containing a main component of the balance composed of silica and compounding <=60 wt.% of the sum total of <=20 wt.% of the resultant crushed refractory having a particle size within the range of 10-40 mm and <=40 wt.% of the crushed refractory having the particle size within the range of 3-10 mm with a raw material containing 10-20 wt.% of the sum total of an alumina raw material and a silica raw material having <=5 μm average particle diameter, 5-10 wt.% of an alumina cement and the balance of an unused refractory material which is an alumina-silica-based material having <=10 mm particle size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、例えばタンディッ
シュの内張り、タンディッシュカバー、高炉出銑樋カバ
ー、ランスパイプ、溶銑搬送容器の内張り、パーマ部、
焼却炉、焼成炉等に用いられる不定形耐火物に関する。
BACKGROUND OF THE INVENTION The present invention relates to a tundish lining, a tundish cover, a blast furnace tapping gutter cover, a lance pipe, a hot metal transfer vessel lining, a perm portion, and the like.
The present invention relates to irregular refractories used in incinerators, firing furnaces, and the like.

【0002】[0002]

【従来技術】タンディッシュを例にとっていえば、タン
ディッシュの内張り用不定形耐火物として従来は一般
に、未使用の天然及び合成原料を骨材に使用したアルミ
ナ−シリカ質のものが用いられているが、コストの低減
及び廃棄物の減少を目的として溶融金属容器の内張耐火
物として一度使用した耐火物を破砕して、これをそのま
ゝ或いは表面改質を行ってから再度不定形耐火物の骨材
として利用する試みが種々なされている。
2. Description of the Related Art Taking a tundish as an example, an amorphous-silica-based refractory having an unused natural or synthetic raw material as an aggregate is generally used as an amorphous refractory for lining a tundish. However, for the purpose of cost reduction and waste reduction, the refractory once used as the lining refractory of the molten metal container is crushed, and the crushed refractory is used as it is or the surface is reformed, and then the amorphous refractory is re-formed. Attempts have been made to use it as an aggregate.

【0003】このうち表面改質を行う例として、例えば
特開平6−219853号にはマグーカーボンレンガ屑
をシリカゾル溶液に浸漬し、レンガ層内部にシリカ分を
含浸させる方法、特開平8−217553号には、使用
済み耐火物を破砕して高分子化合物やピッチで被覆する
方法、特開平9−278548号には、使用済み耐火物
を破砕して加熱酸化処理し、ついで表面処理剤を含浸さ
せる方法などが提案されている。
As an example of surface modification, for example, JP-A-6-219853 discloses a method in which mag-carbon brick waste is immersed in a silica sol solution to impregnate silica inside the brick layer. JP-A-9-278548 discloses a method of crushing a used refractory and coating it with a polymer compound or a pitch. Methods have been proposed.

【0004】[0004]

【発明が解決しようとする課題】使用済み耐火物を破砕
してそのまゝ再利用する場合、次のような難点がある。
使用済み耐火物は、その層を図1に示すように三層に分
けると、各層は表1に示すように受熱及びスラグ成分の
浸透により組織が大きく変化し、使用面側の表層部の組
織は耐火性も低下している。
When a used refractory is crushed and reused as it is, there are the following difficulties.
The used refractory is divided into three layers as shown in Fig. 1, and the structure of each layer changes greatly due to heat reception and penetration of slag components as shown in Table 1, and the structure of the surface layer on the used surface side Has also reduced fire resistance.

【0005】[0005]

【表1】 このような使用済み耐火物を破砕して原料として使用す
ると、 ・耐火物の組織の均一性が保ちにくい。 ・耐火度は3層目のものでも未使用のものと同程度で、
他の層はそれより低いため耐火度が低下する。
[Table 1] When such a used refractory is crushed and used as a raw material, it is difficult to maintain uniformity of the refractory structure.・ The fire resistance of the third layer is about the same as that of unused ones.
The other layers are lower and have a lower fire rating.

【0006】・吸水率は1層目のもので未使用のものと
同様であり、他の層はそれより大きいため吸水率が高く
なり、そのため流動性が低下し、作業性及び耐火物の性
能を低下させる。などの難点があり、このことから従来
は耐用(寿命)の影響を少なくするため、使用済み耐火
物の使用量を少なく制限していた。
[0006] The water absorption of the first layer is the same as that of the unused layer, and the other layers are larger than that of the unused layer, so that the water absorption is high, so that the fluidity is reduced and the workability and the performance of the refractory are reduced. Lower. Therefore, in order to reduce the influence of the service life (life), the use amount of the used refractory has been limited in the past.

【0007】上記の問題を解消するため、1層目の使用
済み耐火物を除去して残りの耐火物を再利用するのも1
層目の耐火物を選別除去するのに手間がかゝりコスト高
となるほか、再利用できる耐火物は全体の2/3程度と
なり、廃棄物の発生量と原料コストを低減させる効果が
不十分となる。一方、使用済み耐火物を破砕して表面改
質を行う方法は、コストがかゝり過ぎ、使用済み耐火物
を再利用する障害となっている。
In order to solve the above problem, it is also necessary to remove the first-layer used refractory and reuse the remaining refractory.
It takes much time and labor to separate and remove the refractory material in the layer, and the refractory material that can be reused is only about 2/3 of the total, making it difficult to reduce the amount of waste generated and the cost of raw materials. Will be enough. On the other hand, the method of crushing used refractories and performing surface modification is too expensive, and is an obstacle to reusing used refractories.

【0008】本発明は、表面改質を行うことなく、より
多くの使用済み耐火物を再利用できる不定形耐火物を提
供することを目的とする。
[0008] It is an object of the present invention to provide an amorphous refractory capable of reusing more used refractories without performing surface modification.

