JP2000140881A - Oxygen dissolution device - Google Patents

Oxygen dissolution device

Info

Publication number
JP2000140881A
JP2000140881A JP10324934A JP32493498A JP2000140881A JP 2000140881 A JP2000140881 A JP 2000140881A JP 10324934 A JP10324934 A JP 10324934A JP 32493498 A JP32493498 A JP 32493498A JP 2000140881 A JP2000140881 A JP 2000140881A
Authority
JP
Japan
Prior art keywords
oxygen
chamber
liquid
oxygen supply
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10324934A
Other languages
Japanese (ja)
Inventor
Madoka Arai
まどか 荒井
Eiji Tabata
英治 多畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP10324934A priority Critical patent/JP2000140881A/en
Publication of JP2000140881A publication Critical patent/JP2000140881A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance efficiency of dissolution of oxygen into a liquid and to sufficiently increase a concentration of dissolved oxygen. SOLUTION: This dissolution device is provided with an oxygen chamber 14 having an opening 15 which provided only on the bottom and opened in the liquid, on a liquid level part of an aeration tank 11, and an ejector 16 facing an ejection part 16a in the upper direction in a mixture liquid at the lower part of the oxygen chamber 14. Besides, an oxygen feed means for feeding oxygen into the oxygen chamber 14, and a liquid feed pump 18 for feeding the liquid in the tank to the ejector 16, an oxygen sucking path 19 for connecting the inside of the oxygen chamber 14 to a gas sucking part 16b of the ejector 16, and a guide pipe 17 for guiding gas-liquid two phase streams ejected from an ejection part 16a of the ejector 16, are provided on the device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸素溶解装置に関
し、例えば、活性汚泥法により水の浄化処理を行う好気
性水処理装置における液中の溶存酸素濃度を高めるのに
好適な酸素溶解装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen dissolving apparatus, for example, an oxygen dissolving apparatus suitable for increasing the concentration of dissolved oxygen in a liquid in an aerobic water treatment apparatus for purifying water by an activated sludge method. .

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】活性汚
泥法により水の浄化処理を行うための好気性水処理装置
として、旋回流式曝気槽が広く用いられている。この旋
回流式曝気槽は、例えば、図2の平面図及び図3の縦断
面図に示すように、曝気槽1の一側に複数の散気装置2
を並べて設置し、この散気装置2から空気等を噴出して
散気装置上方部分の混合液に上昇流を形成することによ
り、散気装置2を設けていない他方の側壁側が下降流と
なる旋回流を形成したものである。このように曝気槽1
内に旋回流を形成して被処理水(原水)と活性汚泥とが
混合した混合液を撹拌することにより、活性汚泥濃度や
溶存酸素濃度の均一化を図るとともに、槽底部に汚泥が
堆積することを防止している。なお、原水の流入部や処
理水の流出部は、図示を省略する。
2. Description of the Related Art A swirling aeration tank is widely used as an aerobic water treatment apparatus for purifying water by an activated sludge method. As shown in the plan view of FIG. 2 and the vertical cross-sectional view of FIG.
Are arranged side by side, and air or the like is ejected from the air diffuser 2 to form an upward flow in the mixed liquid in the upper part of the air diffuser, so that the other side wall side not provided with the air diffuser 2 becomes a downward flow. A swirling flow is formed. Thus, aeration tank 1
By forming a swirling flow in the inside and agitating the mixed liquid in which the water to be treated (raw water) and the activated sludge are mixed, the activated sludge concentration and the dissolved oxygen concentration are made uniform, and the sludge is deposited at the bottom of the tank. Is preventing that. The illustration of the inflow portion of the raw water and the outflow portion of the treated water is omitted.

【0003】一方、このような曝気槽を用いて活性汚泥
法により水の浄化処理を行う場合、混合液中の溶存酸素
濃度が十分であることが求められるが、過剰な負荷によ
って一時的に酸素不足になることがある。このような場
合、従来は、溶存酸素濃度を補うために曝気に用いる空
気量を増やしたり、曝気用空気とは別に酸素や空気を混
合液中に散気したりするようにしている。しかし、単に
酸素や空気を混合液中に散気する方法では、気泡がすぐ
に水面上に浮上してしまうため、気液接触時間が不十分
となり、酸素の溶解効率が低いという不都合がある。
On the other hand, when water is purified by the activated sludge method using such an aeration tank, it is required that the concentration of dissolved oxygen in the mixed solution be sufficient. May be short. In such a case, conventionally, the amount of air used for aeration is increased to supplement the dissolved oxygen concentration, or oxygen or air is diffused into the mixture separately from the aeration air. However, the method of simply diffusing oxygen or air into the mixed solution has a disadvantage that the gas-liquid contact time becomes insufficient because the air bubbles immediately float on the water surface, and the oxygen dissolving efficiency is low.

【0004】このようなことから、混合液中に酸素や空
気を補給するための補助散気手段を設けることが行われ
ているが、補助散気手段から噴出する気泡が大きいと、
十分な酸素補給を行うことができず、逆に、補助散気手
段から噴出する気泡を小さくするために補助散気手段の
ガス噴出部を多孔質材料で形成すると、通気抵抗が大き
くなってブロワー等の動力費が増大したり、目詰まりを
生じるなどの不都合がある。また、混合液中への散気の
ために酸素ガスを昇圧する際には、特殊なブロワを使用
する必要もある。
[0004] For this reason, it has been practiced to provide an auxiliary diffuser for replenishing the mixture with oxygen and air.
On the contrary, if the gas spouting part of the auxiliary diffuser is made of a porous material in order to reduce the bubbles spouted from the auxiliary diffuser, the airflow resistance increases and the blower However, there are inconveniences such as an increase in power cost and clogging. When the pressure of the oxygen gas is increased to diffuse air into the mixture, it is necessary to use a special blower.

