JP2000135681A - Centerless blade and its manufacture - Google Patents

Centerless blade and its manufacture

Info

Publication number
JP2000135681A
JP2000135681A JP30924598A JP30924598A JP2000135681A JP 2000135681 A JP2000135681 A JP 2000135681A JP 30924598 A JP30924598 A JP 30924598A JP 30924598 A JP30924598 A JP 30924598A JP 2000135681 A JP2000135681 A JP 2000135681A
Authority
JP
Japan
Prior art keywords
layer
sintered body
centerless
diamond
centerless blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30924598A
Other languages
Japanese (ja)
Inventor
Hideki Moriguchi
秀樹 森口
Katsunori Tsuzuki
克典 都築
Akihiko Ikegaya
明彦 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30924598A priority Critical patent/JP2000135681A/en
Publication of JP2000135681A publication Critical patent/JP2000135681A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress chipping by a thermal stress generated when a sintered body in which diamonds are scattered is connected to a pedestal for centerless blade made of steel. SOLUTION: A pedestal and a sintered body chip fixed to the pedestal through a soldering layer are provided. The sintered body chip is composed of two or more layers having different coefficients of linear expansion, and they are laminated in order making the coefficients of linear expansion the larger as the layer comes from the uppermost layer to the lowermost layer. The uppermost layer includes 10 to 45 volume % of diamond particles of the average particle diameter 1 to 100 μm, and the remaining part is made of at least either a cemented carbide or a cermet as the main body. The lowermost layer consists of a binding phase of a hard layer mainly of WC, and an iron family metal of 20 to 70 volume %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は台金に焼結体チップ
をロウ付けしたセンタレスブレードとその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a centerless blade in which a sintered body chip is brazed to a base metal, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】一般に、センタレスブレードは、鋼製の
台金に焼結体チップをロウ付けしたものである(特開平
4−152055号公報における「従来の技術」参照)。この
焼結体チップとしては、ダイヤモンド基焼結体とWC基超
硬合金を積層したものが挙げられる。これは、ダイヤモ
ンド基焼結体を鋼製の台金と直接接合することができ
ず、ダイヤモンド基焼結体をWC基超硬合金と同時焼結
し、WC基超硬合金と鋼製台金間をロウ付け処理すること
で接合力を確保するためである。なお、下層に積層され
たWC基超硬合金の硬度は通常1300kg/mm2以上である。
2. Description of the Related Art In general, a centerless blade is obtained by brazing a sintered body chip to a steel base (Japanese Patent Laid-Open No.
See "Prior art" in JP-A-5-152055). Examples of the sintered body chip include a laminated body of a diamond-based sintered body and a WC-based cemented carbide. This is because the diamond-based sintered body cannot be directly bonded to the steel base, and the diamond-based sintered body is sintered simultaneously with the WC-based cemented carbide. This is to secure the bonding strength by brazing the gap. The hardness of the WC-based cemented carbide laminated on the lower layer is usually 1300 kg / mm 2 or more.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の技術に
は次のような問題があった。 ロウ付け加工時に焼結体チップに割れが生じやすい。
ダイヤモンド基焼結体はダイヤモンドの含有量が一般に
80体積%以上と大きく、焼結体自身の強度が超硬合金と
比較すると低い。その上、ダイヤモンドの熱膨張係数は
超硬合金や鋼と比較すると小さく、ダイヤモンド焼結体
と超硬合金や鋼との熱膨張係数差が大きいので、ロウ付
け加工する際に発生した熱応力により焼結体に割れを生
じやすい。
However, the above technique has the following problems. Cracks are likely to occur in the sintered chip during brazing.
Diamond-based sintered bodies generally have a diamond content
It is as large as 80% by volume or more, and the strength of the sintered body itself is lower than that of cemented carbide. In addition, the coefficient of thermal expansion of diamond is smaller than that of cemented carbide and steel, and the difference in thermal expansion coefficient between the diamond sintered body and the cemented carbide or steel is large. Cracks easily occur in the sintered body.

【0004】焼結体チップの製造・加工が困難でコス
トがかかる。一般にダイヤモンド焼結体は超高圧発生容
器を用いて製造されるためコストが高価となる。また、
ロウ付け時の熱応力緩和のためには3層以上の材料を積
層することが好ましいが、超高圧発生容器を用いた製法
でそれを実現するには、高温・高圧での長時間焼結が必
要で難しかった。さらに、80体積%以上のダイヤモンド
粒子を含有する材料はダイヤモンドが非常に難削性であ
るため、センタレスブレード用材料として用いたときに
加工が非常に難しく、加工コストが高価になる
[0004] Manufacturing and processing of sintered chips are difficult and costly. Generally, the cost of the diamond sintered body is high because the diamond sintered body is manufactured using an ultrahigh pressure generating vessel. Also,
It is preferable to laminate three or more layers of material to alleviate the thermal stress during brazing. However, to achieve this by using a production method using an ultra-high pressure vessel, sintering at high temperature and high pressure for a long time is required. It was necessary and difficult. In addition, diamond is very difficult to cut in a material containing diamond particles of 80% by volume or more, so that when used as a material for a centerless blade, processing is very difficult and the processing cost becomes expensive.

