JP2000143332A - Glass ceramic burned at low temperature - Google Patents

Glass ceramic burned at low temperature

Info

Publication number
JP2000143332A
JP2000143332A JP10320612A JP32061298A JP2000143332A JP 2000143332 A JP2000143332 A JP 2000143332A JP 10320612 A JP10320612 A JP 10320612A JP 32061298 A JP32061298 A JP 32061298A JP 2000143332 A JP2000143332 A JP 2000143332A
Authority
JP
Japan
Prior art keywords
glass
low
powder
ceramic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10320612A
Other languages
Japanese (ja)
Other versions
JP3033568B1 (en
Inventor
Ichiro Hajiyama
一郎 枦山
Kazuhiro Inata
一洋 生稲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10320612A priority Critical patent/JP3033568B1/en
Priority to US09/438,492 priority patent/US6348424B1/en
Application granted granted Critical
Publication of JP3033568B1 publication Critical patent/JP3033568B1/en
Publication of JP2000143332A publication Critical patent/JP2000143332A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer

Abstract

PROBLEM TO BE SOLVED: To obtain a glass ceramic enabling the integration of a low-resistance conductor by simultaneous burning and suitable as an insulation layer of a multilayer printed circuit board for mounting a high-frequency analog circuit by using glass powder having a specific composition and ceramic powder at a specific ratio and burning at a specific temperature. SOLUTION: The amounts of glass powder and ceramic powder are 50-100 wt.% and 0-50 wt.%, respectively. The composition of the glass powder is SiO2: 35-65 wt.%, B2O3: 5-35 wt.%, CaO: 2-20 wt.%, Al2O3: 5-25 wt.% (the CaO:Al2O3 ratio is 1:1-2.5), TiO2: 0.5-5 wt.%, ZrO2: 0.5-5 wt.%, ZnO: 0.5-5 wt.%, MgO: 0-5 wt.%, SrO: 0-5 wt.%, BaO: 0-5 wt.% and group 1A element oxide: 0-1 wt.% in terms of oxides and the burning temperature is 850-1,000 deg.C. Multilayer printing with a low-resistance material can be performed and a substrate having excellent high-frequency characteristics can be produced by the use of the ceramic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低抵抗導体である
Au、AgやCu等と同時焼成が可能な低温焼成無機組
成物に関するものであり、特にマイクロ波及びミリ波帯
領域の周波数において低誘電率及び低誘電損失を有し、
マイクロ波及びミリ波用多層配線基板の絶縁層として好
適な低温焼成ガラスセラミックスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature fired inorganic composition which can be fired simultaneously with low-resistance conductors such as Au, Ag, and Cu. Has a dielectric constant and low dielectric loss,
The present invention relates to a low-temperature fired glass ceramic suitable as an insulating layer of a multilayer wiring board for microwaves and millimeter waves.

【0002】[0002]

【従来の技術】低温焼成ガラスセラミックス多層配線基
板は、配線の多層化、微細配線による高密度化、小型化
が可能であり、低抵抗導体Au、AgやCuを配線材料
に選択でき、絶縁層の低誘電率化による信号伝播高速化
が可能なこと等から、電子機器の高性能化に有効な手段
として用いられてきた。更に、ベタパターンの導体プレ
ーンやヴィアホールの高密度配置による高周波アナログ
回路の電気的シールドが可能であることから、送受信モ
ジュールの一体化やDC回路とRF回路の一体化等によ
り小型化、高性能化が可能であり、マイクロ波帯領域の
高周波アナログ回路を含む通信機器モジュール等への開
発が行われてきた。
2. Description of the Related Art A low-temperature fired glass-ceramic multilayer wiring board is capable of multi-layered wiring, high-density and small-sized by fine wiring, low-resistance conductors Au, Ag and Cu can be selected as wiring materials, and an insulating layer. It has been used as an effective means for improving the performance of electronic devices, because the signal propagation speed can be increased by lowering the dielectric constant. Furthermore, since high-frequency analog circuits can be electrically shielded by high-density arrangement of solid conductor planes and via holes, miniaturization and high performance can be achieved by integrating transceiver modules and DC and RF circuits. It has been developed into a communication device module or the like including a high frequency analog circuit in a microwave band region.

【0003】[0003]

【発明が解決しようとする課題】今後、移動体通信や衛
星通信といった高周波通信機器の分野においては、マイ
クロ波やミリ波といった超高周波帯領域のシステムの応
用が期待されてきている。このような超高周波帯領域の
アナログ回路を搭載するモジュールにおいては、信号の
伝送損失を抑えることが必須であり、したがって、ガラ
スセラミックス多層配線基板には絶縁層材料の低誘電損
失化、導体材料の低抵抗化が求められている。
In the field of high-frequency communication equipment such as mobile communication and satellite communication, applications of systems in the ultra-high frequency band such as microwaves and millimeter waves are expected in the future. In a module equipped with such an analog circuit in the ultra-high frequency band, it is essential to suppress signal transmission loss. Therefore, the dielectric loss of the insulating layer material and the use of the conductive material in the glass ceramic multilayer wiring board are required. Low resistance is required.