【0009】[0009]

【課題の解決手段】請求項1記載の発明は、アルミナー
シリカ質の不定形耐火物であって、アルミナーシリカ質
の使用済み耐火物を破砕し、10〜40mmの粒度範囲の
もの20重量%以下、3〜10mmの粒度範囲のもの40
重量%以下、合計60重量%以下配合したことを特徴と
し、使用済み耐火物としては、金属ファイバーを含有す
るものを使用することもできる。
The invention according to claim 1 is an alumina-siliceous amorphous refractory which crushes a used alumina-silica refractory and has a particle size range of 10 to 40 mm. % Or less and a particle size range of 3 to 10 mm 40
It is characterized in that it is blended in an amount of not more than 60% by weight in total, and the used refractory may be one containing metal fibers.

【0010】本発明によれば、使用済み耐火物を破砕整
粒するだけで表面改質を行うことなく最大60重量%ま
で使用することができる。10〜40mmの粒度範囲の使
用済み耐火物を使用する理由は、 (1)使用済み耐火物を使用現場で解体する場合、大凡5
00mm角程度に破壊される。これをジョークラッシャー
を用いて破砕する場合、40mm程度の粒度で破砕する
と、破砕効率及び歩溜りが最もよいこと。
According to the present invention, the used refractory can be used up to 60% by weight only by crushing and sizing the used refractory without surface modification. The reasons for using used refractories with a particle size range of 10 to 40 mm are as follows: (1) When dismantling used refractories at the site of use, roughly 5
Destroyed to about 00mm square. When this is crushed using a jaw crusher, crushing with a particle size of about 40 mm has the best crushing efficiency and yield.

【0011】(2)10〜40mmの粒度範囲のものゝ中に
は比較的堅い部分、すなわち図1におけるスラグ付着層
と、使用済み耐火物の1層目とが多く含まれる。よって
10〜40mmの粒度範囲のものを更に10mm以下の微粉
に破砕した場合、それ自体、受熱による劣化が促進され
るばかりでなく、未使用の耐火材と反応し易くなり、耐
火物全体の耐火度の低下、焼結の促進及び耐蝕性の低下
が起きるため好ましくなく、吸水率と気孔率の影響の少
ない10〜40mmの粒度範囲のものを使用するのが好ま
しいこと。
(2) Those having a particle size range of 10 to 40 mm include a relatively hard portion, that is, a slag adhesion layer in FIG. 1 and a first layer of a used refractory in a large amount. Therefore, when the powder having a particle size range of 10 to 40 mm is further crushed into fine powder having a size of 10 mm or less, not only the deterioration itself due to heat reception is promoted, but also it becomes easy to react with unused refractory material, and the refractory of the entire refractory is rejected. It is not preferable because it causes a decrease in the degree of sintering, the promotion of sintering, and the decrease in corrosion resistance.

【0012】等のためであるが、不定形耐火物は一般に
骨材の粒度が大きくなるに従い、流動性が低下して水へ
の分散が困難となり、粉体原料との混合も困難となる。
図2は、粉体状をなす未使用の原料に対して配合した1
0〜40mmの粒度範囲の使用済み耐火物の配合量と、流
動性発現に必要な混練水量との関係を示すものであり、
図3は、同じく3〜10mmの粒度範囲の使用済み耐火物
の配合量との関係を示すものである。ここで流動性発現
に必要な混練水量とは、JIS A 1101に規定す
るスランプ試験方法に則って求めたスランプ値が150
mm以上となる混練水量である。
In general, as the size of the aggregate becomes larger, the amorphous refractory becomes less fluid, difficult to disperse in water, and difficult to mix with the powder raw material.
FIG. 2 shows the results obtained by blending 1 with the unused raw material in powder form.
It shows the relationship between the amount of the used refractory in the particle size range of 0 to 40 mm and the amount of kneading water necessary for developing fluidity,
FIG. 3 shows the relationship with the amount of used refractory having a particle size range of 3 to 10 mm. Here, the amount of kneading water necessary for the development of fluidity is defined as a slump value of 150 determined according to a slump test method specified in JIS A1101.
It is the amount of kneading water that is at least mm.

【0013】図2及び図3に示されるように、10〜4
0mmの粒度範囲の使用済み耐火物の方が3〜10mmの範
囲ものを使用するよりも作業流動性を得るための混練水
量が大幅に増加することが分かる。本発明において、1
0〜40mmの粒度範囲の使用済み耐火物の使用量を20
重量%以下としたのは、図2に示されるように、強度特
性等の品質に悪影響を及ぼす混練水量の増加を最小限に
抑えるためである。
As shown in FIG. 2 and FIG.
It can be seen that the used refractory having a particle size range of 0 mm greatly increases the amount of kneading water for obtaining working fluidity as compared with the use of a refractory having a range of 3 to 10 mm. In the present invention, 1
Reduce the amount of used refractories in the particle size range of 0 to 40 mm to 20
The reason for setting the weight% or less as shown in FIG. 2 is to minimize an increase in the amount of kneading water that adversely affects the quality such as strength characteristics.

【0014】また3〜10mmの粒度範囲のものを使用す
る理由は、 (1)10〜40mmの粒度範囲の使用済み耐火物は上述す
るように、それ自体に流動性がなく、しかも未使用の粉
体原料中において、10〜40mm程度の使用済み耐火物
が楔の役割をして粉体原料の流動性を低下させること。 (2)10〜40mmの粒度範囲の使用済み耐火物のみを使
用し、その使用量を増加させた場合は、混練ミキサー内
の機械部品の摩耗を促進させ、更には流し込み施工した
ときに細部への充填性を阻害したり、粒度偏析を起こす
原因となること。等のためで、その使用量を40重量%
以下としたのは、次の理由による。
The reason for using particles having a particle size range of 3 to 10 mm is as follows. (1) As described above, a used refractory having a particle size range of 10 to 40 mm has no fluidity itself and is not used. In a powder raw material, a used refractory of about 10 to 40 mm functions as a wedge to lower the fluidity of the powder raw material. (2) When only used refractories with a particle size range of 10 to 40 mm are used and the amount used is increased, the wear of the mechanical parts in the kneading mixer is promoted, It may impair the filling property of particles and cause particle size segregation. 40% by weight
The following is the reason for the following.