【0005】小さな焼結体を多数ロウ付けしなければ
ならず加工コストが増大する。従来のセンタレスブレー
ドでは、ロウ付け時の熱亀裂発生を抑制するため、焼結
体チップの長さを30mm以下に小さくすることで応力を緩
和しながらロウ付け接合を行っている。このため、長い
センタレスブレードの場合にロウ付けする焼結体チップ
の個数が増加し、作業性の低下やロウ付け精度の低下に
伴う加工代の増加により、加工コストが増大する。
[0005] A large number of small sintered bodies must be brazed, which increases the processing cost. In a conventional centerless blade, in order to suppress the occurrence of thermal cracks at the time of brazing, the length of the sintered chip is reduced to 30 mm or less, and brazing is performed while relaxing stress. For this reason, in the case of a long centerless blade, the number of sintered chips to be brazed is increased, and the processing cost is increased due to an increase in processing cost due to a decrease in workability and a decrease in brazing accuracy.

【0006】従って、本発明の主目的は、ダイヤモンド
粒子を分散した硬質材料を具える焼結体チップを鋼製の
台金に接合する際、発生する熱応力による欠けを抑制で
きるセンタレスブレードとセンタレスブレード用の焼結
体の製造方法とを提供することにある。
Accordingly, an object of the present invention is to provide a centerless blade and a centerless blade which can suppress chipping due to thermal stress generated when a sintered chip including a hard material in which diamond particles are dispersed is joined to a steel base. A method of manufacturing a sintered body for a blade.

【0007】[0007]

【課題を解決するための手段】本発明のセンタレスブレ
ードは、台金と、この台金にロウ付け層を介して固着さ
れた焼結体チップとを具える。ここで、焼結体チップ
は、線膨張係数が異なる2層以上の硬質材料で構成さ
れ、各層の線膨張係数は最上層から最下層に向かうに従
い大きくなる順に積層されている。最上層は平均粒径1
〜100μmのダイヤモンド粒子を10〜45体積%含有し、残
部が超硬合金およびサーメットの少なくとも一方を主体
とする。また、最下層はWCを主体とする硬質相と、20〜
70体積%の鉄族金属を主体とする結合相とからなること
を特徴とする。
A centerless blade according to the present invention includes a base metal and a sintered chip fixed to the base metal via a brazing layer. Here, the sintered body chip is composed of two or more layers of hard materials having different linear expansion coefficients, and the layers are stacked in order of increasing linear expansion coefficient from the uppermost layer to the lowermost layer. The top layer has an average particle size of 1.
It contains 10 to 45% by volume of diamond particles of 100100 μm, with the balance being at least one of cemented carbide and cermet. The lowermost layer is composed of a hard phase mainly composed of WC,
And 70% by volume of a binder phase mainly composed of an iron group metal.

【0008】本発明ではセンタレスブレードとしての耐
摩耗性機能を発揮する最上層のダイヤモンドの含有量が
10〜45体積%と50%以上のダイヤモンドを含有する従来
のダイヤモンド焼結体と比較して小さいことから、超硬
合金や鋼との熱膨張係数の差は小さくなっている。上記
ダイヤモンドの含有量が10体積%未満では耐摩粍性の向
上効果が小さく、45体積%を越えると耐熱亀裂性が低下
する。しかも、マトリックスを超硬合金およびサーメッ
トの少なくとも一方としていることから、最上層自身の
耐熱亀裂性は従来のダイヤモンド焼結体よりも向上して
いる。 なお、ダイヤモンドの少なくとも一部をダイヤ
モンドの含有量を越えない範囲で立方晶窒化ホウ素にお
きかえることも可能である。
In the present invention, the content of diamond in the uppermost layer that exhibits the wear resistance function as a centerless blade is reduced.
Since it is smaller than that of a conventional diamond sintered body containing 10 to 45% by volume and 50% or more of diamond, the difference in thermal expansion coefficient between cemented carbide and steel is small. When the content of the diamond is less than 10% by volume, the effect of improving the abrasion resistance is small, and when it exceeds 45% by volume, the heat crack resistance decreases. Moreover, since the matrix is made of at least one of a cemented carbide and a cermet, the uppermost layer itself has improved heat crack resistance as compared with a conventional diamond sintered body. Note that it is also possible to replace at least a part of diamond with cubic boron nitride as long as the content of diamond is not exceeded.

【0009】最上層のダイヤモンドの含有量は従来のダ
イヤモンド焼結体よりも少ないものの、ダイヤモンド粒
子自身の耐摩耗性は遜色なく、センタレスブレード用材
料としての耐摩耗性は、従来のダイヤモンド焼結体並の
性能を示す。但し、センタレスブレードに用いられる耐
摩材料は被削材に対して線接触するため、ダイヤモンド
粒子がある程度均等な間隔で被削材と接触するためには
ダイヤモンド粒子の粒度の上限を平均粒径で100μmに制
限する必要がある。また、1μmよりも小さいとダイヤモ
ンド粒子の脱落が生じやすく、ダイヤモンド粒子の平均
粒径は1〜100μmとした。特に、ダイヤモンド粒子の平
均粒径は30μm以下とすることが望ましい。これによ
り、センタレスブレードと被削材の接触点の間隔が均一
となり、研削応力が均一にセンタレスブレードに伝わる
ようになって、高精度のセンタレス研削が可能となる。
また、均一な荷重分担の結果、焼結体チップの材料の耐
摩耗性も向上する。
Although the diamond content of the uppermost layer is smaller than that of the conventional diamond sintered body, the wear resistance of the diamond particles themselves is not inferior, and the wear resistance as a material for a centerless blade is the same as that of the conventional diamond sintered body. Shows average performance. However, since the wear-resistant material used for the centerless blade is in linear contact with the work material, the upper limit of the particle size of the diamond particles is set to 100 μm in average in order for the diamond particles to come into contact with the work material at a certain uniform interval. Need to be restricted to On the other hand, if it is smaller than 1 μm, the diamond particles are likely to fall off, and the average particle diameter of the diamond particles is set to 1 to 100 μm. In particular, it is desirable that the average particle size of the diamond particles is 30 μm or less. Thereby, the interval between the contact points of the centerless blade and the work material becomes uniform, and the grinding stress is transmitted uniformly to the centerless blade, so that high-accuracy centerless grinding becomes possible.
Further, as a result of the uniform load sharing, the wear resistance of the material of the sintered body chip is improved.