【0005】また、湖沼等の水質改善を図るための酸素
供給や、養魚場,水族館等での水中への酸素の供給は、
一般に表面水を撹拌したり、水中に大気をバブリングさ
せることにより行われているが、大量の酸素を効率よく
溶解させることはできなかった。
The supply of oxygen for improving the water quality of lakes and marshes and the supply of oxygen to water in fish farms, aquariums, etc.
Generally, it is performed by stirring the surface water or bubbling the atmosphere in the water, but it has not been possible to efficiently dissolve a large amount of oxygen.

【0006】そこで本発明は、液中への酸素の溶解効率
を高めることができ、溶存酸素濃度を十分に上昇させる
ことができる酸素溶解装置を提供することを目的として
いる。
Accordingly, an object of the present invention is to provide an oxygen dissolving apparatus that can increase the efficiency of dissolving oxygen in a liquid and can sufficiently increase the concentration of dissolved oxygen.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の酸素溶解装置は、液面部に、底部にのみ設
けた開口部が液中に開口する箱状の酸素室を設け、該酸
素室の下方の液中に、吐出部を上方向に向けたエゼクタ
ーを設けるとともに、前記酸素室内に酸素を供給する酸
素供給手段と、前記エゼクターに槽内の液を供給する送
液ポンプと、前記酸素室内と前記エゼクターのガス吸引
部とを接続する酸素吸引経路と、エゼクターの吐出部か
ら吐出された気液二相流を酸素室内に案内するガイド管
とを備えていることを特徴としている。
In order to achieve the above object, the oxygen dissolving apparatus of the present invention is provided with a box-shaped oxygen chamber in which the opening provided only at the bottom is opened in the liquid at the liquid surface, In the liquid below the oxygen chamber, an ejector with a discharge unit directed upward is provided, oxygen supply means for supplying oxygen to the oxygen chamber, and a liquid feed pump for supplying a liquid in a tank to the ejector. An oxygen suction path connecting the oxygen chamber and a gas suction unit of the ejector, and a guide tube for guiding a gas-liquid two-phase flow discharged from a discharge unit of the ejector into the oxygen chamber. I have.

【0008】さらに、本発明の酸素溶解装置は、前記酸
素供給手段が、前記酸素室内又は前記酸素吸引経路の酸
素濃度を測定する酸素濃度測定手段と、酸素供給源から
酸素室内へ酸素を供給する酸素供給経路と、該酸素供給
経路に設けられて前記酸素濃度測定手段で測定した酸素
濃度に応じて開閉する酸素供給弁とを備えていること、
あるいは、前記酸素室内又は前記酸素吸引経路の圧力を
測定する圧力測定手段と、酸素供給源から酸素室内へ酸
素を供給する酸素供給経路と、該酸素供給経路に設けら
れて前記圧力測定手段で測定した圧力に応じて開閉する
酸素供給弁とを備えていること、あるいは、前記酸素室
内の液面高さを測定する液面測定手段と、酸素供給源か
ら酸素室内へ酸素を供給する酸素供給経路と、該酸素供
給経路に設けられて前記液面測定手段で測定した液面高
さに応じて開閉する酸素供給弁とを備えていること、あ
るいは、酸素供給源から酸素室内へ酸素を供給する酸素
供給経路と、該酸素供給経路に設けられて、その二次側
圧力に応じて開閉する酸素供給弁とを備えていることを
特徴としている。また、前記酸素室に、室内のガスを排
出する排気経路及び排気弁を備えていることを特徴とし
ている。
Further, in the oxygen dissolving apparatus according to the present invention, the oxygen supply means supplies oxygen to the oxygen chamber from the oxygen supply source and an oxygen concentration measurement means for measuring an oxygen concentration in the oxygen chamber or the oxygen suction path. An oxygen supply path, comprising an oxygen supply valve provided in the oxygen supply path and opening and closing according to the oxygen concentration measured by the oxygen concentration measurement means,
Alternatively, a pressure measuring means for measuring the pressure in the oxygen chamber or the oxygen suction path, an oxygen supply path for supplying oxygen from an oxygen supply source to the oxygen chamber, and a pressure measurement means provided in the oxygen supply path and measured by the pressure measuring means An oxygen supply valve that opens and closes according to the pressure that has been set, or a liquid level measurement unit that measures the liquid level in the oxygen chamber, and an oxygen supply path that supplies oxygen from the oxygen supply source to the oxygen chamber. And an oxygen supply valve provided in the oxygen supply path and opened and closed according to the liquid level measured by the liquid level measuring means, or supplies oxygen from an oxygen supply source to the oxygen chamber. It is characterized by comprising an oxygen supply path, and an oxygen supply valve provided in the oxygen supply path and opening and closing according to the secondary pressure. Further, the oxygen chamber is provided with an exhaust path and an exhaust valve for exhausting gas in the chamber.

【0009】[0009]

【発明の実施の形態】図1は、本発明の酸素溶解装置
を、活性汚泥法により水の浄化処理を行う好気性水処理
装置である曝気槽に適用した一形態例を示す概略系統図
である。まず、曝気槽11は、前記図2,図3に示した
ものと同様に形成することができる。すなわち、この曝
気槽11は、平面形状が長方形の曝気槽11の一方の側
壁12の底面部に、槽内の曝気撹拌を行い、混合液に酸
素を供給するとともに、旋回流を発生させるための散気
装置13を側壁12と平行に一列に設けたものであっ
て、この散気装置13から噴出するガス(空気)によ
り、曝気槽11内の混合液には、矢印で示すような上昇
流と下降流とを有する旋回流が形成される。
FIG. 1 is a schematic system diagram showing an embodiment in which an oxygen dissolving apparatus of the present invention is applied to an aeration tank which is an aerobic water treatment apparatus for purifying water by an activated sludge method. is there. First, the aeration tank 11 can be formed in the same manner as that shown in FIGS. That is, the aeration tank 11 is used for performing aeration and stirring in the tank on the bottom surface of one side wall 12 of the aeration tank 11 having a rectangular planar shape, supplying oxygen to the mixed solution, and generating a swirling flow. The gas diffuser 13 is provided in a line in parallel with the side wall 12, and the gas (air) ejected from the gas diffuser 13 causes the mixed liquid in the aeration tank 11 to flow upward as indicated by an arrow. And a swirling flow having a downward flow.