【0015】(1)図3に示されるように、流し込み作業
に必要な流動性の低下を補うための混練水量の増加を最
小限に抑えるため、(2)図4は、3〜10mm範囲の使用
済み耐火物の含有量と圧縮強さの関係を示す図で、同図
に示されるように、圧縮強さは110℃の乾燥処理では
添加量の増加に伴い低下する傾向にあるが、1000℃
及び1500℃の焼成では、添加量が増加すると、耐火
物中に含まれるスラグの反応による焼結性のため圧縮強
さが上昇する。焼結による圧縮強さの上昇は、熱スポー
リングによる亀裂・剥離の発生を助長し好ましくないた
め、等である。
(1) As shown in FIG. 3, in order to minimize the increase in the amount of kneading water to compensate for the decrease in fluidity required for the pouring operation, (2) FIG. FIG. 4 is a graph showing the relationship between the content of the used refractory and the compressive strength. As shown in the figure, the compressive strength tends to decrease with an increase in the amount added in the drying treatment at 110 ° C. ° C
In the case of sintering at 1500 ° C., when the amount of addition increases, the compressive strength increases due to the sinterability due to the reaction of the slag contained in the refractory. An increase in the compressive strength due to sintering is not preferable because it promotes the occurrence of cracks and peeling due to thermal spalling.

【0016】3〜10mmの粒度範囲の使用済み耐火物
は、10〜40mmの粒度に破砕、整粒したときに同時に
発生するものを用いる。この10mm以下の粒度の使用済
み耐火物中には、耐火物組織変化の少ない層である図1
の3層目が多く含まれる。すなわちこの3層目は気孔率
が大きく熱影響を余り受けていないため強度が弱く、粉
砕性がよいことから細粒が多く含まれる。
Used refractories having a particle size range of 3 to 10 mm are those which are simultaneously generated when crushed and sized to a particle size of 10 to 40 mm. In the used refractory having a particle size of 10 mm or less, a layer in which refractory structure change is small is shown in FIG.
Of the third layer. That is, the third layer has a large porosity and is not significantly affected by heat, so that the third layer has a low strength and a good crushability, and thus contains many fine particles.

【0017】一方、組織変化の大きなスラグ付着層及び
1層目は上記と逆に気孔率が小さくて強度が大であり、
粉砕性が悪いことから細粒は極少量含まれるのみであ
る。請求項2記載の発明は、請求項1記載の発明におい
て、使用済み耐火物はアルミナ含有量が40〜80重量
%、残部の主成分がシリカで構成されることを特徴とす
る。本発明において、使用済み耐火物のアルミナ含有量
を40〜80重量%に限定した理由は次の結果によるも
のである。
On the other hand, the slag-adhered layer and the first layer having a large structural change have a small porosity and a large strength, contrary to the above.
Fine particles are contained only in a very small amount due to poor pulverizability. The invention according to claim 2 is characterized in that, in the invention according to claim 1, the used refractory has an alumina content of 40 to 80% by weight, and the remaining main component is composed of silica. In the present invention, the reason why the alumina content of the used refractory is limited to 40 to 80% by weight is as follows.

【0018】図5は、アルミナ成分値の異なる使用済耐
火物の溶損性を評価したもので、アルミナ成分の異なる
それぞれの使用済の耐火物を破砕し、3〜10mmの粒度
に調整したものを40重量%と未使用のアルミナ−シリ
カ質の耐火物を60重量%配合した試料を高周波誘導炉
の内側に張りつけて、高周波誘導炉に塩基度CaO/SiO2
2.9で、トータルFe≒13重量%のスラグと鋼を装入して
溶解し、溶鋼の温度を1650℃で2時間保持して試料
の侵食状態を調査した結果を示す。
FIG. 5 shows the evaluation results of the erosion resistance of used refractories having different alumina component values. The used refractories having different alumina components were crushed and adjusted to a particle size of 3 to 10 mm. Of a mixture of 40% by weight and 60% by weight of an unused alumina-silica refractory was adhered to the inside of a high frequency induction furnace, and the basicity was CaO / SiO 2 ≒ in the high frequency induction furnace.
In 2.9, the results of investigating the erosion state of the sample while charging and melting a slag and steel having a total Fe ≒ 13% by weight and maintaining the temperature of the molten steel at 1650 ° C. for 2 hours are shown.

【0019】図6は、前記した溶損性の評価に用いた試
料を65×65×65mmの立方体に成形し、乾燥した
後、温度1200℃に保った電気炉に装入し、30分間
加熱したのち直ちに常温の水に15分間浸けて水冷する
操作を繰返したときに、耐火物に熱スポールによる亀裂
が発生するまでの繰返し回数と使用済み耐火物中のアル
ミナ成分値との関係を示すものである。図5及び図6に
示されるように、アルミナ含有量が40重量%未満の場
合、耐熱スポール性は向上するが、耐蝕性が低下するの
に対し、アルミナ含有量が80重量%を超えると、耐蝕
性は向上するが、熱スポールによる亀裂や剥離の発生が
多くなる。
FIG. 6 shows that the sample used for the evaluation of erosion resistance was formed into a cube of 65 × 65 × 65 mm, dried, charged in an electric furnace kept at 1200 ° C., and heated for 30 minutes. This shows the relationship between the number of repetitions until cracks due to thermal spalls occur in the refractory and the alumina component value in the used refractory when the operation of immersing in water at room temperature for 15 minutes and repeating water cooling is repeated immediately It is. As shown in FIGS. 5 and 6, when the alumina content is less than 40% by weight, the heat-resistant spalling property is improved, but the corrosion resistance is reduced. On the other hand, when the alumina content exceeds 80% by weight, Corrosion resistance is improved, but cracks and peeling due to thermal spall increase.

