JP2000138492A - Electromagnetic wave absorber - Google Patents

Electromagnetic wave absorber

Info

Publication number
JP2000138492A
JP2000138492A JP10312480A JP31248098A JP2000138492A JP 2000138492 A JP2000138492 A JP 2000138492A JP 10312480 A JP10312480 A JP 10312480A JP 31248098 A JP31248098 A JP 31248098A JP 2000138492 A JP2000138492 A JP 2000138492A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
soft magnetic
powder
grain size
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10312480A
Other languages
Japanese (ja)
Inventor
Shinichiro Yahagi
慎一郎 矢萩
Akihiko Saito
章彦 齋藤
Hiroshi Endo
博司 遠藤
Kazuhisa Tsutsui
和久 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10312480A priority Critical patent/JP2000138492A/en
Publication of JP2000138492A publication Critical patent/JP2000138492A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To exhibit electromagnetic wave absorption power with practically allowable thickness by dispersing soft magnetic fine metal powder having grain size of specified value or below into a matrix of rubber or synthetic resin. SOLUTION: A soft magnetic fine metal powder preferably includes fine powder of Fe, Ni, Co, Fe-Si-Al and permalloy. Fine powder finer than 4 micron is available easily through reductive decomposition of a metal oxide, e.g. carbonyl iron. Carbonyl iron powder thus produced is spherical and can be mixed easily with a matrix material. Chlorinated polyethylene rubber is optimally employed as the matrix material. Permittivity ε' decreases and permeabilities μ', μ" increase as the grain size decreases. The μ' increases abruptly when the grain size decreases below 4 micron and prevents the peak of return loss from being shifted to the low frequency side through interaction with decrease of ε'. When the grain size of soft magnetic metal powder decreases, return loss increases to enhance electromagnetic wave absorption power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁波とくに数G
Hzオーダーの高い周波数領域の電磁波の遮蔽および吸
収のために使用する、電磁波吸収体の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave,
The present invention relates to an improvement in an electromagnetic wave absorber used for shielding and absorbing electromagnetic waves in a high frequency range on the order of Hz.

【0002】[0002]

【従来の技術】各種の電子機器に関して、外部への電磁
波の放出を防ぎ、また外部からの電磁波を吸収し、相互
の干渉を防止するため、種々の電磁波吸収材料が開発さ
れている。 それらの多くは、パーマロイ、センダス
ト、Fe−Cr−Al合金などの軟磁性金属の粉末を、
ゴムまたは合成樹脂のマトリクス中に分散させ、適宜の
形状に成形してなるものである。 形状は、使用に便利
なシートの形をとることが多い。
2. Description of the Related Art With respect to various electronic devices, various electromagnetic wave absorbing materials have been developed in order to prevent emission of electromagnetic waves to the outside, absorb electromagnetic waves from the outside, and prevent mutual interference. Many of them use soft magnetic metal powders such as permalloy, sendust, and Fe-Cr-Al alloys.
It is formed by dispersing in a rubber or synthetic resin matrix and molding into an appropriate shape. The shape often takes the form of a sheet that is convenient to use.

【0003】電磁波を吸収する能力は、通常、ネットワ
ークアナライザーを使用した試験により測定される、リ
ターンロス(単位dB)の値で評価される。 リターン
ロスを大きくするためには、原理的にいって、電磁波の
経路における軟磁性金属の存在量を大きくすることが必
要である。
[0003] The ability to absorb electromagnetic waves is usually evaluated by the value of return loss (unit: dB) measured by a test using a network analyzer. In order to increase the return loss, it is necessary in principle to increase the abundance of the soft magnetic metal in the path of the electromagnetic wave.