【0004】本発明の目的は、1000℃以下の温度で
焼成可能、すなわちAu、Ag、Cuといった低抵抗導
体の同時焼成による内装化が可能であり、マイクロ波及
びミリ波領域の周波数において低誘電率かつ低誘電損失
の高周波アナログ回路搭載用多層配線基板の絶縁層に好
適な低温焼成ガラスセラミックスを提供することにあ
る。
It is an object of the present invention to sinter at a temperature of 1000 ° C. or less, that is, to simultaneously sinter low-resistance conductors such as Au, Ag, and Cu, and to reduce the dielectric constant at frequencies in the microwave and millimeter wave regions. An object of the present invention is to provide a low-temperature fired glass ceramic suitable for an insulating layer of a multilayer wiring board for mounting a high-frequency analog circuit having a low dielectric loss and a high efficiency.

【0005】[0005]

【課題を解決するための手段】本発明者等は、従来の低
温焼成ガラスセラミックスにおける上記課題を解決する
ために、種々のガラス組成の検討を重ねた結果、SiO
2−B23−CaO−Al23系ガラスは一定組成範囲
において、ガラス軟化点が低く、各種セラミックスとの
複合体で1000℃以下の焼成が可能であるとともに、
焼成過程で結晶化して、低い誘電率と低い誘電損失を示
すことを見いだした。
Means for Solving the Problems The present inventors have repeatedly studied various glass compositions in order to solve the above-mentioned problems in the conventional low-temperature fired glass ceramics.
In 2 -B 2 O 3 -CaO-Al 2 O 3 based glass certain composition range, the glass softening point is low, with it can be fired 1000 ° C. or less in complex with various ceramics,
They were found to crystallize during the firing process and show low dielectric constant and low dielectric loss.

【0006】すなわち、本発明の低温焼成ガラスセラミ
ックスは、重量百分率で、ガラス粉末50〜100wt
%、セラミックス粉末0〜50wt%からなり、該ガラ
ス粉末が酸化物換算にしてSiO235〜65wt%、
235〜35wt%、CaO2〜20wt%、Al2
35〜25wt%、かつCaOとAl23の比率が
1:1〜1:2.5、TiO20.5〜5wt%、Zr
20.5〜5wt%、ZnO0.5〜5wt%、Mg
O0〜5wt%、SrO0〜5wt%、BaO0〜5w
t%、及び1A族元素酸化物0〜1wt%の組成を有す
るとともに、850〜1000℃の焼成温度で緻密化す
ることを特徴とする。
That is, the low-temperature fired glass ceramic of the present invention has a glass powder content of 50 to 100 wt.
%, Ceramic powder 0 to 50 wt%, and the glass powder is 35 to 65 wt% of SiO 2 in terms of oxide.
B 2 O 3 5~35wt%, CaO2~20wt %, Al 2
O 3 5-25 wt%, and the ratio of CaO and Al 2 O 3 1: 1~1: 2.5, TiO 2 0.5~5wt%, Zr
O 2 0.5-5 wt%, ZnO 0.5-5 wt%, Mg
O0-5wt%, SrO0-5wt%, BaO0-5w
It has a composition of 0% to 1% by weight of a Group 1A element oxide, and is densified at a firing temperature of 850 to 1000 ° C.

【0007】本発明の低温焼成ガラスセラミックスによ
れば、低抵抗導体での多層配線化が可能であるととも
に、高周波特性に優れた多層配線基板を得ることが可能
となる。
According to the low-temperature fired glass ceramics of the present invention, it is possible to form a multilayer wiring with low-resistance conductors and to obtain a multilayer wiring board excellent in high-frequency characteristics.

【0008】[0008]

【発明の実施の形態】本発明の低温焼成ガラスセラミッ
クスは、重量百分率で、ガラス粉末50〜100wt
%、セラミックス粉末0〜50wt%からなり、該ガラ
ス粉末が酸化物換算にしてSiO235〜65wt%、
235〜35wt%、CaO2〜20wt%、Al2
35〜25wt%、かつCaOとAl23の比率が
1:1〜1:2.5、TiO20.5〜5wt%、Zr
20.5〜5wt%、ZnO0.5〜5wt%、Mg
O0〜5wt%、SrO0〜5wt%、BaO0〜5w
t%、及び1A族元素酸化物としてNa2O、K2O、L
2O併せて0〜1wt%の組成を有するとともに、焼
成過程において主結晶としてアルミナとCaAl2Si
6が析出することを特徴としている。
BEST MODE FOR CARRYING OUT THE INVENTION The low-temperature fired glass ceramic of the present invention has a glass powder content of 50 to 100 wt.
%, Ceramic powder 0 to 50 wt%, and the glass powder is 35 to 65 wt% of SiO 2 in terms of oxide.
B 2 O 3 5~35wt%, CaO2~20wt %, Al 2
O 3 5-25 wt%, and the ratio of CaO and Al 2 O 3 1: 1~1: 2.5, TiO 2 0.5~5wt%, Zr
O 2 0.5-5 wt%, ZnO 0.5-5 wt%, Mg
O0-5wt%, SrO0-5wt%, BaO0-5w
t%, and Na 2 O, K 2 O, L
i 2 O has a composition of 0 to 1% by weight and alumina and CaAl 2 Si as main crystals in the firing process.
O 6 is deposited.