【0010】この最上層の硬質材料のマトリックスに含
まれる結合相にはCoが好ましいが、耐食性を向上させた
い場合にはNiやCrで置き換えても構わない。また、WCの
少なくとも一部を周期律表第IVa、Va、VIa族元素の炭化
物、窒化物又は炭窒化物、例えばTiC、TiCN、TiN、Ta
C、NbC、MoCなどで置き換えても構わない。
[0010] Co is preferable for the binder phase contained in the matrix of the hard material in the uppermost layer, but may be replaced with Ni or Cr if it is desired to improve the corrosion resistance. Further, at least a part of the WC is a carbide, nitride or carbonitride of a group IVa, Va, or VIa element of the periodic table, such as TiC, TiCN, TiN, and Ta.
It may be replaced with C, NbC, Mo 2 C, or the like.

【0011】さらに、最上層に含まれるダイヤモンド粒
子が焼結中に液相に生成した結合相に溶解し黒鉛化する
現象を防ぐため、ダイヤモンドに1300℃以上の融点を有
する金属、合金、セラミックスなどを被覆した後、超硬
合金と共に焼結することが好ましい。好適な被覆膜厚は
0.05〜1.0μmで、好適な膜質はCr、Mo、W、Ti-Al-V、Ti
N、SiCなどである。
Furthermore, in order to prevent the diamond particles contained in the uppermost layer from dissolving in the binder phase formed in the liquid phase during sintering and becoming graphitized, diamond, metal, alloy, ceramic, etc. having a melting point of 1300 ° C. or more is used. , And then sintered together with the cemented carbide. The preferred coating thickness is
0.05 ~ 1.0μm, suitable film quality is Cr, Mo, W, Ti-Al-V, Ti
N, SiC, etc.

【0012】最下層には20〜70体積%の鉄族金属からな
る結合相とWCを主体とする硬質相とからなる硬質材料と
し、最上層よりも熱膨張係数を大きくすることで、この
最下層と鋼の間の熱膨張係数差はさらに小さくなってい
る。結合相の含有量が20体積%未満では耐熱亀裂性が低
下し、70体積%を越えると超硬合金としての性能が低下
する。また、硬質相の主な組成をWCとすることで優れた
耐熱亀裂性を得ることができる。この結果、上記焼結体
チップをセンタレスブレード用材料として用い、鋼にロ
ウ付け加工した際に発生する熱応力が小さくなり、焼結
体に割れが生じにくい。
The lowermost layer is made of a hard material composed of a binder phase composed of 20 to 70% by volume of an iron group metal and a hard phase mainly composed of WC, and has a larger thermal expansion coefficient than that of the uppermost layer. The difference in coefficient of thermal expansion between the lower layer and steel is even smaller. When the content of the binder phase is less than 20% by volume, the heat crack resistance decreases, and when it exceeds 70% by volume, the performance as a cemented carbide decreases. Further, by setting the main composition of the hard phase to WC, excellent heat crack resistance can be obtained. As a result, when the sintered body tip is used as a material for a centerless blade and brazed to steel, the thermal stress generated is reduced, and the sintered body is less likely to crack.

【0013】最下層の硬質材料のHv硬度は1000kg/mm2
以下とすることが好ましい。これにより、特に優れた耐
熱亀裂性を有することができ、ロウ付け加工性が向上す
る。
The Hv hardness of the lowermost hard material is 1000 kg / mm 2
It is preferable to set the following. Thereby, particularly excellent heat crack resistance can be obtained, and brazing workability is improved.

【0014】本発明センタレスブレードに用いる焼結体
チップは、最高温度保持時間が10秒〜10分以内の通電加
圧焼結法で製造されることが好ましい。この製造法によ
れば、超高圧発生容器を使わずともダイヤモンド粒子を
含有する硬質材料の作製が可能であり、製造コストの低
減および大サイズの焼結体の製造が可能となる。しか
も、最高温度保持時間が10秒〜10分以内の極短時間で焼
結が完了するため、熱膨張係数の異なる3層以上の硬質
材料を積層して焼結しても、液相となった結合相金属の
移動が少なく、全体としては熱膨張係数が傾斜した硬質
材料を容易に形成できる。このため、熱膨張係数が最上
層から最下層に向かうに従い大きくなる順に積層された
三層以上の硬質材料の製造も可能である。焼結体チップ
を3層構造にすれば、積層数が2層の場合よりも鋼およ
び各層間の熱膨張係数差が小さくでき、ロウ付け時の熱
応力発生に伴う割れが抑制できる。この通電加圧焼結に
は、最大内寸が55mm以上、好ましくは80mm以上の黒鉛型
を用いることが望ましい。これにより、大サイズの焼結
体チップを作製でき、ロウ付けする焼結体チップの個数
を少なくして、加工コストが低減できる。
The sintered chip used for the centerless blade of the present invention is preferably manufactured by an electric current pressure sintering method in which the maximum temperature holding time is within 10 seconds to 10 minutes. According to this production method, it is possible to produce a hard material containing diamond particles without using an ultrahigh-pressure generating vessel, and it is possible to reduce the production cost and produce a large-sized sintered body. In addition, since sintering is completed in an extremely short time with a maximum temperature holding time within 10 seconds to 10 minutes, even if three or more layers of hard materials having different coefficients of thermal expansion are laminated and sintered, a liquid phase is formed. In addition, a hard material having a small coefficient of thermal expansion as a whole with little movement of the binder phase metal can be easily formed. For this reason, it is also possible to manufacture a hard material having three or more layers laminated in order of increasing the coefficient of thermal expansion from the uppermost layer to the lowermost layer. If the sintered chip has a three-layer structure, the difference in thermal expansion coefficient between the steel and each layer can be made smaller than in the case where the number of layers is two, and cracking due to the generation of thermal stress during brazing can be suppressed. For the current pressure sintering, it is desirable to use a graphite mold having a maximum inner dimension of 55 mm or more, preferably 80 mm or more. As a result, a large-sized sintered body chip can be manufactured, the number of sintered body chips to be brazed is reduced, and the processing cost can be reduced.