【0004】一方、リターンロスのピーク、すなわちそ
の電磁波吸収体がもっともよくその吸収能を発揮する周
波数領域は、使用した軟磁性金属の種類、粉末の形状、
マトリクスへの充填量など、多く因子によって決定され
る。 シート状の電磁波吸収体において、大きなリター
ンロスを得ようとすると、必然的にシートを厚くせざる
を得ないが、許容できるシート厚には、それぞれの電子
機器によって実用上の制限がある。 制限内であって
も、シート厚を厚くすると、リターンロスのピークが低
周波数側にシフトしてしまうという問題がある。 これ
は、より高い周波数領域を利用しようという動向からみ
て好ましくない。
On the other hand, the peak of the return loss, that is, the frequency region in which the electromagnetic wave absorber exhibits the best absorption ability, depends on the type of soft magnetic metal used, the shape of the powder,
It is determined by many factors, such as the amount of matrix filling. In order to obtain a large return loss in the sheet-like electromagnetic wave absorber, the sheet is inevitably thickened. However, the allowable sheet thickness has practical limitations depending on each electronic device. Even within the limit, when the sheet thickness is increased, there is a problem that the peak of the return loss shifts to the lower frequency side. This is undesirable in view of the trend to use higher frequency regions.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、同じ
厚さで従来品より高い電磁波吸収能を発揮し、従って実
用上一般に許容できる厚さで十分な電磁波吸収能を有す
る電磁波吸収体であって、しかも厚さの増大がリターン
ロスのピークをシフトさせることのないものを提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electromagnetic wave absorber which exhibits a higher electromagnetic wave absorbing power than conventional products at the same thickness, and which has a sufficient electromagnetic wave absorbing power at a thickness which is generally acceptable in practical use. An object of the present invention is to provide a semiconductor device in which the increase in thickness does not shift the peak of return loss.

【0006】[0006]

【課題を解決するための手段】本発明の電磁波吸収体
は、軟磁性金属の粒径4ミクロン以下の微粉末を、ゴム
または合成樹脂のマトリクス中に分散させてなる。
The electromagnetic wave absorber according to the present invention is obtained by dispersing a fine powder of a soft magnetic metal having a particle size of 4 μm or less in a rubber or synthetic resin matrix.

【0007】[0007]

【発明の実施の形態】軟磁性金属の微粉末としては、F
e,Ni,Co,Fe−Cr−Al,Fe−Si−C
r,Fe−Si−Alまたはパーマロイの微粉末が好適
である。 4ミクロン以下の微粉末は、金属化合物たと
えばカルボニル鉄の還元分解によれば、容易に入手する
ことができる。 カルボニル鉄から得た鉄の粉末は、球
状をしていてマトリクス材料との混合が容易である。
微細な粉末の取得は、気流による分級により実施でき
る。 粒径の測定は、レーザー光により、容易に行なえ
る。
BEST MODE FOR CARRYING OUT THE INVENTION As a soft magnetic metal fine powder, F
e, Ni, Co, Fe-Cr-Al, Fe-Si-C
Fine powder of r, Fe-Si-Al or permalloy is preferred. Fine powders of 4 microns or less can be easily obtained by reductive decomposition of metal compounds such as carbonyl iron. Iron powder obtained from carbonyl iron is spherical and can be easily mixed with the matrix material.
Acquisition of fine powder can be performed by classification using an airflow. The measurement of the particle size can be easily performed by a laser beam.

【0008】マトリクス材料としては、任意のゴムまた
は合成樹脂が使用できるが、出願人が提案してきた電磁
波吸収体の多くに使用されている、塩素化ポリエチレン
ゴムが最適である。
Although any rubber or synthetic resin can be used as the matrix material, chlorinated polyethylene rubber, which is used in many of the electromagnetic wave absorbers proposed by the applicant, is most suitable.

【0009】電磁波吸収体の開発の過程で発明者らが知
ったところによれば、軟磁性体粉末をマトリクス中に分
散させたタイプの電磁波吸収体においては、粉末の粒径
が小さくなると、誘電率ε'、ε''、および透磁率μ'、
μ''のうち、ε'およびε''は若干減少し、μ'および
μ''はやや大きくなる。 これらの作用が影響し合っ
て、リターンロスのピークの位置は変わらないが、値が大きく
なる、つまり減衰量が大きくなるわけである。
According to what the inventors have learned during the development of the electromagnetic wave absorber, in the electromagnetic wave absorber of the type in which the soft magnetic material powder is dispersed in the matrix, when the particle size of the powder becomes small, the dielectric material becomes insulative. Ε ′, ε ″, and permeability μ ′,
Of μ ″, ε ′ and ε ″ slightly decrease, and μ ′ and μ ″ slightly increase. These effects affect each other, and the position of the peak of the return loss does not change, but the value increases, that is, the attenuation increases.