【0009】酸化物換算でSiO235〜65wt%、
235〜35wt%、CaO2〜20wt%、Al2
35〜25wt%の範囲で、なおかつCaOとAl2
3の比率が1:1〜1:2.5の範囲の組成物は、焼成
によりアルミナとCaAl2SiO6の結晶相を析出し、
低い誘電率と低い誘電損失といる特性を示す。特に、S
iO235〜65wt%、B235〜30wt%、Ca
O2〜17.5wt%、Al235〜17.5wt%の
範囲で、なおかつCaOとAl23の比率が1:1〜
1:2.5の範囲の組成物は、比較的ガラス軟化点が低
く、低い誘電率と低い誘電損失を示すため好ましいが、
該組成物のガラス軟化点は非常に高く、1000℃以下
の温度での焼結は困難である。
SiO 2 is 35 to 65 wt% in terms of oxide,
B 2 O 3 5~35wt%, CaO2~20wt %, Al 2
O 3 in the range of 5 to 25 wt%, and CaO and Al 2 O
The composition in which the ratio of 3 is in the range of 1: 1 to 1: 2.5 precipitates a crystal phase of alumina and CaAl 2 SiO 6 by firing,
It exhibits characteristics of low dielectric constant and low dielectric loss. In particular, S
iO 2 35~65wt%, B 2 O 3 5~30wt%, Ca
O2~17.5wt%, in a range of Al 2 O 3 5~17.5wt%, is yet the ratio of CaO and Al 2 O 3 1: 1~
Compositions in the 1: 2.5 range are preferred because they have relatively low glass softening points and exhibit low dielectric constants and low dielectric losses.
The glass softening point of the composition is very high and sintering at temperatures below 1000 ° C. is difficult.

【0010】更に該組成にTiO20.5〜5wt%、
ZrO20.5〜5wt%、ZnO0.5〜5wt%を
添加すると、誘電特性を大きく劣化させることなくガラ
ス軟化点が低下する効果が得られる。5wt%を越える
添加は誘電特性を著しく損なうことから好ましくない。
また、0.5wt%未満の添加は効果がほとんど期待で
きない。好適にはTiO21〜3wt%、ZrO21〜3
wt%、ZnO1〜3wt%の添加が低誘電率、低誘電
損失を保つとともにガラス軟化点を下げることができ好
ましい。また、MgO0〜5wt%、SrO0〜5wt
%、BaO0〜5wt%の添加は、前述の添加物と同様
にガラス軟化点を低下させる効果があり有効である。5
wt%を越える添加は誘電特性を著しく損なうことから
望ましくない。好適にはMgO0.5〜3wt%、Sr
O0.5〜3wt%、BaO0.5〜3wt%の添加
が、低誘電率、低誘電損失を保つとともにガラス軟化点
を下げることができ好ましい。更にガラス軟化点を下げ
る場合、Na2O、K2O、Li 2Oの0〜1wt%添加
が有効であるが、Na2O、K2O及びLi2Oの添加量
の合計が1wt%を越える添加は誘電損失を大きくする
ため好ましくない。
[0010] Further, TiO2 is added to the composition.Two0.5-5 wt%,
ZrOTwo0.5-5 wt%, ZnO0.5-5 wt%
When added, it is possible to reduce the
The effect of reducing the softening point is obtained. Over 5 wt%
Addition is not preferred because it significantly impairs the dielectric properties.
Also, the addition of less than 0.5 wt% is almost expected to be effective.
I can't. Preferably TiOTwo1-3 wt%, ZrOTwo1-3
wt%, ZnO1-3wt% is low dielectric constant and low dielectric
The loss can be maintained and the glass softening point can be lowered.
Good. In addition, MgO0-5 wt%, SrO0-5 wt%
% And BaO 0-5 wt% are the same as the above-mentioned additives.
Is effective in lowering the glass softening point. 5
Since the addition of more than wt% significantly impairs the dielectric properties,
Not desirable. Preferably, MgO 0.5-3 wt%, Sr
Add 0.5 to 3 wt% of O, 0.5 to 3 wt% of BaO
But keeps low dielectric constant, low dielectric loss and glass softening point
Can be reduced. Further lower the glass softening point
IfTwoO, KTwoO, Li Two0 to 1 wt% of O added
Is effective, but NaTwoO, KTwoO and LiTwoO addition amount
Addition of more than 1 wt% increases the dielectric loss
Therefore, it is not preferable.