【0010】酸素溶解装置は、上記旋回流における下降
流部分に設けられており、下降流部分の液面部には、酸
素室14が設けられている。この酸素室14は、底部の
みが開口した箱状のもので、底部の開口部15が混合液
中に開口するように設置されている。また、酸素室14
の下方の混合液中には、吐出部16aを上方向に向けた
エゼクター16が設けられるとともに、該エゼクター1
6の吐出部16aから吐出された気液二相流を酸素室1
4内に案内するガイド管17が設けられている。さら
に、エゼクター16には、曝気槽11内の混合液を吸引
してエゼクター16に循環供給する送液ポンプ18と、
酸素室14内とエゼクター16のガス吸引部16bとを
接続する酸素吸引経路19とが設けられている。
The oxygen dissolving device is provided in a downward flow portion of the swirling flow, and an oxygen chamber 14 is provided in a liquid surface portion of the downward flow portion. The oxygen chamber 14 has a box shape with only the bottom opening, and is installed such that the bottom opening 15 opens into the mixture. In addition, oxygen chamber 14
An ejector 16 with the discharge portion 16a directed upward is provided in the mixed liquid below the ejector 1, and the ejector 1
The gas-liquid two-phase flow discharged from the discharge section 16a of
A guide tube 17 for guiding the inside of the tube 4 is provided. Further, the ejector 16 sucks the mixed solution in the aeration tank 11 and circulates and supplies the mixed solution to the ejector 16.
An oxygen suction path 19 that connects the inside of the oxygen chamber 14 and the gas suction part 16b of the ejector 16 is provided.

【0011】前記酸素室14には、酸素室14内の酸素
濃度,酸素量を所定量以上に保持するための酸素供給手
段として、酸素貯槽等の酸素供給源20から酸素室14
に酸素を供給するための酸素供給経路21及び酸素供給
弁22と、酸素室14内の酸素濃度を測定する酸素濃度
測定手段である酸素濃度計23と、酸素室14内の圧力
を測定する圧力測定手段である圧力センサー24と、酸
素室14内のガスを排出するための排気経路25及び排
気弁26とが設けられており、酸素供給弁22は、圧力
センサー24で測定した酸素室14内の圧力によって作
動する圧力制御器27からの信号と酸素濃度計23とら
の信号とによって開閉し、排気弁26は、酸素濃度計2
3からの信号によって開閉するように形成されている。
The oxygen chamber 14 is provided with an oxygen supply source 20 such as an oxygen storage tank as an oxygen supply means for maintaining the oxygen concentration and the oxygen amount in the oxygen chamber 14 at a predetermined level or more.
Supply path 21 and oxygen supply valve 22 for supplying oxygen to oxygen, oxygen concentration meter 23 which is an oxygen concentration measuring means for measuring the oxygen concentration in oxygen chamber 14, and pressure for measuring the pressure in oxygen chamber 14. A pressure sensor 24 as a measuring means, an exhaust path 25 for exhausting gas in the oxygen chamber 14 and an exhaust valve 26 are provided, and the oxygen supply valve 22 is provided in the oxygen chamber 14 measured by the pressure sensor 24. The exhaust valve 26 is opened and closed by a signal from a pressure controller 27 operated by the pressure of the oximeter and a signal from the oximeter 23.
3 is formed so as to be opened and closed by a signal from the control unit 3.

【0012】このように形成した酸素溶解装置におい
て、前記送液ポンプ18を運転し、経路28から吸引し
た混合液を経路29を介してエゼクター16に供給する
と、エゼクター16の絞り部分で発生する負圧により、
酸素室14内の酸素ガス(酸素含有ガス)が酸素吸引経
路19を経てガス吸引部16bに吸引され、混合液中に
分散した状態になって吐出部16aからガイド管17内
に吐出する。エゼクター内16に吸引された酸素ガス
は、絞り部分でのせん断力によって細かく分断された状
態となり、混合液と激しく接触して混合液中に溶解す
る。次に、微細気泡状態となった酸素ガスを取り込んだ
混合液は、気液二相流となって吐出部16aからガイド
管17内に吐出されてガイド管17内を上昇する。この
とき、気液二相流に激しい乱流状態が発生するように混
合液の流量等を設定しておくことにより、酸素ガスと混
合液とが効果的に接触し、これによって2回目の酸素溶
解が起きる。
In the oxygen dissolving apparatus thus formed, when the liquid feed pump 18 is operated to supply the mixed liquid sucked from the passage 28 to the ejector 16 via the passage 29, the negative pressure generated in the throttle portion of the ejector 16 is obtained. By pressure
The oxygen gas (oxygen-containing gas) in the oxygen chamber 14 is sucked into the gas suction unit 16b via the oxygen suction path 19, and is dispersed in the mixed liquid and discharged from the discharge unit 16a into the guide tube 17. The oxygen gas sucked into the ejector 16 is in a state of being finely divided by the shearing force at the throttle portion, violently comes into contact with the mixed solution, and is dissolved in the mixed solution. Next, the mixed liquid containing the oxygen gas in a fine bubble state is discharged into the guide pipe 17 from the discharge portion 16a as a gas-liquid two-phase flow, and rises in the guide pipe 17. At this time, by setting the flow rate and the like of the mixed liquid so as to generate a violent turbulent state in the gas-liquid two-phase flow, the oxygen gas and the mixed liquid are brought into effective contact with each other. Dissolution occurs.