【0010】[0010]

【参考例】軟磁性金属の粉末として、Fe−Cr−Al
合金の平均粒度18ミクロンの粉末を使用し、塩素化ポ
リエチレンゴムと、容量比にして55:45の割合で配
合して混練し、押出しおよびカレンダリングにより、厚
さ0.5ミリおよび1.0ミリのシートを製造した。
これらのシートの電磁波吸収能を0.1〜10GHzの
周波数領域において測定し、図1に示すリターンロスの
周波数特性曲線を得た。 図1から、シートの厚さの増
大に伴ってリターンロスが増加するが、一方でそのピー
クが低周波側に移動している(4〜5MHzから2MH
zへ)ことがわかる。
[Reference Example] Fe-Cr-Al as soft magnetic metal powder
A powder having an average particle size of 18 microns was mixed with chlorinated polyethylene rubber at a volume ratio of 55:45, kneaded, extruded and calendered to a thickness of 0.5 mm and 1.0 mm. Millimeter sheets were produced.
The electromagnetic wave absorbing capacity of these sheets was measured in a frequency range of 0.1 to 10 GHz, and a frequency characteristic curve of return loss shown in FIG. 1 was obtained. From FIG. 1, the return loss increases as the thickness of the sheet increases, while its peak moves to the low frequency side (from 4 to 5 MHz to 2 MHz).
z).

【0011】[0011]

【実施例1および比較例】下記2種類の軟磁性金属か
ら、粒径の異なる粉末各3種類を用意した: 軟磁性金属 平均粒径 (ミクロン) カルボニル鉄 D50 9.7 3.4*1 1.6*2 Fe−Cr−Al D50 22.1 14.0 7.6 *1および*2が本発明の実施例で、残りは比較例。
Example 1 and Comparative Example Three kinds of powders having different particle sizes were prepared from the following two types of soft magnetic metals: soft magnetic metal Average particle size (micron) carbonyl iron D 50 9.7 3.4 * 1 1.6 * example of 2 Fe-Cr-Al D 50 22.1 14.0 7.6 * 1 and * 2 is the invention, with the remainder Comparative example.

【0012】これらの粉末と塩素化ポリエチレンとを、
容量比で55:45の割合で配合し、参考例と同様に混
練および押出しを行なって、いずれも厚さ1.0ミリの
電磁波吸収シートを製造した。
These powders and chlorinated polyethylene are
They were blended at a volume ratio of 55:45 and kneaded and extruded in the same manner as in the Reference Example to produce an electromagnetic wave absorbing sheet having a thickness of 1.0 mm in each case.

【0013】それらのシートについて、ε'、μ'および
μ''を、周波数5GHzおよび8GHzにおいて測定
し、図2、図3および図4に示すグラフを得た。 これ
らのグラフから、前述のように、粒径が小さくなると
ε'が小さくなり、μ'およびμ''は大きくなることが分
かる。 とくに、μ'は粒径4ミクロン以下で急激に増
大しており、これがε'の減少との相互作用で、リター
ンロスのピークが低周波側にシフトすることを抑制して
いるものと解される。 本発明で平均粒径4ミクロン以
下の微細粉末を使用するのは、この事実と、図5および
図6にみるように、微細な粉末ほど電磁波吸収能が高い
吸収体を与えるという事実に基づいている。
For these sheets, ε ′, μ ′ and μ ″ were measured at frequencies of 5 GHz and 8 GHz, and the graphs shown in FIGS. 2, 3 and 4 were obtained. From these graphs, it can be seen that, as described above, the smaller the particle size, the smaller ε ′ and the larger μ ′ and μ ″. In particular, it is understood that μ ′ increases rapidly when the particle diameter is 4 μm or less, and this is an interaction with the decrease in ε ′, which suppresses the shift of the return loss peak to the lower frequency side. You. The use of fine powder having an average particle size of 4 microns or less in the present invention is based on this fact and the fact that, as shown in FIGS. 5 and 6, a finer powder gives an absorber having higher electromagnetic wave absorbing ability. I have.