【0015】なお、この焼結法を用いた場合の好ましい
製造条件は以下の通りである。すなわち、焼結温度は硬
質材料に液相が生成する温度であることが好ましく、前
記焼結温度での保持時間が10秒以上10分以内、加圧力が
5〜100MPaの条件で通電加圧焼結して製造されると好ま
しい。ここで、液相生成温度での保持時間は10秒以上10
分以内が好ましい。これは、10秒よリも液相生成温度で
の焼結時間が短いと緻密化が不十分であり、10分よりも
長いとダイヤモンドの黒鉛化が起こりやすいためであ
る。特に、前記通電加圧焼結が1〜100msecのパルス電流
を用いて行われた場合には、非常に緻密でダイヤモンド
の脱落が生じにくい焼結体を得ることができる。
The preferred manufacturing conditions when this sintering method is used are as follows. That is, the sintering temperature is preferably a temperature at which a liquid phase is formed on the hard material, the holding time at the sintering temperature is 10 seconds or more and 10 minutes or less, and the pressing force is
It is preferable to manufacture by sintering under current and pressure under the condition of 5 to 100 MPa. Here, the holding time at the liquid phase generation temperature is 10 seconds or more and 10 seconds or more.
Within minutes is preferred. This is because if the sintering time at the liquid phase generation temperature is shorter than 10 seconds, the densification is insufficient, and if it is longer than 10 minutes, the graphitization of the diamond is likely to occur. In particular, when the current-pressure sintering is performed using a pulse current of 1 to 100 msec, a very dense sintered body in which diamond does not easily fall can be obtained.

【0016】以上のような構造とすることで、従来の超
高圧発生容器で作製されたダイヤモンド焼結体では不可
能であったロウ付け面の最大長が55mm以上の耐摩材料の
ロウ付けが熱亀裂の発生なしで行うことができ、作業性
の向上やロウ付けコストの低減、ロウ付け時の寸法精度
向上による加工取りしろの低減により、ダイヤモンド粒
子を含む難削性の硬質材料の切削加工コストの低減が可
能となる。また、超高圧装置を使用しないことによる大
幅な製造コストの低減およびその優れた耐摩耗性によ
り、従来の超硬合金やダイヤモンド焼結体よりも優れた
コストパフォーマンスが期待できるようになる。このた
め、従来高価であるがために普及していなかったダイヤ
モンド材料を耐摩耗材料として安価に工業的に利用でき
るようになった意義は大きく、工業的な価値は非常に大
きい。本発明により、センタレス研削の長時間無人運転
が可能となる。
By adopting the above structure, the brazing of a wear-resistant material having a maximum brazing surface length of 55 mm or more, which was impossible with a diamond sintered body produced by a conventional ultrahigh pressure generating vessel, can be performed by heat. It can be performed without generating cracks, improving workability, reducing brazing cost, and reducing machining margins by improving dimensional accuracy during brazing, thereby cutting hard-to-cut hard materials including diamond particles. Can be reduced. In addition, a significant reduction in manufacturing cost due to the elimination of the use of an ultra-high pressure device and its excellent wear resistance can provide a higher cost performance than conventional cemented carbide and diamond sintered bodies. For this reason, it has significant significance that a diamond material, which was conventionally expensive but not widely used, can now be industrially used as a wear-resistant material at low cost, and the industrial value is very large. According to the present invention, unmanned operation of centerless grinding for a long time can be performed.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (実施例1)平均粒径3μmのWC粉末、平均粒径1μmのC
o、Ni、Cr粉末、平均粒径2μmのTiCN粉末、平均粒径20
μmのダイヤモンド粉末にTiNをCVD法で0.5μm被覆した
粉末を準備し、表1の組成に配合後、ボールミルを用い
て混合し、焼結用粉末を用意した。このようにして準備
した粉末を各層の厚みが焼結後に2mmとなるように表1の
順に積層して、内径80mmの黒鉛型に充填し、0.01Torr以
下の真空中で圧力30MPaを付加しながら、パルス電流を
流して通電加圧焼結した。昇温パターンは10分間で1330
℃まで昇温、その温度で1分間保持して、30℃/minの速
度で冷却した。このようにして得られた焼結体No.1-1〜
No.1-10は直径が80mm、各層の厚みが2mmで総厚みが4〜8
mmの焼結体で、割れもなく良好な外観を呈していた。
Embodiments of the present invention will be described below. (Example 1) WC powder having an average particle size of 3 μm and C having an average particle size of 1 μm
o, Ni, Cr powder, TiCN powder with an average particle size of 2 μm, average particle size 20
A powder in which 0.5 μm of TiN was coated on a diamond powder of 0.5 μm by a CVD method was prepared, blended into the composition shown in Table 1, and mixed using a ball mill to prepare a powder for sintering. The powder thus prepared was laminated in the order shown in Table 1 so that the thickness of each layer became 2 mm after sintering, and filled in a graphite mold having an inner diameter of 80 mm, while applying a pressure of 30 MPa in a vacuum of 0.01 Torr or less. Then, a pulse current was passed, and current pressure sintering was performed. Heating pattern is 1330 in 10 minutes
The temperature was raised to 0 ° C, kept at that temperature for 1 minute, and cooled at a rate of 30 ° C / min. The sintered body No. 1-1 thus obtained
No. 1-10 has a diameter of 80 mm, each layer has a thickness of 2 mm, and a total thickness of 4 to 8
The sintered body of mm had a good appearance without cracks.

【0018】[0018]

【表1】 [Table 1]

【0019】次に、図1に示すように、これらの焼結体
1からワイヤカット装置を用いて長さ60mm、幅2mm、厚
み4〜8mmのセンタレスブレード用焼結体チップ2を,
最上面がセンタレス研削時の被削材の受け面となるよう
に焼結時の加圧方向に対して30℃の傾きで切り出した。
そして、図2に示すように、このチップ2のワイヤカッ
ト面および最下層を#200のダイヤモンド砥石を用いて
平面研削後(破線が平面研削の研削面を示している)、
SK5製のセンタレスブレードの台金に銀ロウ(住友電工
製SA3)とフラックス(硝酸25%、硼砂30%、酸性フッ
化カリ45%)を用いて、高周波炉で大気中、500℃以上
に加熱しながら最下層と鋼材のロウ付け接合を行った。
その結果を表2に示す。
Next, as shown in FIG. 1, a sintered chip 2 for a centerless blade having a length of 60 mm, a width of 2 mm and a thickness of 4 to 8 mm was cut from the sintered body 1 using a wire cutting device.
Cutting was performed at an inclination of 30 ° C. with respect to the pressing direction during sintering so that the uppermost surface became the receiving surface of the work material during centerless grinding.
Then, as shown in FIG. 2, after the wire cut surface and the lowermost layer of the chip 2 are ground using a # 200 diamond grindstone (dashed lines indicate the ground surface of the surface grinding).
Using silver brazing (Sumitomo Electric SA3) and flux (25% nitric acid, 30% borax, 45% acid fluoride) in the base metal of the SK5 centerless blade, heat it to 500 ° C or higher in air with a high frequency furnace. The lowermost layer was joined to the steel material by brazing.
The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】No.1-1、1-2、1-5、1-6、1-7、1-10の試料
には熱亀裂や割れもなく、鋼に対し良好に接着している
ことが確認できた。また、得られた焼結体チップのサイ
ズが従来の30mmに比べて格段に大きいため、長さ360mm
の台金に取り付ける焼結体チップの数を従来の12個から
6個に低減でき、ロウ付け作業に要する時間も従来の1
/4に短縮できた。一方、No. 1-3、1-4、1-8、1-9の試
料にはロウ付け時に発生したと思われる熱亀裂や割れが
発生し、良好なロウ付けができなかった。No.1-3、1-4
は線膨張係数の配列が下層に向かうに従って大きくなっ
ていない。特に、No.1-4は最下層におけるCo量が少なす
ぎる。また、No.1-8は最下層におけるCo量が多すぎ、N
o.9は最下層の硬質相がWCを主体として構成されていな
い。
The samples No. 1-1, 1-2, 1-5, 1-6, 1-7, and 1-10 have no thermal cracks or cracks and have good adhesion to steel. It could be confirmed. Also, since the size of the obtained sintered body chip is much larger than the conventional 30 mm, the length is 360 mm
The number of sintered chips to be attached to the base metal from the conventional 12
It can be reduced to 6 pieces, and the time required for brazing work is
/ 4. On the other hand, the samples Nos. 1-3, 1-4, 1-8, and 1-9 had thermal cracks and cracks, which were considered to have occurred during brazing, and could not be brazed well. No. 1-3, 1-4
Does not increase as the array of linear expansion coefficients goes down. In particular, in No. 1-4, the amount of Co in the lowermost layer is too small. In No. 1-8, the amount of Co in the lowermost layer was too large, and N
In o.9, the lowermost hard phase is not mainly composed of WC.

【0022】(実施例2)実施例1で作製したNo.1-2と同
じ構造の焼結体を最上層のダイヤモンド粒径のみ表3に
示すように変化させて、試料No.2-1〜2-9を実施例1と同
様にして作製した。さらに、これらの試料から、実施例
1と同様に長さ60mm、幅6mm、厚み8mmのセンタレスブレ
ード用焼結体チップを切りだした。そして、ワイヤカッ
ト面および最下層を#200のダイヤモンド砥石を用いて
平面研削後、S45C製のセンタレスブレードの台金に銀ロ
ウ(Ag50%、Cu31%、Zn11.5%、Ni3%、Mn4.5%)を用
いて、真空炉で約750℃に加熱しながら最下層と鋼材の
ロウ付け接合を行ない、熱亀裂の発生の有無を評価し
た。
(Example 2) Sample No. 2-1 was prepared by changing the sintered body having the same structure as that of No. 1-2 produced in Example 1 only as shown in Table 3 in the diamond particle diameter of the uppermost layer. To 2-9 were prepared in the same manner as in Example 1. Furthermore, from these samples,
Similarly to 1, a sintered chip for a centerless blade having a length of 60 mm, a width of 6 mm and a thickness of 8 mm was cut out. Then, after the surface of the wire cut surface and the lowermost layer are ground using a # 200 diamond grindstone, silver brazing (Ag 50%, Cu 31%, Zn 11.5%, Ni 3%, Mn 4.5 %), The lowermost layer and the steel material were brazed while being heated to about 750 ° C. in a vacuum furnace, and the occurrence of thermal cracks was evaluated.

【0023】[0023]

【表3】 [Table 3]

【0024】次に、上記の焼結体チップをロウ付け接合
したセンタレスブレードの最上層を#200のダイヤモン
ド砥石で平面研削後、作製したセンタレスブレードをセ
ンタレス研削機に取り付け、直径3mm、長さ40mmの超硬
製被削材のセンタレス加工を各試料とも同一時間だけ行
った。標準試料として、No.1-2最上層のマトリックスで
あるWC−Coと同じ組成比、同じ平均粒径の粉末を実施例
1の条件で通電加圧焼結し、この焼結体(No.2-10)の摩
耗量を100としたときの、No.2-1〜2-10の焼結体の摩耗
量を測定した。
Next, the uppermost layer of the centerless blade to which the above-mentioned sintered body chip was brazed and joined was subjected to surface grinding with a # 200 diamond grindstone, and the produced centerless blade was attached to a centerless grinding machine to have a diameter of 3 mm and a length of 40 mm. The centerless machining of the carbide work material was performed for the same time for each sample. As a standard sample, a powder having the same composition ratio and the same average particle size as WC-Co, which is the matrix of No. 1-2 top layer,
Sintering under current-pressure sintering under the conditions of 1 and measuring the abrasion loss of the sintered bodies No. 2-1 to 2-10 when the abrasion loss of this sintered body (No. 2-10) is set to 100 did.

【0025】これらの評価結果も表3中に示す。ダイヤ
モンドの平均粒径が1〜100μmの範囲にあるNo.2-2〜2-8
の試料には熱亀裂や割れもなく、鋼に対し良好に接着し
ていることが確認できた。しかも優れた耐摩粍性も同時
に有していることが確認できた。中でもダイヤモンドの
平均粒径が1〜30μmの範囲にあるNo.2-2、2-3、2-4の試
料は特に優れた耐摩耗性を有していることがわかる。こ
れに対して、ダイヤモンドの平均粒径が100μmを越えて
いるNo.2-9は亀裂や割れが生じていた。
The results of these evaluations are also shown in Table 3. No. 2-2 to 2-8 in which the average particle diameter of diamond is in the range of 1 to 100 μm
It was confirmed that the sample had no thermal cracks or cracks and had good adhesion to steel. In addition, it was confirmed that they also had excellent abrasion resistance. Among them, it can be seen that the samples of Nos. 2-2, 2-3 and 2-4 in which the average particle diameter of diamond is in the range of 1 to 30 µm have particularly excellent wear resistance. In contrast, No. 2-9, in which the average diameter of diamond exceeded 100 μm, had cracks and cracks.

【0026】(実施例3)平均粒径5μmのWC粉末、平均
粒経1μmのCo、Ni粉末、平均粒径10μmのダイヤモンド
粉末にWをPVD法で0.3μm被覆した粉末を準備し、表4の
組成に配合後、ボールミルを用いて混合し、焼結用粉末
を用意した。このようにして準備した粉末を各層の厚み
が焼結後に1.5mmとなるように表4の順に積層して、内
径100mmの黒鉛型に充填し、0.01Torr以下の真空中で圧
力30MPaを付加しながら、パルス電流を流して通電加圧
焼結した。昇温パターンは6分間で1350℃まで昇温、そ
の温度で1分間保持して、50℃/minの速度で冷却した。
このようにして得られた焼結体No.3-1〜3-6は直径が100
mm、各層の厚みが2mmで総厚みが4mmであった。
(Example 3) WC powder having an average particle diameter of 5 μm, Co and Ni powder having an average particle diameter of 1 μm, and diamond powder having an average particle diameter of 10 μm were prepared by coating W with 0.3 μm of W by a PVD method. And then mixed using a ball mill to prepare a powder for sintering. The powder thus prepared was laminated in the order shown in Table 4 so that the thickness of each layer became 1.5 mm after sintering, filled in a graphite mold having an inner diameter of 100 mm, and applied with a pressure of 30 MPa in a vacuum of 0.01 Torr or less. While applying a pulse current, current pressure sintering was performed. In the heating pattern, the temperature was raised to 1350 ° C. in 6 minutes, kept at that temperature for 1 minute, and cooled at a rate of 50 ° C./min.
The sintered bodies Nos. 3-1 to 3-6 thus obtained have a diameter of 100
mm, the thickness of each layer was 2 mm, and the total thickness was 4 mm.

【0027】[0027]

【表4】 [Table 4]

【0028】次に、この焼結体の一部をダイヤモンド砥
石を用いて切断し、厚み方向の断面を平面研削後、鏡面
研磨し、最下層のHv硬度をダイヤモンド製のビッカース
圧子を用いて荷重50kgで測定し、その結果を表5中に記
載した。
Next, a part of the sintered body is cut using a diamond grindstone, the cross section in the thickness direction is surface ground, and then mirror-polished, and the Hv hardness of the lowermost layer is measured using a diamond Vickers indenter. The measurement was performed at 50 kg, and the results are shown in Table 5.

【0029】さらに、これらの試料から80mm×3mm×4mm
のセンタレスブレード用焼結体チップをワイヤカット装
置を用いて切り出し、実施例1と同様にワイヤカット面
および最下層を#200のダイヤモンド砥石を用いて平面
研削後、SK3製センタレスブレードの台金に銀ロウ(Ag6
9%、Cu27%、Ti4%)とフラックス(硝酸25%、硼砂30
%、酸性フッ化カリ45%)を用いて、高周波炉を用いて
800℃程度に加熱しながら最下層と台金とのロウ付け接
合を行った。その結果を表4に示す。本発明の範囲にあ
るNo.3-2〜3-5の試料はいずれも熱亀裂や割れが本発明
外のNo.3-1、3-6の試料よりも少なく、中でも最下層のH
v硬度が1000以下であるNo.3-3、3-4、3-5の試料は特に
優れた耐熱亀裂性を有することが確認できた。
Further, from these samples, 80 mm × 3 mm × 4 mm
Using a wire cutting device, a sintered body chip for a centerless blade is cut out, and the wire cut surface and the lowermost layer are ground using a # 200 diamond grindstone in the same manner as in Example 1. Silver wax (Ag6
9%, Cu27%, Ti4%) and flux (nitric acid 25%, borax 30)
%, Potassium fluoride 45%) using a high-frequency furnace
The lowermost layer and the base metal were joined by brazing while heating to about 800 ° C. Table 4 shows the results. No. 3-2 to 3-5 samples within the scope of the present invention have less thermal cracks and cracks than the No. 3-1 and 3-6 samples outside the present invention, among which H in the lowermost layer
v It was confirmed that the samples of Nos. 3-3, 3-4, and 3-5 having a hardness of 1000 or less had particularly excellent heat crack resistance.

【0030】[0030]

【発明の効果】以上説明したように、本発明センタレス
ブレードによれば、焼結体チップの最上層を硬度に優れ
たダイヤモンド含有硬質材料で構成し、下層に向かって
線膨張係数が大きくなるような積層構造の焼結体とする
ことで、この複合材料を鋼材料にロウ付けする際に熱応
力に伴う割れを抑制し、鋼材料との接着性を高めること
ができる。
As described above, according to the centerless blade of the present invention, the uppermost layer of the sintered chip is made of a diamond-containing hard material having excellent hardness, and the linear expansion coefficient increases toward the lower layer. By forming a sintered body having a simple laminated structure, cracking due to thermal stress when brazing this composite material to a steel material can be suppressed, and the adhesiveness with the steel material can be increased.

【0031】また、本発明センタレスブレードの製造方
法によれば、超高圧発生容器を使わずともダイヤモンド
粒子を含有する硬質材料の作製が可能であり、製造コス
トの低減および大サイズの焼結体の製造が可能となる。
大型の焼結体チップを得ることができれば、長いセンタ
レスブレードの場合でもロウ付けする焼結体チップの個
数が少なくて済み、加工コストを低減できる。また、低
温での短時間焼結が可能であり、各層間の組成の変動を
極力少なくして複数層を同時焼結することができる。
Further, according to the method for manufacturing a centerless blade of the present invention, a hard material containing diamond particles can be manufactured without using an ultrahigh pressure generating vessel, thereby reducing the manufacturing cost and reducing the size of the sintered body. Manufacturing becomes possible.
If a large sintered chip can be obtained, the number of sintered chips to be brazed can be reduced even in the case of a long centerless blade, and the processing cost can be reduced. Further, sintering at a low temperature for a short period of time is possible, and sintering of a plurality of layers can be performed at the same time with a minimum change in the composition between the layers.

【0032】なお、本発明はセンタレスブレードに関す
るものであるが、本発明の構造を有する材料はセンタレ
スブレードが果たす機能、つまり、被削材を研削加工す
る際の被削材の支持材料としての機能を必要とする用途
において有用であり、本発明がそれらの用途に使用され
る場合を含むことは当然である。
Although the present invention relates to a centerless blade, the material having the structure of the present invention fulfills the function of the centerless blade, that is, the function as a support material of the work material when grinding the work material. It is natural that the present invention is useful in an application that requires a

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼結体からチップを切り出す工程の説明図であ
る。
FIG. 1 is an explanatory view of a step of cutting out a chip from a sintered body.

【図2】チップの平面研削個所を示す説明図である。FIG. 2 is an explanatory view showing a surface grinding portion of a chip.

【符号の説明】[Explanation of symbols]

1 焼結体 2 チップ 1 sintered body 2 chip

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 1/05 C22C 1/05 P 26/00 26/00 Z 29/08 29/08 (72)発明者 池ヶ谷 明彦 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 3C063 AA02 AB02 AB03 BA08 BB01 BB02 BB04 BB07 BB19 BC02 BG23 BH05 BH21 CC02 CC09 FF23 4K018 AD18 BB04 BC12 KA15 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 1/05 C22C 1/05 P 26/00 26/00 Z 29/08 29/08 (72) Inventor Akihiko Ikegaya 1-1-1, Kunyokita, Itami-shi, Hyogo F-term in Sumitomo Electric Industries, Ltd. Itami Works 3C063 AA02 AB02 AB03 BA08 BB01 BB02 BB04 BB07 BB19 BC02 BG23 BH05 BH21 CC02 CC09 FF23 4K018 AD18KA04 BC12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 台金と、この台金にロウ付け層を介して
固着された焼結体チップとを具えるセンタレスブレード
において、 前記焼結体チップは、線膨張係数が異なる2層以上の硬
質材料で構成され、各層の線膨張係数は最上層から最下
層に向かうに従い大きくなる順に積層されており、 最上層は平均粒径1〜100μmのダイヤモンド粒子を10〜4
5体積%含有し、残部が超硬合金およびサーメットの少
なくとも一方を主体とし、 最下層はWCを主体とする硬質相と、20〜70体積%の鉄族
金属を主体とする結合相とからなることを特徴とするセ
ンタレスブレード。
1. A centerless blade having a base metal and a sintered chip fixed to the base metal via a brazing layer, wherein the sintered chip has two or more layers having different linear expansion coefficients. It is composed of a hard material, and the coefficient of linear expansion of each layer is laminated in the order of increasing from the uppermost layer to the lowermost layer, and the uppermost layer is composed of 10 to 4 diamond particles having an average particle size of 1 to 100 μm.
5% by volume, with the balance being at least one of cemented carbide and cermet, and the lowermost layer consisting of a hard phase mainly composed of WC and a binder phase mainly composed of 20 to 70% by volume iron group metal A centerless blade.
【請求項2】 前記硬質材料の積層数が3層以上である
ことを特徴とする請求項1に記載のセンタレスブレー
ド。
2. The centerless blade according to claim 1, wherein the number of layers of the hard material is three or more.
【請求項3】 前記最下層のHv硬度が1000kg/mm2以下
であることを特徴とする請求項1に記載のセンタレスブ
レード。
3. The centerless blade according to claim 1, wherein the lowermost layer has an Hv hardness of 1000 kg / mm 2 or less.
【請求項4】 前記焼結体チップの長さが55mmよりも長
いことを特徴とする請求項1に記載のセンタレスブレー
ド。
4. The centerless blade according to claim 1, wherein the length of the sintered body tip is longer than 55 mm.
【請求項5】 前記ダイヤモンド粒子の粒径が30μm以
下であることを特徴とする請求項1に記載のセンタレス
ブレード。
5. The centerless blade according to claim 1, wherein the diameter of the diamond particles is 30 μm or less.
【請求項6】 2層以上の各層の原料粉末を混合する工
程と、 各層の原料粉末を線膨張係数が最上層から最下層に向か
うに従って大きくなる順に黒鉛型に装填する工程と、 最高温度保持時間が10秒〜10分以内の通電加圧焼結によ
り黒鉛型内の前記原料粉末を焼結する工程と、 この焼結工程で得られた焼結体をセンタレスブレードの
台金にロウ付けする工程とを具え、 最上層の原料粉末は、平均粒径1〜100μmのダイヤモン
ド粒子を10〜45体積%と、残部が周期律表第IVa、Va、V
Ia族元素の炭化物、窒化物および炭窒化物から選択され
た少なくとも一種および鉄族金属を主体とし、 最下層の原料粉末は、WCを主体とする硬質相と、20〜70
体積%の鉄族金属を主体とする結合相とからなり、 前記黒鉛型の最大内寸が55mm以上であることを特徴とす
るセンタレスブレード用焼結体の製造方法。
6. A step of mixing the raw material powders of each of two or more layers, a step of loading the raw material powders of each layer into a graphite mold in order of increasing linear expansion coefficient from the uppermost layer to the lowermost layer, A step of sintering the raw material powder in the graphite mold by current pressure sintering for a time of 10 seconds to 10 minutes or less, and brazing the sintered body obtained in the sintering step to a base metal of a centerless blade The raw material powder of the uppermost layer contains 10 to 45% by volume of diamond particles having an average particle size of 1 to 100 μm, and the balance is the IVa, Va, V
Mainly at least one selected from carbides, nitrides and carbonitrides of Group Ia elements and iron group metals, the lowermost raw material powder is a hard phase mainly composed of WC, 20 to 70%
A method for producing a sintered body for a centerless blade, comprising: a binder phase mainly composed of a volume% of an iron group metal; and a maximum inner dimension of the graphite mold is 55 mm or more.
JP30924598A 1998-10-29 1998-10-29 Centerless blade and its manufacture Pending JP2000135681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30924598A JP2000135681A (en) 1998-10-29 1998-10-29 Centerless blade and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30924598A JP2000135681A (en) 1998-10-29 1998-10-29 Centerless blade and its manufacture

Publications (1)

Publication Number Publication Date
JP2000135681A true JP2000135681A (en) 2000-05-16

Family

ID=17990685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30924598A Pending JP2000135681A (en) 1998-10-29 1998-10-29 Centerless blade and its manufacture

Country Status (1)

Country Link
JP (1) JP2000135681A (en)

Similar Documents

Publication Publication Date Title
US5697994A (en) PCD or PCBN cutting tools for woodworking applications
JP6703757B2 (en) Cermet and cutting tool
JP2000054007A (en) Diamond-sintered body and its production
JP2002302732A (en) Ultrafine grained cubic bn sintered compact
JP3102427B1 (en) Polycrystalline diamond tools
Li et al. Preparation and performance of resin-bonded grinding wheel with braze-coated diamond grits
JP2893886B2 (en) Composite hard alloy material
JP3606311B2 (en) Composite material containing ultra-hard particles
JP2000135681A (en) Centerless blade and its manufacture
JPH05171335A (en) Differential layer surface refined sintered alloy and its manufacture
JP5837779B2 (en) Tool assembly, cutting tool using the same, and method for manufacturing the tool assembly
JP5656076B2 (en) cBN insert
JP4857506B2 (en) WC-based cemented carbide multilayer chip
JP2000135607A (en) Centerless blade and its manufacture
JP2001187431A (en) Laminated structural material
JP2001040446A (en) Diamond-containing hard member and its production
CN111286661A (en) High-temperature alloy machining tool and application thereof
JP2003326466A (en) Highly rigid cutting blade and method of manufacturing the cutting blade
JPH10310840A (en) Superhard composite member and its production
JP3651285B2 (en) Cubic boron nitride-containing brazing composite material and method for producing the same
JP3603950B2 (en) Composite material containing ultra-hard particles
JP2020059079A (en) Sintered material split body, cutting tool element using sinter material split body, and method of manufacturing the same
JP2019065330A (en) Composite sintered body
JP3651284B2 (en) Diamond-containing brazing composite material and method for producing the same
JPH08225376A (en) Brazable cobalt-containing cbn molding