【0013】ガイド管17の上端から酸素室14内に噴
出した気液二相流のうち、液中に溶解しなかった酸素ガ
スは酸素室14内に残り、再び酸素吸引経路19に吸引
されて循環する。一方、高酸素濃度となった混合液は、
酸素室14の開口部15から曝気槽11内に戻り、ガイ
ド管17の外周部分を下降する前記旋回流に乗って槽内
に分散され、曝気槽11内の混合液全体に酸素が供給さ
れる。
In the gas-liquid two-phase flow ejected into the oxygen chamber 14 from the upper end of the guide tube 17, the oxygen gas not dissolved in the liquid remains in the oxygen chamber 14 and is sucked into the oxygen suction path 19 again. Circulate. On the other hand, the mixture with high oxygen concentration
It returns to the inside of the aeration tank 11 from the opening 15 of the oxygen chamber 14 and rides on the swirling flow descending the outer peripheral portion of the guide pipe 17 to be dispersed in the tank, and oxygen is supplied to the entire mixed liquid in the aeration tank 11. .

【0014】このように、酸素室14とエゼクター16
とガイド管17とを組み合わせて形成した酸素溶解装置
で混合液中に酸素を供給するように形成したことによ
り、酸素室14に供給した酸素ガスを効果的に混合液中
に溶解することができる。特に、エゼクター16を使用
して酸素室14内の酸素ガスを混合液中に導入すること
により、酸素ガス昇圧用の特殊なブロワを設置する必要
が無く、通常の送液ポンプを使用することができるので
経済的である。また、エゼクター16の絞り部でのせん
断力によって微細気泡を生成できるので、溶解効率も優
れており、目の細かい補助散気手段を用いた場合のよう
な目詰まりを生じることが無く、保守性も良好である。
Thus, the oxygen chamber 14 and the ejector 16
The oxygen gas supplied to the oxygen chamber 14 can be effectively dissolved in the mixed liquid by supplying oxygen to the mixed liquid by using an oxygen dissolving device formed by combining the gas and the guide tube 17. . In particular, by introducing the oxygen gas in the oxygen chamber 14 into the mixture using the ejector 16, there is no need to install a special blower for increasing the pressure of the oxygen gas, and it is possible to use a normal liquid feed pump. It is economical because it can be done. In addition, since fine bubbles can be generated by the shearing force at the narrowed portion of the ejector 16, the dissolving efficiency is excellent, and clogging does not occur as in the case of using fine auxiliary diffusing means, and maintainability is improved. Is also good.

【0015】上述のようにして酸素室14から混合液中
に酸素を供給していくと、酸素分が混合液中に溶け込む
量に応じて酸素室14内のガス量が減少し、酸素室14
内の圧力が低下することになる。このとき、圧力センサ
ー24で測定した酸素室14内の圧力が所定圧力まで低
下すると、圧力制御器27から酸素供給弁22を開く信
号が出力され、酸素供給弁22が開いて酸素供給経路2
1から酸素室14内に酸素ガスが供給される。この酸素
ガスの供給によって酸素室14内が所定圧力に上昇する
と、圧力制御器27から酸素供給弁22を閉じる信号が
出力され、酸素供給弁22が閉じて酸素ガスの供給が終
了する。
As described above, when oxygen is supplied from the oxygen chamber 14 into the mixture, the amount of gas in the oxygen chamber 14 decreases according to the amount of oxygen dissolved in the mixture, and
The pressure inside will drop. At this time, when the pressure in the oxygen chamber 14 measured by the pressure sensor 24 decreases to a predetermined pressure, a signal for opening the oxygen supply valve 22 is output from the pressure controller 27, and the oxygen supply valve 22 is opened and the oxygen supply path 2 is opened.
Oxygen gas is supplied from 1 into the oxygen chamber 14. When the inside of the oxygen chamber 14 rises to a predetermined pressure due to the supply of the oxygen gas, a signal for closing the oxygen supply valve 22 is output from the pressure controller 27, and the oxygen supply valve 22 is closed to terminate the supply of the oxygen gas.

【0016】一方、酸素室14内に供給する酸素ガスと
して酸素濃度が略100%の高純度酸素を使用した場合
でも、混合液中に溶存している炭酸ガスや窒素が酸素室
14内に侵入し、次第にこれらが蓄積されることにな
る。また、低純度酸素を使用した場合は、該低純度酸素
中の窒素やアルゴンが酸素室内に残り、酸素室14内の
酸素濃度が低下し、酸素の溶解効率も次第に低下してい
く。このように、酸素室14内の酸素濃度が所定濃度以
下になると、前記酸素濃度計23がこれを検出し、前記
酸素供給弁22に開弁信号を出力するとともに、前記排
気弁26にも開弁信号を出力し、酸素供給経路21から
の供給される酸素ガスにより、酸素室14内のガスを排
気経路25から押し出すようにする。これによって酸素
室14内の酸素濃度が所定濃度以上になると、酸素濃度
計23から酸素供給弁22及び排気弁26に閉弁信号が
出力される。
On the other hand, even when high-purity oxygen having an oxygen concentration of about 100% is used as the oxygen gas to be supplied to the oxygen chamber 14, the carbon dioxide gas and nitrogen dissolved in the mixed solution enter the oxygen chamber 14. These will gradually accumulate. When low-purity oxygen is used, nitrogen and argon in the low-purity oxygen remain in the oxygen chamber, the oxygen concentration in the oxygen chamber 14 decreases, and the oxygen dissolving efficiency gradually decreases. As described above, when the oxygen concentration in the oxygen chamber 14 becomes equal to or less than the predetermined concentration, the oxygen concentration meter 23 detects this, outputs a valve opening signal to the oxygen supply valve 22, and opens the exhaust valve 26 as well. A valve signal is output, and the gas in the oxygen chamber 14 is pushed out from the exhaust path 25 by the oxygen gas supplied from the oxygen supply path 21. Thus, when the oxygen concentration in the oxygen chamber 14 becomes equal to or higher than the predetermined concentration, a valve closing signal is output from the oxygen concentration meter 23 to the oxygen supply valve 22 and the exhaust valve 26.