【0014】カルボニル鉄の粉末を使用した3種の電磁
波吸収シートについて、リターンロスの周波数特性を測
定した結果は、図5に示すとおりである。 このグラフ
は、同じシート厚さで、その中に分散させた軟磁性金属
の粉末の粒径を小さくすれば、リターンロスが大きくな
る、つまり電磁波吸収能が高まるということを示してい
る。
FIG. 5 shows the results of measuring the return loss frequency characteristics of three types of electromagnetic wave absorbing sheets using carbonyl iron powder. This graph shows that if the particle size of the soft magnetic metal powder dispersed in the same sheet thickness is reduced, the return loss increases, that is, the electromagnetic wave absorbing ability increases.

【0015】[0015]

【実施例2】実施例1で使用した2種類のカルボニル鉄
の粉末を、同じ塩素化ポリエチレンに、容量比にして4
0:60の割合で配合した。 この配合物を加工して、
やはり厚さ1.0ミリの電磁波に示す。 このデータ
は、同じ分散量であっても、より微細な粉末(平均粒径
3.4ミクロンに対し1.6ミクロン)の方が、より高
い電磁波吸収能を発揮することを明らかに示している。
Example 2 The two kinds of carbonyl iron powders used in Example 1 were mixed with the same chlorinated polyethylene in a volume ratio of 4%.
It was blended at a ratio of 0:60. Processing this compound,
This is also shown for an electromagnetic wave having a thickness of 1.0 mm. This data clearly shows that, at the same dispersion, a finer powder (1.6 micron versus 3.4 micron average particle size) exhibits higher electromagnetic wave absorption. .

【0016】[0016]

【発明の効果】【The invention's effect】 【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の電磁波吸収シートにおいて、シートの
厚さを増すと、吸収できる電磁波の周波数のピークが低
周波側へシフトする様子を示す、リターンロスの周波数
依存曲線。
FIG. 1 is a frequency diagram of a return loss frequency curve showing that a peak of a frequency of an electromagnetic wave that can be absorbed shifts to a lower frequency side when the thickness of the sheet is increased in a conventional electromagnetic wave absorbing sheet.

【図2】 本発明の実施例および比較例のデータであっ
て、試作した電磁波吸収シートのε'と軟磁性金属の粒
径との関係を示すグラフ。
FIG. 2 is a graph showing data of Examples and Comparative Examples of the present invention, showing a relationship between ε ′ of a prototype electromagnetic wave absorbing sheet and a particle size of a soft magnetic metal.

【図3】 本発明の実施例および比較例のデータであっ
て、試作した電磁波吸収シートのμ'と軟磁性金属の粒
径との関係を示すグラフ。
FIG. 3 is a graph showing data of examples and comparative examples of the present invention, showing a relationship between μ ′ of a prototype electromagnetic wave absorbing sheet and a particle size of a soft magnetic metal.

【図4】 本発明の実施例および比較例のデータであっ
て、試作した電磁波吸収シートのμ''と軟磁性金属の粒
径との関係を示すグラフ。
FIG. 4 is a graph showing data of Examples and Comparative Examples of the present invention, showing a relationship between μ ″ of a prototype electromagnetic wave absorbing sheet and a particle size of a soft magnetic metal.

【図5】 本発明の実施例1のデータであって、試作し
た電磁波吸収シートのリターンロスと周波数との関係を
示すグラフ。
FIG. 5 is a graph showing data of Example 1 of the present invention, showing a relationship between return loss and frequency of a prototype electromagnetic wave absorbing sheet.

【図6】 本発明の実施例2のデータであって、試作し
た電磁波吸収シートのリターンロスと周波数との関係を
示すグラフ。
FIG. 6 is a graph showing data of Example 2 of the present invention, showing a relationship between return loss and frequency of a prototype electromagnetic wave absorbing sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 筒井 和久 愛知県東海市加木屋町南鹿持18番地 Fターム(参考) 5E040 AA11 AA14 AA19 BB06 CA13 5E041 AA04 AA07 AA11 AA14 AA17 AA19 BB04 CA06 5E321 BB32 BB44 BB53 GG05 GG07 GG11 5J020 BD02 EA02 EA10  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazuhisa Tsutsui 18-term, F-term (reference) 5E040 AA11 AA14 AA19 BB06 CA13 5E041 AA04 AA07 AA11 AA14 AA17 AA19 BB04 CA06 5E321 BB53 BB53 GG53 GG11 5J020 BD02 EA02 EA10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性金属の粒径4ミクロン以下の微
粉末を、ゴムまたは合成樹脂のマトリクス中に分散させ
てなる電磁波吸収体。
1. An electromagnetic wave absorber comprising fine powder of a soft magnetic metal having a particle size of 4 μm or less dispersed in a rubber or synthetic resin matrix.
【請求項2】 軟磁性金属の微粉末として、Fe,N
i,Co,Fe−Cr−Al,Fe−Si−Cr,Fe
−Si−Alまたはパーマロイの微粉末を使用した請求
項1の電磁波吸収体。
2. A fine powder of a soft magnetic metal comprising Fe, N
i, Co, Fe-Cr-Al, Fe-Si-Cr, Fe
The electromagnetic wave absorber according to claim 1, wherein fine powder of -Si-Al or permalloy is used.
【請求項3】 軟磁性金属の微粉末として、カルボニ
ル鉄の分解により得た球状の鉄粉を使用した請求項2の
請求項1の電磁波吸収体
3. The electromagnetic wave absorber according to claim 1, wherein a spherical iron powder obtained by decomposing carbonyl iron is used as the soft magnetic metal fine powder.
【請求項4】 マトリクス材料として、塩素化ポリエ
チレンゴムを使用した請求項1の電磁波吸収体。
4. The electromagnetic wave absorber according to claim 1, wherein a chlorinated polyethylene rubber is used as a matrix material.
【請求項5】 シート状に成形した請求項1の請求項
1の電磁波吸収体。
5. The electromagnetic wave absorber according to claim 1, wherein the electromagnetic wave absorber is formed into a sheet.
JP10312480A 1998-11-02 1998-11-02 Electromagnetic wave absorber Withdrawn JP2000138492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10312480A JP2000138492A (en) 1998-11-02 1998-11-02 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10312480A JP2000138492A (en) 1998-11-02 1998-11-02 Electromagnetic wave absorber

Publications (1)

Publication Number Publication Date
JP2000138492A true JP2000138492A (en) 2000-05-16

Family

ID=18029727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10312480A Withdrawn JP2000138492A (en) 1998-11-02 1998-11-02 Electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP2000138492A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013831A (en) * 2001-08-09 2003-02-15 주식회사 두람하이테크 Metal compound resin composition and a sheet for intercepting electromagnetic waves and a method for fabricating the same
KR20030023899A (en) * 2001-09-14 2003-03-26 김성수 Thin microwave absorbers used in frequency range of mobile telecommunication
JP2009059726A (en) * 2007-08-29 2009-03-19 Tdk Corp Radio wave absorber
KR101420368B1 (en) * 2012-04-24 2014-07-16 두성산업 주식회사 Conductive contactor for absorbing electromagnetic waves for surface mounting technology
CN112533466A (en) * 2020-12-02 2021-03-19 中国人民解放***箭军工程大学 MOFs derived porous carbon coated sheet carbonyl iron composite wave-absorbing material and preparation method thereof
CN112689452A (en) * 2020-12-02 2021-04-20 中国人民解放***箭军工程大学 Co/C/carbonyl iron fiber composite wave-absorbing material derived from metal organic framework and preparation method thereof
JP7005132B2 (en) 2016-09-29 2022-02-04 大同特殊鋼株式会社 Electromagnetic wave absorption sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013831A (en) * 2001-08-09 2003-02-15 주식회사 두람하이테크 Metal compound resin composition and a sheet for intercepting electromagnetic waves and a method for fabricating the same
KR20030023899A (en) * 2001-09-14 2003-03-26 김성수 Thin microwave absorbers used in frequency range of mobile telecommunication
JP2009059726A (en) * 2007-08-29 2009-03-19 Tdk Corp Radio wave absorber
KR101420368B1 (en) * 2012-04-24 2014-07-16 두성산업 주식회사 Conductive contactor for absorbing electromagnetic waves for surface mounting technology
JP7005132B2 (en) 2016-09-29 2022-02-04 大同特殊鋼株式会社 Electromagnetic wave absorption sheet
CN112533466A (en) * 2020-12-02 2021-03-19 中国人民解放***箭军工程大学 MOFs derived porous carbon coated sheet carbonyl iron composite wave-absorbing material and preparation method thereof
CN112689452A (en) * 2020-12-02 2021-04-20 中国人民解放***箭军工程大学 Co/C/carbonyl iron fiber composite wave-absorbing material derived from metal organic framework and preparation method thereof
CN112689452B (en) * 2020-12-02 2022-07-22 中国人民解放***箭军工程大学 Co/C/carbonyl iron fiber composite wave-absorbing material derived from metal organic framework and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2001078085A3 (en) Low density dielectric having low microwave loss
EP2136613B1 (en) Sheet for prevention of electromagnetic wave interference, flat cable for high-frequency signal, flexible print substrate, and method for production of sheet for prevention of electromagnetic wave interference
JP2000138492A (en) Electromagnetic wave absorber
Kolev et al. Microwave absorption of ferrite powders in a polymer matrix
Kato et al. Magnetic properties and microwave absorption properties of polymer-protected cobalt nanoparticles
JP2000232296A (en) Electromagnetic wave absorber
WO2001056043A1 (en) Soft magnetic powder and composite magnetic material using the same
US20070052575A1 (en) Near-field electromagnetic wave absorber
JP2010135567A (en) Radio wave absorbing material
JP2003332113A (en) Flat soft magnetic powder and composite magnetic sheet using the same
Ghasemi et al. Magnetic and Reflection Loss Characteristics of SrFe $ _ {12-{\rm x}} $(Sm $ _ {0.5} $ Dy $ _ {0.5} $) $ _ {{\rm x}} $ O $ _ {19} $/Multiwalled Carbon Nanotube Nanocomposite
Kim et al. Conduction noise attenuation by iron particles-rubber composites attached on microstrip line
JP2002083704A (en) Radio wave absorber
KR100679486B1 (en) Manufacturing method of electromagnetic absorber
JP2003060383A (en) Electromagnetic wave absorbing sheet
JPH05299872A (en) Wave absorber for 900mhz-band
JP2000232294A (en) Electromagnetic wave absorber for high-frequency region
JP4032709B2 (en) Filter circuit
JP2004140335A (en) Electromagnetic wave absorbing material
JP2001068889A (en) Electromagnetic shielding material
US20220064018A1 (en) Electromagnetic-wave-absorbing particle for ghz band and electromagnetic-wave-absorbing material including the same
US20220071069A1 (en) Particles for absorbing ghz-band electromagnetic wave and electromagnetic wave absorber including same
JP7257150B2 (en) Flame-retardant powder for magnetic components
WO2001054145A1 (en) Magnetic substance with maximum complex permeability in quasi-microwave band and method for production of the same
Rafique et al. Fabrication of hollow Ni1-xZnxFe2O4 spheres (x= 0.0, 0.5, 1.0) as high-performance electromagnetic absorber material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070107