【0020】請求項3記載の発明は、請求項1又は2記
載の発明において、平均粒径が5μm 以下のアルミナ原
料とシリカ原料を合計量で10〜20重量%、アルミナ
セメントを5〜10重量%添加したことを特徴とする。
本発明によれば、使用済み耐火物の使用による流動性の
低下及び強度特性の低下を最小限に抑えることができ
る。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the alumina raw material and the silica raw material having an average particle diameter of 5 μm or less are 10 to 20% by weight in total and 5 to 10% by weight of alumina cement. %.
According to the present invention, it is possible to minimize a decrease in fluidity and a decrease in strength characteristics due to use of a used refractory.

【0021】本発明において、平均粒径が5μm 以下の
アルミナ原料とシリカ原料(シリカフラワー)の合計量
を10〜20重量%としたのは次の理由による。図7
は、10〜40mmの粒度範囲の使用済み耐火物を20重
量%、同じく3〜10mmの粒度範囲のものを40重量%
使用した原料に平均粒径5μm 以下のアルミナ原料とシ
リカ原料を加えた場合のアルミナ原料とシリカ原料の含
有量と流動性発現に必要な混練水量との関係を示す図で
あり、図8は圧縮強さの関係を示す図で、図7及び図8
に示されるように、アルミナ原料とシリカ原料の含有量
が10重量%未満では流動性発現に必要な混練水量の減
少及び強度の低下を補うには不十分である。
In the present invention, the total amount of the alumina raw material and the silica raw material (silica flour) having an average particle diameter of 5 μm or less is set to 10 to 20% by weight for the following reason. FIG.
Is 20% by weight of used refractory having a particle size range of 10 to 40mm, and 40% by weight of a refractory having a particle size range of 3 to 10mm.
FIG. 8 is a diagram showing the relationship between the contents of the alumina raw material and the silica raw material and the amount of kneading water necessary for developing the fluidity when an alumina raw material having an average particle size of 5 μm or less and a silica raw material are added to the raw materials used. FIGS. 7 and 8 are diagrams showing the relationship between the strengths.
As shown in the above, if the content of the alumina raw material and the silica raw material is less than 10% by weight, it is insufficient to compensate for the decrease in the amount of kneading water and the decrease in the strength required for developing the fluidity.

【0022】一方、アルミナ原料とシリカ原料の含有量
が20重量%を越えると、混練水量の減少と強度向上に
は効果があるが、高価な原料であるためコストアップと
なること、鋼中介在物生成防止の目的で耐火物表面に吹
付け使用しているマグネシア質コーティング材との焼結
反応が促進され、使用後の除去作業が困難になること、
使用済み耐火物中に含まれているスラグ成分(CaO.SiO2
等)と反応し、CaO ・Al2O3・2SiO2や2CaO・Al2O3 ・Si
O2及びクリストバライトの生成による焼結が促進され、
亀裂や剥離が発生し易く安定した耐用性が得られなくな
ること等の問題があり、好ましくない。
On the other hand, if the content of the alumina raw material and the silica raw material exceeds 20% by weight, the kneading water amount is reduced and the strength is improved, but the cost is increased because the raw material is expensive. The sintering reaction with the magnesia-based coating material that is sprayed onto the refractory surface for the purpose of preventing product formation is promoted, and removal work after use becomes difficult,
Slag components (CaO.SiO 2 ) contained in used refractories
Etc.) and react with CaO.Al 2 O 3 .2SiO 2 or 2CaO.Al 2 O 3 .Si
Sintering by generation of O 2 and cristobalite is promoted,
There is a problem that cracks and peeling easily occur and stable durability cannot be obtained, which is not preferable.

【0023】本発明で用いられるアルミナセメントは、
CaO 含有量が20重量%以下の高アルミナセメントであ
る。アルミナセメントの使用量を5〜10重量%とした
のは次の理由による。図9は、アルミナセメントの含有
量と圧縮強さの関係を示す図で、同図に示されるように
アルミナセメントの含有量が5重量%未満では強度付与
に不十分であり、また10重量%を越えると、コスト高
となるうえ、使用済み耐火物中に含まれるスラグ成分と
反応し、CaO ・ Al2O3・2SiO2 や2CaO・Al2O3 ・SiO 及
び3CaO・2SiO等の生成による焼結が促進され、亀裂や剥
離の発生を助長する。
The alumina cement used in the present invention is:
It is a high alumina cement having a CaO content of 20% by weight or less. The use amount of the alumina cement was set to 5 to 10% by weight for the following reason. FIG. 9 is a graph showing the relationship between the content of alumina cement and the compressive strength. As shown in FIG. 9, when the content of alumina cement is less than 5% by weight, it is insufficient to impart strength, and 10% by weight. If it exceeds, the cost will increase, and it will react with the slag component contained in the used refractory and form CaO.Al 2 O 3 .2SiO 2 and 2CaO.Al 2 O 3 .SiO and 3CaO.2SiO Sintering is promoted, and cracks and peeling are promoted.