【0011】すなわち、SiO235〜65wt%、B2
35〜35wt%、CaO2〜20wt%、Al23
5〜25wt%、かつCaO:Al23=1:1〜1:
2.5、TiO20.5〜5wt%、ZrO20.5〜5
wt%、ZnO0.5〜5wt%、MgO0〜5wt
%、SrO0〜5wt%、BaO0〜5wt%、1A族
元素酸化物としてNa2O、K2O、Li2O0〜1wt
%からなるガラス組成物、好適にはSiO235〜65
wt%、B235〜30wt%、CaO2〜17.5w
t%、Al235〜17.5wt%、かつCaO:Al
23=1:1〜1:2.5、TiO21〜3wt%、Z
rO21〜3wt%、ZnO1〜3wt%、MgO0.
5〜3wt%、SrO0.5〜3wt%、BaO0.5
〜3wt%からなるガラス組成物はガラス軟化点が低
く、該ガラス粉末50〜100wt%とセラミックス粉
末0〜50wt%とからなるガラスセラミックスが10
00℃以下の温度で焼成可能となる。これにより、該ガ
ラスセラミックスは、Au、Ag、Cuといった低抵抗
導体による多層配線化が同時焼成により可能になるとと
もに、マイクロ波及びミリ波領域の周波数帯において低
誘電率かつ低誘電損失である特徴を有することができ
る。
That is, 35-65 wt% of SiO 2 , B 2
O 3 5 to 35 wt%, CaO 2 to 20 wt%, Al 2 O 3
5 to 25 wt%, and CaO: Al 2 O 3 = 1: 1 to 1:
2.5, TiO 2 0.5~5wt%, ZrO 2 0.5~5
wt%, ZnO0.5-5wt%, MgO0-5wt
%, SrO 0 to 5 wt%, BaO 0 to 5 wt%, Na 2 O, K 2 O, Li 2 O 0 to 1 wt.
Glass composition consisting%, preferably SiO 2 35 to 65
wt%, B 2 O 3 5~30wt %, CaO2~17.5w
t%, Al 2 O 3 5-17.5 wt%, and CaO: Al
2 O 3 = 1: 1 to 1: 2.5, TiO 2 1 to 3 wt%, Z
rO 2 1~3wt%, ZnO1~3wt%, MgO0.
5-3 wt%, SrO0.5-3 wt%, BaO0.5
A glass composition comprising from 3 to 3 wt% has a low glass softening point, and a glass ceramic comprising 50 to 100 wt% of the glass powder and 0 to 50 wt% of a ceramic powder is 10%.
It can be fired at a temperature of 00 ° C. or less. As a result, the glass ceramic is characterized in that multilayer wiring using low-resistance conductors such as Au, Ag, and Cu can be performed by simultaneous firing, and that the glass ceramic has a low dielectric constant and a low dielectric loss in microwave and millimeter wave frequency bands. Can be provided.

【0012】該セラミックス粉末は、アルミナ、シリ
カ、ムライト、コーディエライト、フォルステライト等
何れでも良いが、低誘電率、低誘電損失であるものが、
誘電特性を劣化させないために好ましい。強度の向上が
望めることからガラスとセラミックスの複合体が望まし
いが、セラミックス粉末の比率を50wt%を越える比
率にすると高い焼成温度を必要とすることから望ましく
ない。誘電特性、強度及び焼成温度の点から好適にはセ
ラミックス粉末の比率が5〜30wt%であることが望
ましい。
The ceramic powder may be any of alumina, silica, mullite, cordierite, forsterite and the like, but those having a low dielectric constant and a low dielectric loss include:
This is preferable so as not to deteriorate the dielectric characteristics. A composite of glass and ceramics is desirable because the strength can be improved. However, if the ratio of the ceramic powder exceeds 50 wt%, it is not desirable because a high firing temperature is required. Preferably, the ratio of the ceramic powder is 5 to 30 wt% from the viewpoints of dielectric properties, strength, and firing temperature.

【0013】[0013]

【実施例】以下に本発明をより更に具体的に説明する
が、本発明はその要旨を超えない限り、以下の実施例に
限定されるものではない。
EXAMPLES The present invention will be described more specifically below, but the present invention is not limited to the following examples unless it exceeds the gist.