【0017】このように、酸素の消費に伴う酸素室14
内の圧力低下に基づいて酸素ガスの供給を行うように形
成することにより、酸素室14内の酸素量を所定量以上
に保つことができ、酸素室14内の酸素濃度が低下した
ときに酸素室14内のガスを自動的に排出することによ
り、酸素濃度低下による溶解効率の低下を防止できる。
As described above, the oxygen chamber 14 accompanying the consumption of oxygen is used.
The supply of oxygen gas is performed based on the pressure drop in the oxygen chamber, whereby the amount of oxygen in the oxygen chamber 14 can be maintained at a predetermined amount or more. By automatically discharging the gas in the chamber 14, it is possible to prevent a decrease in the dissolution efficiency due to a decrease in the oxygen concentration.

【0018】上記酸素室14内の酸素濃度は任意であ
り、酸素供給経路21から供給する酸素ガスの濃度も任
意であるが、酸素室14内の酸素濃度を大気中の酸素濃
度である21%を超える濃度、好ましくは80%以上の
濃度になるように制御することにより、酸素の溶解効率
を大幅に向上させることができる。
The oxygen concentration in the oxygen chamber 14 is arbitrary, and the concentration of oxygen gas supplied from the oxygen supply path 21 is also arbitrary. However, the oxygen concentration in the oxygen chamber 14 is 21%, which is the oxygen concentration in the atmosphere. By controlling the concentration so as to exceed the concentration, preferably 80% or more, the dissolving efficiency of oxygen can be greatly improved.

【0019】酸素室14内への酸素ガスの供給は、前述
のように、圧力センサー24で測定した圧力に基づいて
行う他、酸素室14内の液面を液面測定手段により測定
したり、酸素室14内の酸素濃度を酸素濃度測定手段に
より測定したりして行うこともできる。
As described above, the supply of oxygen gas into the oxygen chamber 14 is performed based on the pressure measured by the pressure sensor 24, and the liquid level in the oxygen chamber 14 is measured by liquid level measuring means. The measurement can also be performed by measuring the oxygen concentration in the oxygen chamber 14 by an oxygen concentration measuring means.

【0020】すなわち、酸素の消費により酸素室14内
の圧力が低下すると、これに伴って液面が上昇するの
で、液面が所定位置まで上昇したときに酸素供給弁22
を開き、液面が所定位置まで低下したときに酸素供給弁
22を閉じるようにしてもよい。また、酸素室14内の
酸素濃度が所定濃度まで低下したときに酸素供給弁22
を開き、酸素濃度が所定濃度まで上昇したときに酸素供
給弁22を閉じるようにしてもよい。さらに、酸素供給
弁22として、二次側圧力を一定に保つ圧力制御弁を用
いて酸素室14内の圧力を一定に保つようにしてもよ
い。
That is, when the pressure in the oxygen chamber 14 decreases due to the consumption of oxygen, the liquid level rises accordingly, so that when the liquid level rises to a predetermined position, the oxygen supply valve 22
May be opened, and the oxygen supply valve 22 may be closed when the liquid level drops to a predetermined position. When the oxygen concentration in the oxygen chamber 14 decreases to a predetermined concentration, the oxygen supply valve 22
May be opened, and the oxygen supply valve 22 may be closed when the oxygen concentration rises to a predetermined concentration. Furthermore, the pressure in the oxygen chamber 14 may be kept constant by using a pressure control valve that keeps the secondary pressure constant as the oxygen supply valve 22.

【0021】また、前記圧力センサー24や酸素濃度計
23のような制御手段を設けずに、運転中は、酸素供給
経路21から僅かに過剰の酸素ガスを連続的に供給し、
酸素室14の開口部15から室内のガスを混合液中に僅
かずつオーバーフローさせることにより、酸素室14内
の酸素量の減少や酸素以外のガスの蓄積をある程度に抑
えることができる。また、酸素室14内に蓄積する炭酸
ガスや窒素等の排出も、排気弁26を適当な時間間隔で
自動的に開閉したり、手動で開閉したりするようにして
もよい。
Also, during operation, a slight excess of oxygen gas is continuously supplied from the oxygen supply path 21 without providing control means such as the pressure sensor 24 and the oxygen concentration meter 23.
By causing the gas in the chamber to slightly overflow into the liquid mixture from the opening 15 of the oxygen chamber 14, the decrease in the amount of oxygen in the oxygen chamber 14 and the accumulation of gases other than oxygen can be suppressed to some extent. Further, the exhaust valve 26 may be automatically opened and closed at appropriate time intervals or manually opened and closed for discharging carbon dioxide, nitrogen, and the like accumulated in the oxygen chamber 14.

【0022】前述のような混合液中への酸素の供給は、
送液ポンプ18を運転することにより行われるが、この
運転は、連続的に行ってもよく、適当に設定した間隔で
間欠的に行ってもよい。さらに、曝気槽11内の混合液
の溶存酸素濃度を溶存酸素濃度計で測定し、溶存酸素濃
度が所定濃度以下になったときに行うようにしてもよ
い。
The supply of oxygen into the mixture as described above is as follows.
The operation is performed by operating the liquid supply pump 18, and may be performed continuously or intermittently at appropriately set intervals. Further, the dissolved oxygen concentration of the mixed solution in the aeration tank 11 may be measured by a dissolved oxygen concentration meter, and the measurement may be performed when the dissolved oxygen concentration becomes equal to or lower than a predetermined concentration.