【0024】[0024]

【実施例】実施例1 アルミナ−シリカ質の未使用の耐火材で、3mm以下の粒
度のもの31重量%、平均粒径5μm 以下のもの16重
量%、高アルミナセメント7重量%よりなる原料に対
し、アルミナ60.7重量%、シリカ28.4重量%を
含む使用済み耐火物を破砕整粒し、10〜40mmの粒度
範囲のもの10重量%、3〜10mmの範囲もの36重量
%を配合し、これに更に、金属ファイバーを外付けで2
重量%添加してなる耐火材に流動性発現に必要な水を
7.4重量%加えてミキサーにて混練し、型に流し込ん
で100mmφ、高さ200mmの円柱状試料を得た。そし
て電気炉に入れ1500℃で3時間焼成したのち圧縮試
験機に掛け、圧縮試験を行った。その結果、圧縮強さは
77MPa であった。また上述するようにして得られた耐
火材をタンディッシュの内張り用流し込み材に使用し、
実機テストを行った。その結果、後述の比較例1に示す
従来品の耐用(繰返し使用回数)を100とした場合の
耐用性比率は92であった。
Example 1 A raw material comprising 31% by weight of unused alumina-silica refractory having a particle size of 3 mm or less, 16% by weight having an average particle size of 5 μm or less, and 7% by weight of high alumina cement. On the other hand, used refractories containing 60.7% by weight of alumina and 28.4% by weight of silica were crushed and sized, and 10% by weight in a particle size range of 10 to 40mm and 36% by weight in a range of 3 to 10mm were compounded. In addition to this, an external metal fiber
To the refractory material added in an amount of 7.4% by weight, 7.4% by weight of water necessary for developing fluidity was added, kneaded with a mixer, and poured into a mold to obtain a columnar sample having a diameter of 100 mm and a height of 200 mm. Then, it was placed in an electric furnace and calcined at 1500 ° C. for 3 hours, and then set in a compression tester to perform a compression test. As a result, the compression strength was 77 MPa. Also, using the refractory material obtained as described above as a casting material for lining tundish,
An actual machine test was performed. As a result, the durability ratio was 92 when the service life (the number of times of repeated use) of the conventional product shown in Comparative Example 1 described later was 100.

【0025】実施例2 3mm以下の粒度のもの17重量%、平均粒径5μm 以下
のもの18重量%、高アルミナセメント10重量%より
なるアルミナ−シリカ質の未使用の耐火材に対し、実施
例1と同じ使用済み耐火物を破砕・整粒して得た10〜
40mm粒度範囲のもの15重量%、3〜10mm粒度範囲
のもの40重量%を配合し、これに更に外付けで金属フ
ァイバーを2重量%添加してなる耐火材に流動性発現に
必要な水7.7重量%を加えて混練したのち、実施例1
と同様の方法で圧縮試験及びタンディッシュでの実機テ
ストを行った。その結果、圧縮強さは81MPa 、耐用性
比率は90であった。
Example 2 An alumina-siliceous refractory material consisting of 17% by weight having a particle size of 3 mm or less, 18% by weight having an average particle size of 5 μm or less, and 10% by weight of a high alumina cement was used. 10 obtained by crushing and sizing the same used refractory as in 1
15% by weight having a particle size range of 40 mm, 40% by weight having a particle size range of 3 to 10 mm, and 2% by weight of an external metal fiber are further added thereto. Example 1 after adding 0.7% by weight and kneading.
A compression test and an actual machine test using a tundish were conducted in the same manner as in the above. As a result, the compression strength was 81 MPa and the durability ratio was 90.

【0026】実施例3 3mm以下の粒度のもの14重量%、平均粒径5μm 以下
のもの18重量%、高アルミナセメント8重量%よりな
るアルミナ−シリカ質の未使用の耐火材に対し、実施例
1と同じ使用済み耐火物を破砕・整粒して得た10〜4
0mm粒度範囲のもの20重量%、3〜10mm粒度範囲の
もの40重量%を配合し、更に金属ファイバーを外付け
で2重量%添加してなる耐火材に流動性発現に必要な水
7.9重量%を加えて混練したのち、実施例1と同様の
方法で圧縮試験及びタンディッシュでの実機テストを行
った。その結果、圧縮強さは75MPa 、耐用性比率は8
9であった。
Example 3 An alumina-siliceous refractory material consisting of 14% by weight having a particle size of 3 mm or less, 18% by weight having an average particle size of 5 μm or less, and 8% by weight of a high alumina cement was used. 10-4 obtained by crushing and sizing the same used refractory as in 1
20% by weight of a particle size range of 0 mm and 40% by weight of a particle size range of 3 to 10 mm are added, and 2% by weight of an external metal fiber is added. After kneading by adding weight%, a compression test and an actual machine test with a tundish were performed in the same manner as in Example 1. As a result, the compression strength is 75 MPa, and the durability ratio is 8
Nine.

【0027】実施例4 3〜10mmの粒度範囲のもの3重量%、3mm以下の粒度
のもの35重量%、平均粒径5μm 以下のもの15重量
%、高アルミナセメント7重量%よりなるアルミナ−シ
リカ質の未使用の耐火材に対し、実施例1と同じ使用済
み耐火物を破砕・整粒して得た10〜40mm粒度範囲の
もの5重量%、3〜10mm粒度範囲のもの35重量%を
配合し、更に金属ファイバーを外付けで2重量%添加し
てなる耐火材に流動性発現に必要な水7.5重量%を加
えて混練したのち、実施例1と同様の方法で圧縮試験及
びタンディッシュでの実機テストを行った。その結果、
圧縮強さは69MPa 、耐用性比率は93であった。
Example 4 Alumina-silica comprising 3% by weight having a particle size range of 3 to 10 mm, 35% by weight having a particle size of 3 mm or less, 15% by weight having an average particle size of 5 μm or less, and 7% by weight of high alumina cement. 5% by weight of 10 to 40 mm particle size range obtained by crushing and sizing the same used refractory as in Example 1 to 35% by weight of the same unused refractory material. After blending, further adding 7.5% by weight of water necessary for developing fluidity to a refractory material in which metal fibers are externally added at 2% by weight, and kneading the mixture, the same compression test as in Example 1 was performed. An actual machine test was performed in a tundish. as a result,
The compression strength was 69 MPa and the durability ratio was 93.