【0014】[実施例1]表1の組成比に示すような
組成を有するガラスを製造し、アルコールを分散媒とし
て湿式粉砕した。ふるいで製粒した後、アルコールを濾
別、乾燥させ、平均粒径約2μmの粒度を有するガラス
粉末を得た。次に、平均粒径1μmのアルミナ粉末をア
ルミナ5重量%、前記ガラス粉末95重量%となるよう
に秤量し、分散媒としてアルコールを用い、ボールミル
で3時間混合した後、アルコールを濾別、過乾燥させて
均質な混合粉末Aとした。同様に表1の組成比、に
示すような組成を有するガラス粉末について、湿式粉
砕、製粒、濾別、乾燥を行い、平均粒径2μmの粒度を
有するガラス粉末を得た。次いで、平均粒径1μmのア
ルミナ粉末と重量比率でアルミナ10%、ガラス粉末9
0%及びアルミナ30%、ガラス粉末70%となるよう
に秤量し、前述の工程と同様の工程により混合粉末B、
及び混合粉末Cを作製した。これら混合粉末A、B及び
Cにそれぞれ有機バインダー、可塑剤、分散媒となる溶
剤を添加した後、ボールミルで十分混練し、粘度300
0〜10000cpsのスラリーを作製した。尚、バイ
ンダー、可塑剤、溶媒等の有機ビヒクル類は、通常用い
られているもので十分であり、その成分については特別
の限定を要しない。得られた各スラリーをスリップキャ
スティング成膜法により50μmから200μmの厚み
のグリーンシートとした。また、作製したグリーンシー
トを熱プレスすることによりグリーンシート積層体を得
た。以上の工程により得られた3種類のグリーンシート
積層体を、大気中、最高温度1000℃で焼成を行い、
焼成体A、B及びCを得た。焼成体A、B及びCは、そ
れぞれ混合粉末A、B、Cに対応する。各焼成体の誘電
特性は、各焼成体を直径約12mm、高さ約5mmの円
柱状に加工し、空洞共振器法により誘電率、誘電正接を
測定することで評価を行った。焼成体A、B、Cの10
GHz帯における誘電率は、それぞれ7.2、7.4、
7.5、誘電正接は、それぞれ0.0012、0.00
15、0.0018であり、低誘電率、低誘電損失であ
ることが確認された。
Example 1 A glass having a composition as shown in the composition ratio of Table 1 was produced and wet-pulverized using alcohol as a dispersion medium. After sieving and granulating, the alcohol was filtered off and dried to obtain a glass powder having an average particle size of about 2 μm. Next, an alumina powder having an average particle diameter of 1 μm was weighed so as to be 5% by weight of alumina and 95% by weight of the above glass powder, and mixed with a ball mill for 3 hours using alcohol as a dispersion medium. The mixture was dried to obtain a homogeneous mixed powder A. Similarly, a glass powder having a composition shown in Table 1 was wet-pulverized, granulated, filtered and dried to obtain a glass powder having an average particle size of 2 μm. Next, alumina powder having an average particle diameter of 1 μm, alumina 10% by weight, and glass powder 9
0%, 30% alumina, and 70% glass powder were weighed, and mixed powder B,
And a mixed powder C was prepared. After adding an organic binder, a plasticizer, and a solvent serving as a dispersion medium to each of the mixed powders A, B, and C, the mixture is sufficiently kneaded with a ball mill to have a viscosity of 300.
A slurry of 0-10000 cps was prepared. As the organic vehicles such as a binder, a plasticizer, and a solvent, those commonly used are sufficient, and there is no particular limitation on the components thereof. Each of the obtained slurries was formed into a green sheet having a thickness of 50 μm to 200 μm by a slip casting film forming method. In addition, a green sheet laminate was obtained by hot pressing the produced green sheet. The three types of green sheet laminates obtained by the above steps are fired in air at a maximum temperature of 1000 ° C.
Fired bodies A, B and C were obtained. The fired bodies A, B, and C correspond to the mixed powders A, B, and C, respectively. The dielectric properties of each fired body were evaluated by processing each fired body into a cylindrical shape having a diameter of about 12 mm and a height of about 5 mm, and measuring a dielectric constant and a dielectric loss tangent by a cavity resonator method. 10 of fired bodies A, B, C
The dielectric constant in the GHz band is 7.2, 7.4, respectively.
7.5, the dielectric loss tangent is 0.0012 and 0.00, respectively.
15, 0.0018, which was confirmed to be low dielectric constant and low dielectric loss.

【0015】[実施例2]表1の組成比率、に示す
組成を有するガラスを製造し、実施例1と同様の工程に
て、それぞれ平均粒径約2μmの粒度を有するガラス粉
末D及びEとした。これらガラス粉末D、Eにそれぞれ
有機バインダー、可塑剤、分散媒となる溶剤を添加した
後、ボールミルで混練し、粘度3000〜10000c
psのスラリーを作製した。得られた各スラリーをスリ
ップキャスティング成膜法により約100μmの厚みの
グリーンシートとし、この作製したグリーンシートを積
層、熱プレスすることによりグリーンシート積層体D、
Eとした。表1の組成比率に示す組成を有するガラス
からなるグリーンシート積層体Dは大気中、最高温度9
00℃で焼成を行い焼成体Dした。また、表1の組成比
率に示す組成を有するガラスからなるグリーンシート
積層体Eは大気中、最高温度850℃で焼成を行い焼成
体Eとした。各焼成体を直径約12mm、高さ約5mm
の円柱状に加工し、空洞共振器法により誘電率、誘電正
接を測定したところ、焼成体D、Eの10GHz帯にお
ける誘電率は、それぞれ6.0、6.4、誘電正接は、
それぞれ0.0011、0.0018であり、低誘電
率、低誘電損失な材料であることが確認された。また、
X線回折法により結晶相の同定を行ったところ、焼成体
Dからはガラス相の他に、アルミナ及びCaAl2Si
6が、焼成体Eからはガラス相の他にアルミナが析出
していることが確認された。
Example 2 Glasses having compositions shown in Table 1 were produced, and glass powders D and E each having an average particle diameter of about 2 μm were prepared in the same process as in Example 1. did. After adding an organic binder, a plasticizer, and a solvent serving as a dispersion medium to each of these glass powders D and E, the mixture is kneaded with a ball mill and has a viscosity of 3000 to 10000 c.
A ps slurry was made. Each of the obtained slurries was formed into a green sheet having a thickness of about 100 μm by a slip casting film forming method, and the produced green sheets were laminated and hot pressed to obtain a green sheet laminate D.
E. The green sheet laminate D made of glass having the composition shown in the composition ratio in Table 1 was exposed to air at a maximum temperature of 9
Firing was performed at 00 ° C. to obtain a fired body D. Further, a green sheet laminate E made of glass having a composition shown in the composition ratio of Table 1 was fired in air at a maximum temperature of 850 ° C. to obtain a fired body E. Each fired body is about 12mm in diameter and about 5mm in height
When the dielectric constant and the dielectric loss tangent were measured by the cavity resonator method, the dielectric constants of the fired bodies D and E in the 10 GHz band were 6.0 and 6.4, respectively.
It was 0.0011 and 0.0018, respectively, and it was confirmed that the material had a low dielectric constant and a low dielectric loss. Also,
The crystal phase was identified by X-ray diffraction. From the fired body D, in addition to the glass phase, alumina and CaAl 2 Si
It was confirmed that O 6 precipitated alumina from the fired body E in addition to the glass phase.