【0023】また、エゼクター16に供給する液として
は、曝気槽11内の混合液の他、該曝気槽11に流入す
る原水を使用したり、曝気槽11以降の処理水の一部や
返送汚泥を使用したりすることもできる。さらに、曝気
槽の形状や方式は任意であり、例えば、ドラフトチュー
ブ式、水中撹拌式、全面エアレーション式等の場合であ
っても、下降流部分に酸素溶解装置を設けることによっ
て同様の効果を得ることができ、酸化接触方式による水
処理装置にも適用が可能である。なお、酸素溶解装置を
下降流部分以外に設けることも可能であるが、曝気等に
よる気泡が酸素室内に侵入するような場合は、酸素室内
の酸素濃度が低くなってしまうので、酸素の溶解効率が
低下することがある。また、酸素溶解装置は、曝気槽1
1の大きさや形状、必要とする酸素供給量に応じて複数
個を設置することができる。
As the liquid to be supplied to the ejector 16, in addition to the mixed liquid in the aeration tank 11, raw water flowing into the aeration tank 11, a part of the treated water after the aeration tank 11, and returned sludge Or can be used. Furthermore, the shape and system of the aeration tank are arbitrary, and for example, even in the case of a draft tube system, a submerged stirring system, a full aeration system, etc., a similar effect is obtained by providing an oxygen dissolving device in the downflow portion. The present invention can be applied to a water treatment apparatus using an oxidation contact method. The oxygen dissolving device can be provided in a portion other than the downward flow portion. However, in the case where bubbles due to aeration or the like enter the oxygen chamber, the oxygen concentration in the oxygen chamber becomes low. May decrease. In addition, the oxygen dissolving device includes an aeration tank 1
A plurality can be installed according to the size and shape of one and the required oxygen supply amount.

【0024】前記ガイド管17は、エゼクター16から
吐出された気液二相流を酸素室14内に送りこむことが
できれば任意の形状で形成することができる。例えば、
本形態例に示すように、エゼクター16の吐出部16a
とガイド管17との間に間隙を設けて、ここから混合液
を巻込むように形成してもよいが、吐出部16aにガイ
ド管17の下端を接続してもよい。また、ガイド管17
の上端は、曝気槽11内の旋回流に悪影響を与えずに、
かつ、溶存酸素量が増大した混合液を旋回流に同伴させ
やすくするため、酸素室14の開口部15より上方に位
置していることが好ましく、特に、液面より僅かに上方
に位置させておくことが好ましい。
The guide tube 17 can be formed in any shape as long as the gas-liquid two-phase flow discharged from the ejector 16 can be sent into the oxygen chamber 14. For example,
As shown in the present embodiment, the ejection portion 16a of the ejector 16
A gap may be provided between the guide tube 17 and the guide tube 17, and the lower end of the guide tube 17 may be connected to the discharge unit 16 a. Also, the guide tube 17
Without adversely affecting the swirling flow in the aeration tank 11,
In addition, in order to facilitate the entrainment of the mixed liquid having an increased amount of dissolved oxygen into the swirling flow, it is preferably located above the opening 15 of the oxygen chamber 14, and particularly, it is preferably located slightly above the liquid level. Preferably.

【0025】さらに,酸素供給管21は、酸素室14に
接続せずに、酸素吸引経路19に接続して間接的に酸素
室14に酸素を供給するようにしてもよく、酸素濃度計
23や圧力センサー24を酸素吸引経路19に設けるよ
うにしてもよい。
Further, the oxygen supply pipe 21 may be connected to the oxygen suction passage 19 and indirectly supply oxygen to the oxygen chamber 14 without being connected to the oxygen chamber 14. The pressure sensor 24 may be provided in the oxygen suction path 19.

【0026】なお、エゼクターは、液の高速の流れで生
じる負圧を利用してガスを吸引するものであり、本発明
では、エゼクターと呼ばれる機器以外に、ベンチュリ管
と呼ばれるものなど、同様の機能を有するものならば、
同様にして使用することができる。
The ejector sucks gas by using a negative pressure generated by a high-speed flow of liquid. In the present invention, in addition to a device called an ejector, a similar function such as a venturi tube is used. If you have
It can be used in a similar manner.

【0027】また、本発明の酸素溶解装置は、上述の好
気性水処理装置以外に、湖沼等の水質改善を図るための
酸素供給や、水族館、養魚場等における養育水への酸素
補給等にも適用することができる。
The oxygen dissolving apparatus of the present invention can be used for supplying oxygen for improving the water quality of lakes and marshes, for supplying oxygen to nurture water in aquariums, fish farms, etc., in addition to the above-described aerobic water treatment apparatus. Can also be applied.

【0028】[0028]

【実施例】幅60cm,奥行き40cm,深さ50cm
のガラス製水槽を曝気槽として用い、この中に100リ
ットルの水道水を入れた。酸素室は、幅40cm,奥行
き3cm,深さ7cmの直方体状のものを透明プラスチ
ックで作成した。エゼクターは、絞り部分の径が4mm
で長さが7.5cmのものを使用した。ガイド管には、
内径30mm,長さ150mmのものを使用した。ま
た、酸素室内の圧力を測定する圧力センサーを設け、圧
力が50mmAq(水柱50mm=約100pa)以下
になったら酸素ガス(略100%)を供給し、100m
mAqになったら停止するように設定した。さらに、酸
素室内の酸素濃度は、80%以上とし、これより低下し
たときは酸素室内のガスを入れ替えた。
[Example] Width 60cm, depth 40cm, depth 50cm
Was used as an aeration tank, and 100 liters of tap water was charged therein. The oxygen chamber was a rectangular parallelepiped having a width of 40 cm, a depth of 3 cm, and a depth of 7 cm made of transparent plastic. For the ejector, the diameter of the squeezed part is 4 mm
And a length of 7.5 cm was used. In the guide tube,
One having an inner diameter of 30 mm and a length of 150 mm was used. In addition, a pressure sensor for measuring the pressure in the oxygen chamber is provided, and when the pressure becomes 50 mmAq (water column 50 mm = about 100 pa) or less, oxygen gas (approximately 100%) is supplied.
It was set to stop when it reached mAq. Further, the oxygen concentration in the oxygen chamber was set to 80% or more. When the oxygen concentration dropped below 80%, the gas in the oxygen chamber was replaced.

【0029】この実験装置を使用して清水での総括酸素
移動容量係数(KLa)を測定した。その結果、散気装
置から空気を毎分10リットルで曝気しただけの場合
は、総括酸素移動容量係数が9であったのに対し、エゼ
クターに毎分2.8リットルの水を供給し、酸素吸引量
が毎分2.3リットルとなる条件で運転したところ、総
括酸素移動容量係数が22に向上した。
Using this experimental apparatus, the overall oxygen transfer capacity coefficient (KLa) in fresh water was measured. As a result, when air was only aerated at 10 liters per minute from the air diffuser, the overall oxygen transfer capacity coefficient was 9, whereas 2.8 liters of water per minute was supplied to the ejector, and oxygen was supplied. When the operation was performed under the condition that the suction amount was 2.3 liters per minute, the overall oxygen transfer capacity coefficient was improved to 22.

【0030】[0030]

【発明の効果】以上説明したように、本発明の酸素溶解
装置によれば、液中への酸素の供給を効率よく行うこと
ができ、好気性水処理装置に適用することにより、十分
な溶存酸素濃度で効率のよい水処理を行うことができ
る。
As described above, according to the oxygen dissolving apparatus of the present invention, it is possible to efficiently supply oxygen into the liquid, and by applying the present invention to an aerobic water treatment apparatus, it is possible to achieve sufficient dissolution. Efficient water treatment can be performed at an oxygen concentration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の酸素溶解装置の一形態例を示す概略
系統図である。
FIG. 1 is a schematic system diagram showing one embodiment of the oxygen dissolving apparatus of the present invention.

【図2】 旋回流式曝気槽の一例を示す平面図である。FIG. 2 is a plan view showing an example of a swirling flow type aeration tank.

【図3】 同じく縦断面図である。FIG. 3 is a longitudinal sectional view of the same.

【符号の説明】[Explanation of symbols]

11…曝気槽、12…側壁、13…散気装置、14…酸
素室、15…開口部、16…エゼクター、17…ガイド
管、18…送液ポンプ、19…酸素吸引経路、20…酸
素供給源、21…酸素供給経路、22…酸素供給弁、2
3…酸素濃度計、24…圧力センサー、25…排気経
路、26…排気弁、27…圧力制御器
DESCRIPTION OF SYMBOLS 11 ... aeration tank, 12 ... side wall, 13 ... diffuser, 14 ... oxygen chamber, 15 ... opening, 16 ... ejector, 17 ... guide tube, 18 ... liquid supply pump, 19 ... oxygen suction path, 20 ... oxygen supply Source, 21: oxygen supply path, 22: oxygen supply valve, 2
3: oxygen concentration meter, 24: pressure sensor, 25: exhaust path, 26: exhaust valve, 27: pressure controller

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液面部に、底部にのみ設けた開口部が液
中に開口する箱状の酸素室を設け、該酸素室の下方の液
中に、吐出部を上方向に向けたエゼクターを設けるとと
もに、前記酸素室内に酸素を供給する酸素供給手段と、
前記エゼクターに槽内の液を供給する送液ポンプと、前
記酸素室内と前記エゼクターのガス吸引部とを接続する
酸素吸引経路と、エゼクターの吐出部から吐出された気
液二相流を酸素室内に案内するガイド管とを備えている
ことを特徴とする酸素溶解装置。
1. An ejector in which a box-shaped oxygen chamber having an opening provided only at the bottom is opened in a liquid at a liquid level, and a discharge unit is directed upward in the liquid below the oxygen chamber. And an oxygen supply means for supplying oxygen into the oxygen chamber,
A liquid pump for supplying a liquid in a tank to the ejector, an oxygen suction path connecting the oxygen chamber and a gas suction unit of the ejector, and a gas-liquid two-phase flow discharged from a discharge unit of the ejector in the oxygen chamber. An oxygen dissolving device, comprising: a guide tube for guiding the oxygen.
【請求項2】 前記酸素供給手段は、前記酸素室内又は
前記酸素吸引経路の酸素濃度を測定する酸素濃度測定手
段と、酸素供給源から酸素室内へ酸素を供給する酸素供
給経路と、該酸素供給経路に設けられて前記酸素濃度測
定手段で測定した酸素濃度に応じて開閉する酸素供給弁
とを備えていることを特徴とする請求項1記載の酸素溶
解装置。
2. The oxygen supply means includes: an oxygen concentration measurement means for measuring an oxygen concentration in the oxygen chamber or the oxygen suction path; an oxygen supply path for supplying oxygen from an oxygen supply source to the oxygen chamber; 2. The oxygen dissolving apparatus according to claim 1, further comprising: an oxygen supply valve provided in the path and opening and closing according to the oxygen concentration measured by the oxygen concentration measuring means.
【請求項3】 前記酸素供給手段は、前記酸素室内又は
前記酸素吸引経路の圧力を測定する圧力測定手段と、酸
素供給源から酸素室内へ酸素を供給する酸素供給経路
と、該酸素供給経路に設けられて前記圧力測定手段で測
定した圧力に応じて開閉する酸素供給弁とを備えている
ことを特徴とする請求項1記載の酸素溶解装置。
3. The oxygen supply means includes a pressure measurement means for measuring a pressure in the oxygen chamber or the oxygen suction path, an oxygen supply path for supplying oxygen from an oxygen supply source to the oxygen chamber, and an oxygen supply path. The oxygen dissolving apparatus according to claim 1, further comprising an oxygen supply valve provided and opened and closed according to the pressure measured by the pressure measuring means.
【請求項4】 前記酸素供給手段は、前記酸素室内の液
面高さを測定する液面測定手段と、酸素供給源から酸素
室内へ酸素を供給する酸素供給経路と、該酸素供給経路
に設けられて前記液面測定手段で測定した液面高さに応
じて開閉する酸素供給弁とを備えていることを特徴とす
る請求項1記載の酸素溶解装置。
4. The oxygen supply means includes a liquid level measurement means for measuring a liquid level in the oxygen chamber, an oxygen supply path for supplying oxygen from an oxygen supply source into the oxygen chamber, and an oxygen supply path. 2. The oxygen dissolving apparatus according to claim 1, further comprising an oxygen supply valve that is opened and closed according to the liquid level measured by the liquid level measuring means.
【請求項5】 前記酸素供給手段は、酸素供給源から酸
素室内へ酸素を供給する酸素供給経路と、該酸素供給経
路に設けられて、その二次側圧力に応じて開閉する酸素
供給弁とを備えていることを特徴とする請求項1記載の
酸素溶解装置。
5. The oxygen supply means includes: an oxygen supply path for supplying oxygen from an oxygen supply source to an oxygen chamber; an oxygen supply valve provided in the oxygen supply path, which opens and closes in accordance with a secondary pressure of the oxygen supply path. The oxygen dissolving apparatus according to claim 1, further comprising:
【請求項6】 前記酸素室は、該室内のガスを排出する
排気経路及び排気弁を備えていることを特徴とする請求
項1乃至5のいずれか1項に記載の酸素溶解装置。
6. The oxygen dissolving apparatus according to claim 1, wherein the oxygen chamber has an exhaust path and an exhaust valve for exhausting gas in the chamber.
JP10324934A 1998-11-16 1998-11-16 Oxygen dissolution device Pending JP2000140881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10324934A JP2000140881A (en) 1998-11-16 1998-11-16 Oxygen dissolution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10324934A JP2000140881A (en) 1998-11-16 1998-11-16 Oxygen dissolution device

Publications (1)

Publication Number Publication Date
JP2000140881A true JP2000140881A (en) 2000-05-23

Family

ID=18171257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10324934A Pending JP2000140881A (en) 1998-11-16 1998-11-16 Oxygen dissolution device

Country Status (1)

Country Link
JP (1) JP2000140881A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248488A (en) * 2001-02-23 2002-09-03 Japan Sewage Works Agency Aeration method and aeration apparatus
JP2008086986A (en) * 2006-09-06 2008-04-17 Nippon Mizushori Giken:Kk Microbubble generating device and water treatment apparatus using the same
JP2010247121A (en) * 2009-04-20 2010-11-04 Japan Organo Co Ltd Gas-liquid dissolving tank
JP2012202179A (en) * 2011-03-28 2012-10-22 Jfe Engineering Corp Geothermal water treatment equipment
JP2014140802A (en) * 2013-01-23 2014-08-07 Toyobo Engineering Kk Nitrogen type deoxidation apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248488A (en) * 2001-02-23 2002-09-03 Japan Sewage Works Agency Aeration method and aeration apparatus
JP2008086986A (en) * 2006-09-06 2008-04-17 Nippon Mizushori Giken:Kk Microbubble generating device and water treatment apparatus using the same
JP2010247121A (en) * 2009-04-20 2010-11-04 Japan Organo Co Ltd Gas-liquid dissolving tank
JP2012202179A (en) * 2011-03-28 2012-10-22 Jfe Engineering Corp Geothermal water treatment equipment
JP2014140802A (en) * 2013-01-23 2014-08-07 Toyobo Engineering Kk Nitrogen type deoxidation apparatus

Similar Documents

Publication Publication Date Title
US3983031A (en) Methods and apparatus for controlling the supply of a feed gas to dissolution devices
JPH0248098A (en) Improved high pressure oxygen saturated water treatment apparatus
CN101132848A (en) The mixers and the submersibel aerators with using these mixers
US3990974A (en) Waste treatment and solids separating system
JP2003220398A (en) Aerobic sludge digester
US7802775B2 (en) Method and apparatus for mixing of two fluids
CN101842322A (en) Method and apparatus for aeration
JP2000140881A (en) Oxygen dissolution device
US3981273A (en) Fish husbandry system
JP2008093607A (en) Organic waste water treatment device and organic waste water treatment method
JP3744425B2 (en) Membrane separation wastewater treatment equipment
JPH07108295A (en) Pressurized aeration treatment device for waste water
JP2005103381A (en) Method and apparatus for nitrification
GB2072027A (en) Transfer of oxygen into waste water
JP2005161174A (en) Gas dissolving method and gas dissolving device
JPH1119678A (en) Aerobic water treatment device
JPH06218238A (en) Suction device for film separation unit
JPS592880Y2 (en) Microbial reactor
JPH1170392A (en) Aerobic water treatment apparatus
JP6604676B1 (en) Waterway device
CN213537437U (en) Device for preventing jet aerator from being blocked
JP2000312896A (en) Waste water treatment apparatus
JP2003039090A (en) Membrane separation type oxidation ditch
JP3884641B2 (en) Oxidation ditch
JP2005095799A (en) Membrane activated sludge treatment apparatus