【0028】実施例5 3〜10mmの粒度範囲のもの45重量%、平均粒径5μ
m 以下のもの14重量%、高アルミナセメント6重量%
よりなるアルミナ−シリカ質の未使用の耐火材に対し、
実施例1と同じ使用済み耐火物を破砕・整粒して得た1
0〜40mm粒度範囲のもの10重量%、3〜10mmの粒
度範囲のもの25重量%を配合し、更に金属ファイバー
を外付けで2重量%添加してなる耐火材に流動性発現に
必要な水7.0重量%を加えて混練したのち、実施例1
と同様の方法で圧縮試験及びタンディッシュでの実機テ
ストを行った。その結果、圧縮強さは61MPa 、耐用性
比率は95であった。
Example 5: 45% by weight in a particle size range of 3 to 10 mm, average particle size: 5 μm
m 14% by weight, high alumina cement 6% by weight
Alumina-silica used refractory material consisting of:
1 obtained by crushing and sizing the same used refractory as in Example 1
10% by weight in a particle size range of 0 to 40mm, 25% by weight in a particle size range of 3 to 10mm, and 2% by weight of an externally added metal fiber are added to the refractory material to provide water necessary for developing fluidity. After adding 7.0% by weight and kneading, Example 1
A compression test and an actual machine test using a tundish were conducted in the same manner as in the above. As a result, the compression strength was 61 MPa and the durability ratio was 95.

【0029】比較例1(従来品) 3〜10mmの粒度範囲のもの40重量%、3mm以下の粒
度のもの48重量%、平均粒径5μm 以下のもの8重量
%、高アルミナセメント4重量%よりなるアルミナ−シ
リカ質の未使用の耐火材に金属ファイバー2重量%を外
付けで添加し、これに流動性発現に必要な水7.1重量
%を加えて混練したのち、実施例1と同様の方法で圧縮
試験及びタンディッシュでの実機テストを行った。その
結果、圧縮強さは75MPa であり、このときの繰返し使
用回数(耐用)を100とした。
Comparative Example 1 (Conventional product) 40% by weight having a particle size range of 3 to 10 mm, 48% by weight having a particle size of 3 mm or less, 8% by weight having an average particle size of 5 μm or less, and 4% by weight of high alumina cement 2% by weight of a metal fiber was externally added to an unused refractory material of alumina-silica, and 7.1% by weight of water necessary for developing fluidity was added and kneaded, and then the same as in Example 1. The compression test and the actual machine test in the tundish were performed by the methods described in the above. As a result, the compressive strength was 75 MPa, and the number of repeated use (durable) at this time was set to 100.

【0030】比較例2 3〜10mmの粒度範囲のもの38重量%、3mm以下の粒
度のもの42重量%、平均粒径5μm 以下のもの10重
量%、高アルミナセメント5重量%よりなるアルミナ−
シリカ質の未使用の耐火材に、実施例1と同じ使用済み
耐火物を破砕、整粒して得た10〜40mmの粒度範囲の
もの5重量%を配合して更に金属ファイバー2重量%を
外付けで添加し、これに流動性発現に必要な水6.9重
量%を加えて混練したのち、実施例1と同様の方法で圧
縮試験及びタンディッシュでの実機テストを行った。そ
の結果、圧縮強さは72MPa であり、耐用性比率は99
であった。
Comparative Example 2 38% by weight having a particle size range of 3 to 10 mm, 42% by weight having a particle size of 3 mm or less, 10% by weight having an average particle size of 5 μm or less, and 5% by weight of high alumina cement
5% by weight of a refractory material used in Example 1, which was obtained by crushing and sizing the same used refractory as in Example 1 and having a particle size range of 10 to 40 mm, was mixed with 2% by weight of metal fibers. The mixture was externally added, and 6.9% by weight of water necessary for the development of fluidity was added thereto. After kneading, a compression test and a real machine test in a tundish were performed in the same manner as in Example 1. As a result, the compressive strength was 72 MPa, and the durability ratio was 99%.
Met.

【0031】比較例3 3〜10mmの粒度範囲のもの34重量%、3mm以下の粒
度のもの36重量%、平均粒径5μm 以下のもの10重
量%、高アルミナセメント5重量%よりなるアルミナ−
シリカ質の未使用の耐火材に、実施例1と同じ使用済み
耐火物を破砕、整粒して得た10〜40mmの粒度範囲の
もの15重量%を配合して更に金属ファイバー2重量%
を外付けで添加し、これに流動性発現に必要な水6.5
重量%を加えて混練したのち、実施例1と同様の方法で
圧縮試験及びタンディッシュでの実機テストを行った。
その結果、圧縮強さは68MPa であり、耐用性比率は9
8であった。
Comparative Example 3 34% by weight having a particle size range of 3 to 10 mm, 36% by weight having a particle size of 3 mm or less, 10% by weight having an average particle size of 5 μm or less, and 5% by weight of high alumina cement
15% by weight of a refractory material used in Example 1 having a particle size range of 10 to 40 mm obtained by crushing and sizing the same used refractory material as in Example 1 was further mixed with 2% by weight of metal fiber.
Was added externally, and water 6.5 required for developing fluidity was added thereto.
After kneading by adding weight%, a compression test and an actual machine test with a tundish were performed in the same manner as in Example 1.
As a result, the compressive strength was 68 MPa, and the durability ratio was 9
It was 8.

【0032】比較例4 3〜10mmの粒度範囲のもの32重量%、3mm以下の粒
度のもの30重量%、平均粒径5μm 以下のもの12重
量%、高アルミナセメント5重量%よりなるアルミナ−
シリカ質の未使用の耐火材に、実施例1と同じ使用済み
耐火物を破砕、整粒して得た10〜40mmの粒度範囲の
もの20重量%を配合して更に金属ファイバー2重量%
を外付けで添加し、これに流動性発現に必要な水6.5
重量%を加えて混練したのち、実施例1と同様の方法で
圧縮試験及びタンディッシュでの実機テストを行った。
その結果、圧縮強さは64MPa であり、耐用性比率は9
6であった。以上の結果を以下の表2に示す。
Comparative Example 4 Alumina comprising 32% by weight having a particle size range of 3 to 10 mm, 30% by weight having a particle size of 3 mm or less, 12% by weight having an average particle size of 5 μm or less, and 5% by weight of high alumina cement.
Silica-based unused refractory material was mixed with 20% by weight of the same used refractory as in Example 1 having a particle size range of 10 to 40 mm obtained by crushing and sizing, and 2% by weight of metal fiber.
Was added externally, and water 6.5 required for developing fluidity was added thereto.
After kneading by adding weight%, a compression test and an actual machine test using a tundish were performed in the same manner as in Example 1.
As a result, the compression strength was 64 MPa and the durability ratio was 9
It was 6. The above results are shown in Table 2 below.

【0033】[0033]

【表2】 表2に見られるように、破砕整粒した使用済み耐火物を
最大60重量%使用した場合でも耐用性を約10%の低
下にとゞめることができ、コスト及び耐用性の面でも充
分使用可能であることが判明した。
[Table 2] As can be seen from Table 2, even when the crushed and sized and used refractory is used at a maximum of 60% by weight, the durability can be reduced to about 10%, and the cost and the durability are sufficient. It turned out to be usable.

【0034】[0034]

【発明の効果】本発明によれば、使用済み耐火物を破砕
整粒するだけの処理で表面改質を行うことなく使用で
き、使用量も最大60重量%と従来に比べ格段に多くな
り、低コストの処理費用で廃棄物のリサイクル使用が可
能となる。またアルミナ−シリカ質の不定形耐火物とし
てアルミナ40〜80重量%、残部の主成分がシリカで
構成されるものを用いることにより、耐蝕性や耐熱スポ
ール性の低下を最小限にとゞめることができる。
According to the present invention, used refractories can be used without surface modification only by crushing and sizing the used refractories, and the amount of use is up to 60% by weight, which is much larger than in the past. Recyclable waste can be used at low cost. In addition, the use of an alumina-silica amorphous refractory composed of 40 to 80% by weight of alumina and the remainder of which is mainly composed of silica minimizes the deterioration of corrosion resistance and heat spall resistance. be able to.

【0035】また平均粒径5μm 以下のアルミナ原料と
シリカ原料及びアルミナセメント量を調整することによ
り、使用済み耐火物の使用による流動性の低下及び強度
特性の低下を最小限に抑えることができる。
By adjusting the amount of the alumina raw material having an average particle size of 5 μm or less, the amount of the silica raw material and the amount of the alumina cement, it is possible to minimize a decrease in fluidity and a decrease in strength characteristics due to the use of the used refractory.

【図面の簡単な説明】[Brief description of the drawings]

【図1】使用済み耐火物の構成を示す断面図。FIG. 1 is a sectional view showing a configuration of a used refractory.

【図2】10〜40mmの粒度範囲の使用済み耐火物の配
合量と流動性発現に必要な水量との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the amount of used refractory in the particle size range of 10 to 40 mm and the amount of water necessary for developing fluidity.

【図3】3〜10mmの粒度範囲の使用済み耐火物の配合
量と流動性発現に必要な水量との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the amount of used refractory in the particle size range of 3 to 10 mm and the amount of water necessary for developing fluidity.

【図4】3〜10mmの粒度範囲の使用済み耐火物の配合
量と圧縮強さの関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the amount of used refractory having a particle size range of 3 to 10 mm and the compressive strength.

【図5】使用済み耐火物中のアルミナ含有量と溶損比率
の関係を示すグラフ。
FIG. 5 is a graph showing a relationship between an alumina content in a used refractory and a erosion ratio.

【図6】使用済み耐火物中のアルミナ含有量と亀裂が発
生するまでの加熱冷却回数の関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the alumina content in a used refractory and the number of heating / cooling times until cracks are generated.

【図7】平均粒径5μm 以下のアルミナ原料とシリカ原
料の含有量と流動性発現に必要な水量との関係を示すグ
ラフ。
FIG. 7 is a graph showing the relationship between the content of an alumina raw material having an average particle size of 5 μm or less and a silica raw material and the amount of water necessary for developing fluidity.

【図8】平均粒径5μm 以下のアルミナ原料とシリカ原
料の含有量と圧縮強さの関係を示すグラフ。
FIG. 8 is a graph showing the relationship between the content of an alumina raw material having an average particle size of 5 μm or less and a silica raw material and compressive strength.

【図9】高アルミナセメントの含有量と圧縮強さの関係
を示すグラフ。
FIG. 9 is a graph showing the relationship between the content of high alumina cement and compressive strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 基博 広島県豊田郡安芸津町三津5563−4 昭和 鉱業株式会社安芸津工場内 (72)発明者 上垣 博 広島県豊田郡安芸津町三津5563−4 昭和 鉱業株式会社安芸津工場内 Fターム(参考) 4G033 AA02 AA06 AB02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Motohiro Tanaka, Inventor 5563-4 Mitsu, Atsutsu-cho, Toyota-gun, Hiroshima Prefecture Showa Mining Co., Ltd. F-term in Akitsu Factory Co., Ltd. (reference) 4G033 AA02 AA06 AB02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アルミナーシリカ質の不定形耐火物であっ
て、アルミナーシリカ質の使用済み耐火物を破砕し、1
0〜40mmの粒度範囲のもの20重量%以下、3〜10
mmの粒度範囲のもの40重量%以下、合計60重量%以
下配合したことを特徴とする不定形耐火物。
1. An alumina-silica amorphous refractory, which comprises crushing alumina-silica used refractories.
20% by weight or less in a particle size range of 0 to 40 mm, 3 to 10
An amorphous refractory characterized in that it has a particle size range of 40 mm% or less, and a total of 60% by weight or less.
【請求項2】使用済み耐火物はアルミナ含有量が40〜
80重量%、残部の主成分がシリカで構成されることを
特徴とする請求項1記載の不定形耐火物。
2. The used refractory has an alumina content of 40 to 40.
2. The amorphous refractory according to claim 1, wherein 80% by weight and the remaining main component are composed of silica.
【請求項3】平均粒径が5μm 以下のアルミナ原料とシ
リカ原料を合計量で10〜20重量%、アルミナセメン
トを5〜10重量%添加したことを特徴とする請求項1
又は2記載の不定形耐火物。
3. The method according to claim 1, wherein a total of 10 to 20% by weight of alumina raw material and silica raw material having an average particle diameter of 5 μm or less and 5 to 10% by weight of alumina cement are added.
Or the amorphous refractory according to 2.
JP31197398A 1998-11-02 1998-11-02 Indefinite refractory Expired - Lifetime JP4484173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31197398A JP4484173B2 (en) 1998-11-02 1998-11-02 Indefinite refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31197398A JP4484173B2 (en) 1998-11-02 1998-11-02 Indefinite refractory

Publications (2)

Publication Number Publication Date
JP2000143355A true JP2000143355A (en) 2000-05-23
JP4484173B2 JP4484173B2 (en) 2010-06-16

Family

ID=18023674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31197398A Expired - Lifetime JP4484173B2 (en) 1998-11-02 1998-11-02 Indefinite refractory

Country Status (1)

Country Link
JP (1) JP4484173B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261874A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Method for recycling used refractory, recycled refractory raw material for monolithic refractory produced using the same, and monolithic refractory

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026373A (en) * 1988-06-24 1990-01-10 Kawasaki Refract Co Ltd Cast amorphous refractory
JPH06345548A (en) * 1993-06-08 1994-12-20 Sumitomo Metal Ind Ltd Production of pouring material using refractory waste material, molding therefor and production of molding
JPH082975A (en) * 1994-06-20 1996-01-09 Harima Ceramic Co Ltd Refractory for casting application
JPH08188475A (en) * 1995-01-09 1996-07-23 Daido Steel Co Ltd High-alumina refractory
JPH0952169A (en) * 1995-08-12 1997-02-25 Harima Ceramic Co Ltd Refractory for tuyere of molten steel container
JPH09165270A (en) * 1995-12-13 1997-06-24 Nippon Steel Corp Alumina casting monolithic refractory and production of formed body using the refractory
JPH09328357A (en) * 1996-06-04 1997-12-22 Yotai Refractories Co Ltd High alumina brick for rotary kiln and its production
JPH1017373A (en) * 1996-06-28 1998-01-20 Harima Ceramic Co Ltd Monolithic refractory of lance for preliminary treatment of molten pig-iron

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026373A (en) * 1988-06-24 1990-01-10 Kawasaki Refract Co Ltd Cast amorphous refractory
JPH06345548A (en) * 1993-06-08 1994-12-20 Sumitomo Metal Ind Ltd Production of pouring material using refractory waste material, molding therefor and production of molding
JPH082975A (en) * 1994-06-20 1996-01-09 Harima Ceramic Co Ltd Refractory for casting application
JPH08188475A (en) * 1995-01-09 1996-07-23 Daido Steel Co Ltd High-alumina refractory
JPH0952169A (en) * 1995-08-12 1997-02-25 Harima Ceramic Co Ltd Refractory for tuyere of molten steel container
JPH09165270A (en) * 1995-12-13 1997-06-24 Nippon Steel Corp Alumina casting monolithic refractory and production of formed body using the refractory
JPH09328357A (en) * 1996-06-04 1997-12-22 Yotai Refractories Co Ltd High alumina brick for rotary kiln and its production
JPH1017373A (en) * 1996-06-28 1998-01-20 Harima Ceramic Co Ltd Monolithic refractory of lance for preliminary treatment of molten pig-iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261874A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Method for recycling used refractory, recycled refractory raw material for monolithic refractory produced using the same, and monolithic refractory
JP4555793B2 (en) * 2006-03-28 2010-10-06 新日本製鐵株式会社 How to recycle used refractories

Also Published As

Publication number Publication date
JP4484173B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
CN104355634B (en) A kind of aluminum oxide electric furnace cover and preparation method thereof
CN100584799C (en) Low-cost fire-resistant pouring material and method for making same
CN103224402A (en) Corundum-spinel casting material for dip pipe of RH refining furnace
CN112500139B (en) High-strength anti-erosion ladle self-flow castable and preparation method thereof
CN105819875B (en) Refractory castable for Ausmelt copper smelting furnace flue and preparation method thereof
JP6179534B2 (en) Unshaped refractories for blast furnace glazing
CN105819871A (en) Air blowing and slag removing spray gun for foundry ladle and preparation method thereof
JP2003212667A (en) Process for recycling used refractory
CN104446528B (en) A kind of preparation method of ladle permanent lining ramming mass
JP2000203953A (en) Castable refractory for trough of blast furnace
JP4484173B2 (en) Indefinite refractory
CN100558676C (en) A kind of steel-bag aluminum-magnesium fire clay of electric furnace
JPH082975A (en) Refractory for casting application
JPH08259311A (en) Production of magnesia-carbonaceous refractory brick
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JP2003171184A (en) SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
JPH06345550A (en) Castable refractory
CN104446527B (en) A kind of ladle permanent lining ramming mass
JPH06172045A (en) Refractory for casting process
JP2000263014A (en) Method for using aluminum dross residual ash and alumina magnesia castable refractory material
JP2766624B2 (en) Alumina / Spinel amorphous refractories
JP3823132B2 (en) Amorphous refractory composition for lance pipes
JP3197378B2 (en) Graphite-containing basic amorphous refractory composition
JP2000263013A (en) Method for using aluminum dross residual ash, and alumina spinel castable refractory material
JP2004161529A (en) Baking repairing material for spray application, and application method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term