【0016】[実施例3]表1の組成比率に示す組成
を有するガラスを製造し、実施例1と同様の工程にて、
平均粒径約2μmの粒度を有するガラス粉末を作製し
た。次に、前記ガラス粉末が80重量%、平均粒径1μ
mのコーディエライト粉末が20重量%となるように秤
量し、分散媒としてエタノールを用い、ボールミルで3
時間混合した後エタノールを濾別、乾燥させて均質な混
合粉末とし、実施例1と同様の工程により、厚みが約1
00μmのグリーンシートを作製した。作製したグリー
ンシートを積層、熱プレスすることによグリーンシート
積層体とし、これを大気中、最高温度850℃で焼成し
て焼結体Fを作製した。直径約14mm、高さ約6mm
の円柱状に加工し、空洞共振器法により10GHz帯に
おける誘電率及び誘電正接を測定したところ、それぞれ
5.6、0.0009であり、低誘電率、低誘電損失で
あることが確認された。
Example 3 A glass having a composition shown in the composition ratio in Table 1 was manufactured, and the same process as in Example 1 was performed.
A glass powder having an average particle size of about 2 μm was produced. Next, the glass powder was 80% by weight, and the average particle size was 1 μm.
m of cordierite powder was weighed to 20% by weight, and ethanol was used as a dispersion medium.
After mixing for a period of time, the ethanol was filtered off and dried to obtain a homogeneous mixed powder.
A 00 μm green sheet was produced. The resulting green sheets were laminated and hot pressed to form a green sheet laminate, which was fired at a maximum temperature of 850 ° C. in the atmosphere to produce a sintered body F. About 14mm in diameter, about 6mm in height
When the dielectric constant and the dielectric loss tangent in the 10 GHz band were measured by the cavity resonator method, they were 5.6 and 0.0009, respectively, and it was confirmed that the dielectric constant and the dielectric loss were low. .

【0017】[実施例4]表1の組成比率に示す組成
を有するガラスを作製し、実施例1と同様の工程にて、
平均粒径約2μmの粒度を有するガラス粉末とした。次
に、前記ガラス粉末が90重量%、平均粒径約1μmの
アルミナ粉末が10重量%となるように秤量し、分散媒
としてエタノールを用い、ボールミルで3時間混合した
後、エタノールを濾別、乾燥させて均質な混合粉末とし
た。得られた混合粉末に有機バインダー、可塑剤、分散
媒となる溶剤を添加した後ボールミルで十分混練して粘
度が約5000cpsのスラリーとし、スリップキャス
ティング成膜法により厚み約100μmのグリーンシー
トを作製した。作製したグリーンシートを所定の形状に
打ち抜いた後、各グリーンシートの所定の位置にヴィア
ホールを形成し、既ヴィアホールにAgペーストを埋め
込んだ。また、各グリーンシート上にAgペーストをス
クリーン印刷法により印刷することにより配線パターン
を形成した。こうして作製したグリーンシートを積層、
熱プレスにより一体化し積層体を得た。該積層体を大気
中、最高温度900℃で焼成して多層配線基板を得た。
該多層配線基板の絶縁層の誘電率、誘電正接を、空洞共
振器法を用いて測定したところ、10GHz帯における
誘電率が7.2、誘電正接が0.0009であることが
確認された。また、導体の比抵抗を測定したところ約3
μΩ・cmであることが確認され、該多層配線基板が高
周波帯において低誘電率、低誘電損失な絶縁層を有する
とともに、低抵抗な導体を内層した、高周波アナログ回
路基板に適した多層配線基板であることが確認された。
Example 4 A glass having a composition shown in the composition ratio of Table 1 was produced, and the same process as in Example 1 was performed.
Glass powder having an average particle size of about 2 μm was obtained. Next, the glass powder was weighed so as to be 90% by weight, and the alumina powder having an average particle size of about 1 μm was weighed so as to be 10% by weight. After mixing with a ball mill for 3 hours using ethanol as a dispersion medium, the ethanol was separated by filtration. Dry to a homogeneous mixed powder. After adding an organic binder, a plasticizer, and a solvent serving as a dispersion medium to the obtained mixed powder, the mixture was sufficiently kneaded with a ball mill to obtain a slurry having a viscosity of about 5000 cps, and a green sheet having a thickness of about 100 μm was prepared by a slip casting film forming method. . After punching the produced green sheet into a predetermined shape, a via hole was formed at a predetermined position of each green sheet, and an Ag paste was embedded in the existing via hole. Further, a wiring pattern was formed by printing an Ag paste on each green sheet by a screen printing method. The green sheets thus produced are laminated,
The laminate was integrated by hot pressing to obtain a laminate. The laminate was fired in the air at a maximum temperature of 900 ° C. to obtain a multilayer wiring board.
The dielectric constant and the dielectric loss tangent of the insulating layer of the multilayer wiring board were measured using the cavity resonator method, and it was confirmed that the dielectric constant and dielectric loss tangent in the 10 GHz band were 7.2 and 0.0009, respectively. When the specific resistance of the conductor was measured, it was about 3
μΩ · cm, and the multilayer wiring board has an insulating layer with a low dielectric constant and a low dielectric loss in a high frequency band, and has a low resistance conductor as an inner layer, and is suitable for a high frequency analog circuit board. Was confirmed.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上述べたように、本発明の低温焼成ガ
ラスセラミックスによれば、1000℃以下の温度で焼
成可能、すなわちAu、Ag、Cuといった低抵抗導体
の同時焼成による内装化が可能であり、かつマイクロ波
及びミリ波領域の周波数において低誘電率かつ低誘電損
失な絶縁層を有する高周波アナログ回路搭載用多層配線
基板を提供することが出来る。
As described above, according to the low-temperature fired glass ceramics of the present invention, firing can be performed at a temperature of 1000 ° C. or less, that is, interiorization by simultaneous firing of low-resistance conductors such as Au, Ag, and Cu is possible. It is possible to provide a multilayer wiring board for mounting a high-frequency analog circuit having an insulating layer having a low dielectric constant and a low dielectric loss at frequencies in the microwave and millimeter wave regions.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA01 AA02 AA03 AA04 AA07 AA08 AA09 AA10 AA16 AA17 AA32 AA35 AA36 AA37 BA12 HA02 HA04 HA09 HA18  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4G030 AA01 AA02 AA03 AA04 AA07 AA08 AA09 AA10 AA16 AA17 AA32 AA35 AA36 AA37 BA12 HA02 HA04 HA09 HA18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量百分率で、ガラス粉末50〜100
wt%、セラミックス粉末0〜50wt%からなり、該
ガラス粉末が酸化物換算にしてSiO235〜65wt
%、B235〜35wt%、CaO2〜20wt%、A
235〜25wt%、かつCaOとAl23の比率が
1:1〜1:2.5、TiO20.5〜5wt%、Zr
20.5〜5wt%、ZnO0.5〜5wt%、Mg
O0〜5wt%、SrO0〜5wt%、BaO0〜5w
t%、及び1A族元素酸化物0〜1wt%の組成を有す
るとともに、850〜1000℃の焼成温度で緻密化す
ることを特徴とする低温焼成ガラスセラミックス。
1. A glass powder of 50-100% by weight.
wt%, it consists of ceramic powder 0~50wt%, SiO 2 35~65wt the glass powder is in the terms of oxide
%, B 2 O 3 5~35wt% , CaO2~20wt%, A
l 2 O 3 5~25wt%, and the ratio of CaO and Al 2 O 3 1: 1~1: 2.5, TiO 2 0.5~5wt%, Zr
O 2 0.5-5 wt%, ZnO 0.5-5 wt%, Mg
O0-5wt%, SrO0-5wt%, BaO0-5w
A low-temperature fired glass ceramic, which has a composition of 0% to 1% by weight of a Group 1A element oxide and a densification at a firing temperature of 850 to 1000 ° C.
【請求項2】 1A族元素酸化物が、Na2O、K2O、
及びLi2Oから選ばれる1種類以上であることを特徴
とする請求項1記載の低温焼成ガラスセラミックス。
2. Group 1A element oxides are Na 2 O, K 2 O,
And low-temperature firing glass-ceramic according to claim 1, characterized in that one or more selected from Li 2 O.
【請求項3】 焼成過程においてアルミナが析出するこ
とを特徴とする請求項1又は2記載の低温焼成ガラスセ
ラミックス。
3. The low-temperature fired glass ceramic according to claim 1, wherein alumina is precipitated during the firing process.
【請求項4】 焼成過程においてCaAl2SiO6が析
出することを特徴とする請求項1又は2記載の低温焼成
ガラスセラミックス。
4. The low-temperature fired glass ceramic according to claim 1, wherein CaAl 2 SiO 6 precipitates during the firing process.
【請求項5】 セラミックス粉末が、アルミナ、シリ
カ、ムライト、コーディエライト、及びフォルステライ
トから選ばれる1種類以上であることを特徴とする請求
項1、2、3乃至4のいずれか1項に記載の低温焼成ガ
ラスセラミックス。
5. The ceramic powder according to claim 1, wherein the ceramic powder is at least one selected from alumina, silica, mullite, cordierite, and forsterite. The low-temperature fired glass ceramic described.
JP10320612A 1998-11-11 1998-11-11 Low temperature firing glass ceramics Expired - Fee Related JP3033568B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10320612A JP3033568B1 (en) 1998-11-11 1998-11-11 Low temperature firing glass ceramics
US09/438,492 US6348424B1 (en) 1998-11-11 1999-11-12 Low-temperature calcined glass ceramic and a manufacturing process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10320612A JP3033568B1 (en) 1998-11-11 1998-11-11 Low temperature firing glass ceramics

Publications (2)

Publication Number Publication Date
JP3033568B1 JP3033568B1 (en) 2000-04-17
JP2000143332A true JP2000143332A (en) 2000-05-23

Family

ID=18123359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10320612A Expired - Fee Related JP3033568B1 (en) 1998-11-11 1998-11-11 Low temperature firing glass ceramics

Country Status (1)

Country Link
JP (1) JP3033568B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1323682A2 (en) 2001-12-25 2003-07-02 Ngk Spark Plug Co., Ltd Dielectric material and dielectric sintered body, and wiring board
KR100419868B1 (en) * 2001-05-14 2004-02-25 한국과학기술연구원 Method for Preparing Dielectric Ceramic for Low Temperature Co-fired Ceramic Substrate
US6936558B2 (en) 2002-12-24 2005-08-30 Samsung Electro-Mechanics Co., Ltd. Low temperature sinterable dielectric ceramic composition, multilayer ceramic chip capacitor and ceramic electronic device
KR100696084B1 (en) 2005-05-03 2007-03-19 최봉규 Process for the preparation of the resin composition including far infrared radiation materials
US7351674B2 (en) 2004-03-01 2008-04-01 Murata Manufacturing Co., Ltd. Insulating ceramic composition, insulating ceramic sintered body, and mulitlayer ceramic electronic component
US7368408B2 (en) 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7417001B2 (en) 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7439202B2 (en) 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
JP2009179560A (en) * 2009-05-19 2009-08-13 Murata Mfg Co Ltd Low permittivity ceramic substrate for high frequency component, and method for manufacturing the same
JP2013071860A (en) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd Lead-free white glass ceramic substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10179749B2 (en) * 2016-08-30 2019-01-15 Shenzhen Sunlord Electronics Co., Ltd. Low-temperature co-fired ceramic material and preparation method thereof
CN114685152B (en) * 2020-12-28 2022-11-04 山东国瓷功能材料股份有限公司 Low-temperature co-fired ceramic material for millimeter wave antenna module and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419868B1 (en) * 2001-05-14 2004-02-25 한국과학기술연구원 Method for Preparing Dielectric Ceramic for Low Temperature Co-fired Ceramic Substrate
EP1323682A2 (en) 2001-12-25 2003-07-02 Ngk Spark Plug Co., Ltd Dielectric material and dielectric sintered body, and wiring board
EP1353542A2 (en) 2001-12-25 2003-10-15 Ngk Spark Plug Co., Ltd Multilayered wiring board, and process for its production
KR100942615B1 (en) * 2001-12-25 2010-02-17 엔지케이 스파크 플러그 캄파니 리미티드 Dielectric material and dielectric sintered body and wiring board using the same
US6936558B2 (en) 2002-12-24 2005-08-30 Samsung Electro-Mechanics Co., Ltd. Low temperature sinterable dielectric ceramic composition, multilayer ceramic chip capacitor and ceramic electronic device
US7351674B2 (en) 2004-03-01 2008-04-01 Murata Manufacturing Co., Ltd. Insulating ceramic composition, insulating ceramic sintered body, and mulitlayer ceramic electronic component
US7368408B2 (en) 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7417001B2 (en) 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7439202B2 (en) 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
KR100696084B1 (en) 2005-05-03 2007-03-19 최봉규 Process for the preparation of the resin composition including far infrared radiation materials
JP2009179560A (en) * 2009-05-19 2009-08-13 Murata Mfg Co Ltd Low permittivity ceramic substrate for high frequency component, and method for manufacturing the same
JP2013071860A (en) * 2011-09-27 2013-04-22 Okamoto Glass Co Ltd Lead-free white glass ceramic substrate

Also Published As

Publication number Publication date
JP3033568B1 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JP2763664B2 (en) Wiring board for distributed constant circuit
US20060228585A1 (en) Thick film paste via fill composition for use in LTCC applications
KR20100000945A (en) Low fired dielectric ceramic composition
JP3033568B1 (en) Low temperature firing glass ceramics
JP2002193662A (en) Dielectric ceramic and its manufacturing method
JP2002104870A (en) Dielectric porcelain and laminate
US6348424B1 (en) Low-temperature calcined glass ceramic and a manufacturing process therefor
JP2000319066A (en) Low temperature simultaneously firing dielectric ceramic composition
JP2000272960A (en) Dielectric ceramic composition for microwave use, its production and electronic part for microwave use produced by using the dielectric ceramic composition for microwave use
KR100557853B1 (en) Phosphate Ceramic Compositions with Low Dielectric Constant
JP3624405B2 (en) Glass ceramic dielectric material
JP2778815B2 (en) Dielectric porcelain composition, method for producing the same, and wiring board using the same
JPH10120436A (en) Glass ceramic dielectric material
JP4704836B2 (en) Low-temperature fired porcelain composition, method for producing the same, and electronic component using the same
JP2000327428A (en) Low temperature sintering glass ceramic and its production
US7300897B2 (en) Low temperature sintering ceramic composition for high frequency, method of fabricating the same and electronic component
JP3287303B2 (en) Dielectric ceramic composition and ceramic electronic component using the same
JP4202117B2 (en) Low-frequency fired porcelain composition for high frequency and manufacturing method thereof
KR100359721B1 (en) Dielectric Ceramic Compositions able to be cofired with metal
KR100471651B1 (en) Dielectric ceramic compositions for low temperature co-fired ceramic substrate and method for preparation thereof
KR20200081774A (en) Dielectric ceramics composition for high frequency device, ceramic substrate thereby and manufacturing method thereof
KR100632393B1 (en) High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages
JP3754798B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3624406B2 (en) Glass ceramic dielectric material
KR100478127B1 (en) Dielectric Ceramic Composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees