JP2000133419A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JP2000133419A
JP2000133419A JP10308629A JP30862998A JP2000133419A JP 2000133419 A JP2000133419 A JP 2000133419A JP 10308629 A JP10308629 A JP 10308629A JP 30862998 A JP30862998 A JP 30862998A JP 2000133419 A JP2000133419 A JP 2000133419A
Authority
JP
Japan
Prior art keywords
joining
electrode
lead wire
stress relieving
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10308629A
Other languages
Japanese (ja)
Inventor
Hiroshi Kukino
浩 久木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10308629A priority Critical patent/JP2000133419A/en
Publication of JP2000133419A publication Critical patent/JP2000133419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high durability with small change of resistance by making an electrode taking-out part led-through to one end of a heating part, out of a mixture material of an inorganic insulating material and an inorganic conductive material, and determining its hardness to be more than a specific value. SOLUTION: A ceramic heater 1 is manufactured by burying a heating part 2 and an electrode taking-out part 4 in a ceramic body 3, and one end of the electrode taking-out part 4 is exposed. A metallic layer 5 made of a brazing filler metal or the like, is formed on this exposed part, and a joining stress relaxation material 6 bonded with a lead wire 7 (electrode metal fitting 8 together), is bonded thereto by the brazing filler metal or the like. The hardness of the electrode taking-out part 4 is determined to be above 11.5 GPa for preventing the change of resistance caused by the cracking by the difference of the thermal expansion properties between the ceramic body 3 and the metallic lead wire 7. The electrode taking-out part 4 is made of an inorganic conductive material and an inorganic insulating material, and the total hardness can be increased by increasing a ratio of the inorganic insulating material of high hardness, or by reducing its particle size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石油ファンヒータ
等の各種燃焼機器の点火用ヒータ、酸素センサ等の各種
センサの各種センサや測定機器の加熱用ヒータ、自動車
用グロープラグなどに利用されるセラミックヒータに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as an ignition heater for various combustion devices such as a petroleum fan heater, various sensors for various sensors such as an oxygen sensor, a heater for measuring devices, and a glow plug for an automobile. It relates to a ceramic heater.

【0002】[0002]

【従来の技術】従来より各種電子部品の絶縁基体として
利用されてきた酸化物系のセラミックスに加え、近年、
耐熱性及び耐食性、耐摩耗性、電気絶縁性により優れ
た、高強度でかつ比重が小さいという顕著な特徴を有す
る非酸化物系セラミックスが、化学プラントや工作機械
をはじめとする各種産業機械装置や、自動車用のディー
ゼルエンジン等の内燃機関部品として多用されるように
なっている。
2. Description of the Related Art In addition to oxide-based ceramics conventionally used as insulating bases for various electronic components, in recent years,
Non-oxide ceramics, which have outstanding characteristics of high heat resistance, corrosion resistance, wear resistance, and electrical insulation, high strength and low specific gravity, are used in various industrial machinery such as chemical plants and machine tools. It has been widely used as an internal combustion engine component such as a diesel engine for an automobile.

【0003】例えば、ディーゼル機関の始動時やアイド
リング時に、副燃焼室内を急速に予熱するために用いら
れる内燃機関用グロープラグや、内燃機関の排気ガス中
の酸素濃度を検知し、排気ガス制御を行うための酸素セ
ンサの素子の活性化を促進するために内装されるヒータ
等の各種補助加熱用ヒータとしては、従来の急速昇温特
性や、耐摩耗性、耐食性等の耐久性に劣る、発熱抵抗線
と耐熱絶縁粉末とを耐熱金属製筒内に埋設したシーズヒ
ータに代わり、熱伝導性が良好な電気絶縁性セラミック
焼結体に、高融点金属やその化合物、及びそれらを主成
分とする各種無機導電材から成る発熱抵抗体を担持した
り、接合したり、あるいは埋設したりして一体化したセ
ラミックヒータが広く利用されるようになっている。
For example, when starting or idling a diesel engine, a glow plug for an internal combustion engine used for rapidly preheating the sub-combustion chamber and an oxygen concentration in exhaust gas of the internal combustion engine are detected to control exhaust gas. Various auxiliary heating heaters such as heaters installed to promote the activation of the oxygen sensor element to perform the heat generation are inferior in the conventional rapid temperature rising characteristics and inferior durability such as wear resistance and corrosion resistance. Instead of a sheathed heater in which a resistance wire and a heat-resistant insulating powder are embedded in a heat-resistant metal cylinder, a high-melting-point metal and its compound, and those containing them as a main component, are used as an electrically insulating ceramic sintered body with good thermal conductivity. 2. Description of the Related Art Ceramic heaters integrally supporting a heat-generating resistor made of various inorganic conductive materials, and bonding or embedding the heat-generating resistor have been widely used.

【0004】しかしながら、セラミック部材と金属部材
の接合体においては、両部材の熱膨張率が大きく異なる
ことから、該熱膨張差に起因する歪み、即ち、残留応力
が両部材の接合部近辺、例えば、前記各種ヒータでは、
セラミック発熱抵抗体の電極取り出し部と電極金具との
接合部、とりわけその接合界面に発生し、セラミック部
材と金属部材との接合強度の低下や、金属部材の収縮力
によるセラミック部材あるいは金属部材自体の破壊や、
接合界面からの剥離を招きやすいという欠点があった。
However, in a joined body of a ceramic member and a metal member, the thermal expansion coefficients of the two members are greatly different from each other. In the various heaters,
It occurs at the joint between the electrode take-out part of the ceramic heating resistor and the electrode fitting, especially at the joint interface, and decreases the joining strength between the ceramic member and the metal member, and the shrinkage of the ceramic member or the metal member itself due to the contraction force of the metal member. Destruction,
There is a drawback that separation from the bonding interface is easily caused.

【0005】従来のセラミックヒータの構造を図1を用
いて説明する。不図示のセラミックグリーンシートの上
面に発熱部2と電極取り出し部4をプリント形成し、こ
れらの間を接続するようにタングステンリードを載置
し、前述と同様のセラミックグリーンシートを重ねて、
ホットプレス焼成し、セラミックヒータ1の焼結体を得
る。その後、電極取り出し部4の端面が露出するように
セラミックヒータ1焼結体の端面を研磨した後、ロウ材
である金属層5をプリント形成し、真空中800〜13
00℃で焼き付けする。その上に、リード線7を接合し
た接合応力緩和材6を載置してロウ付けすることによ
り、セラミック体3とリード線7との熱膨張差を解消
し、高温まで接合強度を維持することが提案されてい
る。
The structure of a conventional ceramic heater will be described with reference to FIG. On the upper surface of a ceramic green sheet (not shown), a heating section 2 and an electrode take-out section 4 are formed by printing, a tungsten lead is placed so as to connect them, and the same ceramic green sheet as described above is overlaid.
Hot press firing is performed to obtain a sintered body of the ceramic heater 1. Then, after polishing the end surface of the sintered body of the ceramic heater 1 so that the end surface of the electrode take-out portion 4 is exposed, a metal layer 5 which is a brazing material is formed by printing, and 800 to 13 in vacuum.
Bake at 00 ° C. By mounting and brazing the bonding stress relieving material 6 to which the lead wire 7 is bonded, the difference in thermal expansion between the ceramic body 3 and the lead wire 7 is eliminated, and the bonding strength is maintained up to a high temperature. Has been proposed.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、前記
接合応力緩和材6を介してセラミック体3と金属のリー
ド線7を接合し、金属層5として接合強度が高い活性金
属を含有するロウ材を用いて接合したとしても、マイク
ロクラックの発生は防げず、このマイクロクラックは、
電極引き出し部4に達して抵抗変化を引き起こすという
問題があった。
However, the ceramic body 3 and the metal lead wire 7 are joined via the joining stress relieving material 6, and a brazing material containing an active metal having a high joining strength is used as the metal layer 5. Even if it is joined by using, the occurrence of micro cracks cannot be prevented, and this micro crack is
There is a problem that the resistance reaches the electrode lead portion 4 to cause a resistance change.

【0007】従来は一般家庭用電気製品等の数十Ωのヒ
ータにおいてこのマイクロクラックによる抵抗変化は微
少で発熱に影響を与えるものではなかった。近年、低電
圧で用いる低抵抗のヒータにおいてはこのマイクロクラ
ックによる抵抗変化がヒータ全体抵抗に対して占める割
合は大きく、その結果、電極取り出し部4が発熱し、耐
久性が低くなるという問題点があった。
Conventionally, in a heater of several tens of ohms such as general household electric appliances, the resistance change due to the microcracks is very small and does not affect the heat generation. In recent years, in a low-resistance heater used at a low voltage, the resistance change due to the microcracks occupies a large proportion of the overall resistance of the heater, and as a result, the electrode extraction portion 4 generates heat, and the durability is reduced. there were.

【0008】また、上記問題の他、リード線7及び接合
応力緩和材6の剥離強度がばらつくという問題点があっ
た。
In addition to the above problem, there is another problem that the peel strength of the lead wire 7 and the bonding stress relieving material 6 varies.

【0009】[0009]

【課題を解決するための手段】前記課題に対して検討し
た結果、電極引き出し部の硬度がクラックの進展に影響
を及ぼし、抵抗変化、耐久性を左右すること、またリー
ド線と接合応力緩和材の接合長さ、位置が剥離強度に影
響を及ぼしていることを突き止めた。
As a result of studying the above problems, the hardness of the lead-out portion of the electrode has an effect on the development of cracks, which affects the resistance change and durability. It has been found that the bonding length and position of the alloy have an influence on the peel strength.

【0010】そこで電極引き出し部を構成する無機絶縁
材と無機導電材の比率及び粒径で決まる硬度及びリード
線と接合応力緩和材の接合長さ、接合部から接合応力緩
和材の外周までの距離を制御した結果、前記課題が解消
できることを見いだし抵抗変化の少ない優れた耐久性を
得られることが明らかになった。
Therefore, the hardness determined by the ratio and particle size of the inorganic insulating material and the inorganic conductive material constituting the electrode lead portion, the joining length between the lead wire and the joining stress relieving material, the distance from the joining portion to the outer periphery of the joining stress relieving material. As a result, it was found that the above problem could be solved, and it was revealed that excellent durability with little change in resistance could be obtained.

【0011】即ち、本発明のセラミックヒータは、通電
により発熱する無機導電材からなる発熱部を、非酸化物
セラミック体に担持、接合、あるいは埋設する等してセ
ラミックヒータを構成し、上記発熱部の一端に導出され
た電極取り出し部を無機絶縁材と無機導電材とで構成
し、その硬度を11.5GPa以上としたものである。
That is, in the ceramic heater according to the present invention, a heating section made of an inorganic conductive material which generates heat by energization is supported, joined, or buried in a non-oxide ceramic body to constitute the ceramic heater. Is formed of an inorganic insulating material and an inorganic conductive material, and has a hardness of 11.5 GPa or more.

【0012】また、上記電極取り出し部に接合応力緩和
材を会してリード線を接合し、リード線の接合長さを接
合応力緩和材の長さに対して25〜75%とし、かつ接
合部から接合応力緩和材の電極側外周端までの距離を接
合応力緩和材の長さに対して25%以上になるようにし
て接続したことを特徴とするものである。
A lead wire is joined to the electrode lead-out portion by joining a joining stress relieving material, the joining length of the lead wire is set to 25 to 75% of the length of the joining stress relieving material, and the joining portion is formed. The connection is made such that the distance from the electrode to the outer peripheral end of the joining stress relieving material is at least 25% of the length of the joining stress relieving material.

【0013】[0013]

【発明の実施の形態】以下、本発明のセラミックヒータ
について、図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a ceramic heater according to the present invention will be described with reference to the drawings.

【0014】図1において、セラミックヒータ1は、セ
ラミック体1に発熱部2と電極取り出し部4を埋設し、
電極取り出し部4の一端を露出させて、この露出部にロ
ウ材等からなる金属層5を備え、リード線7を接合した
接合応力緩和材6(合わせて電極金具8)をロウ付け等
により接合したものである。
In FIG. 1, a ceramic heater 1 has a heat generating portion 2 and an electrode take-out portion 4 embedded in a ceramic body 1.
One end of the electrode take-out portion 4 is exposed, a metal layer 5 made of a brazing material or the like is provided on the exposed portion, and a joining stress relieving material 6 (together, an electrode fitting 8) to which a lead wire 7 is joined is joined by brazing or the like. It was done.

【0015】そして、本発明では上記電極取り出し部4
の硬度を11.5GPa以上とすることによって、セラ
ミック体3と金属のリード線7との熱膨張差によるクラ
ックによる抵抗変化を防ぐようにした。電極取り出し部
4は無機導電材と無機絶縁材から成り、硬度の高い無機
絶縁材の割合を多くする、あるいは粒径を小さくするこ
とにより全体硬度を上げることができ、無機絶縁材の分
布を多くして硬度を高くすることによりクラックの進展
を防ぐことができるのである。
In the present invention, the electrode take-out portion 4 is provided.
By setting the hardness to 11.5 GPa or more, resistance change due to cracks due to a difference in thermal expansion between the ceramic body 3 and the metal lead wire 7 is prevented. The electrode take-out part 4 is made of an inorganic conductive material and an inorganic insulating material, and the overall hardness can be increased by increasing the proportion of the inorganic insulating material having a high hardness or by reducing the particle size, thereby increasing the distribution of the inorganic insulating material. By increasing the hardness, the development of cracks can be prevented.

【0016】また、電極金具8を成すリード線7と接合
応力緩和材6の接合長さ、接合位置が剥離強度に影響を
及ぼす。そこで、図2に示すようにリード線7の接合長
さCを接合応力緩和材6の長さAに対して25〜75%
とし、かつリード線7の接合部から接合応力緩和材6の
電極側外周6aまでの長さBを接合応力緩和材6の長さ
Aに対して25%以上としてある。
The joining length and joining position between the lead wire 7 forming the electrode fitting 8 and the joining stress relieving material 6 affect the peel strength. Therefore, as shown in FIG. 2, the joining length C of the lead wire 7 is 25 to 75% of the length A of the joining stress relieving material 6.
The length B from the joint of the lead wire 7 to the outer periphery 6a on the electrode side of the joining stress relieving material 6 is set to 25% or more of the length A of the joining stress relieving material 6.

【0017】これは、リード線7の接合部から接合応力
緩和材6の電極側外周6aまでの長さBが接合応力緩和
材6の長さAに対して25%未満の場合、接合応力緩和
材6の電極側外周6aに残留応力が発生することと、リ
ード線7に負荷がかかったとき接合応力緩和材6の電極
側外周6aに応力が集中して剥離強度が弱くなるためで
ある。
This is because when the length B from the joint of the lead wire 7 to the outer periphery 6a on the electrode side of the joining stress relaxing material 6 is less than 25% of the length A of the joining stress relaxing material 6, the joining stress relaxing This is because a residual stress is generated on the electrode-side outer periphery 6a of the material 6, and the stress is concentrated on the electrode-side outer periphery 6a of the bonding stress relieving material 6 when a load is applied to the lead wire 7, so that the peel strength is weakened.

【0018】また、接合長さCが25%未満の場合、リ
ード線7と接合応力緩和材6間の接合力が弱くなり、こ
の2者間で剥離してしまう。従ってリード線7と接合応
力緩和材6の接合長さCを25%以上にしなければなら
ず、かつ上記長さBを25%以上にすることから接合長
さCは75%以下となる。
If the joining length C is less than 25%, the joining force between the lead wire 7 and the joining stress relieving material 6 becomes weak, and the two are separated from each other. Therefore, the joining length C between the lead wire 7 and the joining stress relieving material 6 must be 25% or more, and since the length B is 25% or more, the joining length C is 75% or less.

【0019】本発明において、セラミック体3として適
用可能な材質は、非酸化物系セラミックスで窒化珪素
(Si3 4 )や炭化珪素(SiC)、サイアロン、窒
化アルミニウム(AlN)等を主成分とし、それぞれ所
定の焼結助剤を含有するものを用いる。これらのセラミ
ックスはビッカース硬度10GPa以上であり、このよ
うな硬度を有する非酸化物系セラミックスを用いれば好
適である。
In the present invention, the material applicable as the ceramic body 3 is a non-oxide ceramic, which is mainly composed of silicon nitride (Si 3 N 4 ), silicon carbide (SiC), sialon, aluminum nitride (AlN) or the like. And those each containing a predetermined sintering aid are used. These ceramics have a Vickers hardness of 10 GPa or more, and it is preferable to use a non-oxide ceramic having such a hardness.

【0020】発熱部2、電極取り出し部4に適用可能な
無機導電材としては、タングステン(W)、モリブデン
(Mo)、チタン(Ti)等の高融点金属、あるいはタ
ングステンカーバイト(WC)、珪化モリブデン(Mo
Si2 )、窒化チタン(TiN)等の高融点金属の炭化
物や珪化物、窒化物等を主成分とする抵抗体が挙げられ
る。非酸化物系のセラミック体3との熱膨張差、及び高
温度下でもそれらと反応しがたいという点からは、WC
あるいはWを主成分とするものが好適である。
Examples of the inorganic conductive material applicable to the heating section 2 and the electrode take-out section 4 include high melting point metals such as tungsten (W), molybdenum (Mo), and titanium (Ti), tungsten carbide (WC), and silicide. Molybdenum (Mo
A resistor mainly composed of carbide, silicide, nitride, or the like of a high melting point metal such as Si 2 ) and titanium nitride (TiN) can be used. In view of the difference in thermal expansion from the non-oxide ceramic body 3 and the difficulty in reacting with them even at high temperatures, WC
Alternatively, a material containing W as a main component is preferable.

【0021】一方、前記無機導電材の主成分に対して、
その成長を制御してセラミック体3との熱膨張差による
クラックを防止し、かつ電極取り出し部4においては金
属部材によるクラックの進展を防止するために窒化珪素
(Si3 4 )、窒化硼素(BN)、窒化アルミニウム
(AlN)あるいは炭化珪素(SiC)の1種以上から
なる無機絶縁材を含有させることが望ましい。
On the other hand, with respect to the main component of the inorganic conductive material,
Silicon nitride (Si 3 N 4 ) and boron nitride (B) are used to control the growth to prevent cracks due to the difference in thermal expansion from the ceramic body 3, and to prevent the electrode lead-out portion 4 from cracking due to metal members. BN), aluminum nitride (AlN) or silicon carbide (SiC).

【0022】なお、上記無機導電材の含有率は10〜2
0重量%、無機導電材の平均粒径は0.1〜1.3μ
m、好ましくは0.2〜1.0μmの範囲が好ましく、
この範囲内でその硬度が11.5GPa以上となるよう
にすれば良い。
The content of the inorganic conductive material is 10 to 2
0% by weight, the average particle size of the inorganic conductive material is 0.1 to 1.3 μm
m, preferably in the range of 0.2 to 1.0 μm,
The hardness may be 11.5 GPa or more within this range.

【0023】金属層5としては、主成分が金(Au)ま
たはニッケル(Ni)、銅(Cu)、銀(Ag)パラジ
ウム(Pd)のいずれか一種以上から成るもので、40
0℃以上の高温で使用しても酸化による劣化がないもの
を用いる。例えば、直流電源の通電が関与する使用条件
下でのマイグレーションの防止を考慮すると、前記金属
層5は金(Au)が50〜99重量%、ニッケル(N
i)が1〜50重量%の金(Au)とニッケル(Ni)
の合金が最適である。
The metal layer 5 is composed mainly of at least one of gold (Au), nickel (Ni), copper (Cu), silver (Ag) and palladium (Pd).
A material that does not deteriorate due to oxidation even when used at a high temperature of 0 ° C or more is used. For example, considering the prevention of migration under use conditions involving the energization of a DC power supply, the metal layer 5 contains 50 to 99% by weight of gold (Au) and nickel (N
i) 1 to 50% by weight of gold (Au) and nickel (Ni)
Is most suitable.

【0024】また、前記金属層5には、活性金属として
周期律表第4a族元素のチタン(Ti)、バナジウム
(V)、マンガン(Mn)、コバルト(Co)、ニッケ
ル(Ni)、銅(Cu)や、モリブデン(Mo)、シリ
コン(Si)、ジルコニウム(Zr)、ハフニウム(H
f)のいずれか1種以上を含有することが好ましい。と
りわけ、前記金属層5のセラミック体3への濡れ性が良
く、セラミック体3の強度を劣化させないという点から
は、バナジウム(V)またはモリブデン(Mo)の一種
以上を活性金属として含有させることが最適であり、か
かる活性金属は窒化物や炭化物、水酸化物等の形態で含
有させても良い。
In the metal layer 5, titanium (Ti), vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni), copper (Ni), which is a group 4a element of the periodic table as an active metal, is formed. Cu), molybdenum (Mo), silicon (Si), zirconium (Zr), hafnium (H
It is preferable to contain at least one of f). In particular, from the viewpoint that the metal layer 5 has good wettability to the ceramic body 3 and does not deteriorate the strength of the ceramic body 3, it is preferable to include at least one of vanadium (V) or molybdenum (Mo) as an active metal. Optimally, such active metals may be included in the form of nitrides, carbides, hydroxides and the like.

【0025】前記セラミック体3と接合する接合応力緩
和材6としては、該セラミック体3の熱膨張率と近似し
た値を有する金属、例えば、モリブデン(Mo)やタン
グステン(W)等の低熱膨張金属や、Fe−Ni系のイ
ンバー型合金、あるいはFe−P系のエリンバー型合
金、WC−TiC−Co系の超硬合金等が挙げられ、耐
酸化性や加工性、及びコストという観点からはFe−N
i−Co系合金あるいはFe−Ni系合金が望ましい。
The joining stress relieving material 6 to be joined to the ceramic body 3 is a metal having a value close to the coefficient of thermal expansion of the ceramic body 3, for example, a low thermal expansion metal such as molybdenum (Mo) or tungsten (W). And an Fe-Ni-based Invar alloy, an Fe-P-based Elinvar alloy, a WC-TiC-Co-based cemented carbide, and the like. From the viewpoints of oxidation resistance, workability, and cost, Fe is used. -N
An i-Co alloy or an Fe-Ni alloy is desirable.

【0026】[0026]

【実施例】本発明を以下に詳述するようにして評価し
た。
EXAMPLES The present invention was evaluated as described in detail below.

【0027】先ず、窒化珪素(Si3 4 )粉末にイッ
テルビウム(Yb)やイットリウム(Y)等の希土類元
素の酸化物から成る焼結助剤を添加したセラミック原料
粉末を周知のプレス成形法等で平板状の成形体に成形
し、該成形体の一端側の表面にWCを主成分とするペー
ストを用いてスクリーン印刷法によりU字状のパターン
で発熱部2を形成し、同様にしてセラミック成形体の他
端側から側面にかけて表1〜4に示す比率、粒径の無機
導電材と無機絶縁材の混合体からなる電極取り出し部4
を形成した。
First, a ceramic raw material powder obtained by adding a sintering aid composed of an oxide of a rare earth element such as ytterbium (Yb) or yttrium (Y) to silicon nitride (Si 3 N 4 ) powder is subjected to a known press molding method or the like. The heating part 2 is formed in a U-shaped pattern by a screen printing method using a paste containing WC as a main component on the surface on one end side of the molded body by using From the other end to the side surface of the molded body, an electrode take-out part 4 made of a mixture of an inorganic conductive material and an inorganic insulating material having a ratio and a particle size shown in Tables 1 to 4
Was formed.

【0028】次に、前記発熱部2と電極取り出し部4を
電気的に接続するようにリード部を載置し、その上に別
のセラミック成形体を重ねた後、還元性雰囲気下、17
00〜1900℃の温度で焼成一体化してセラミックヒ
ータ1を作製した。
Next, a lead portion is placed so as to electrically connect the heating portion 2 and the electrode take-out portion 4, and another ceramic molded body is placed thereon.
The ceramic heater 1 was manufactured by firing and integrating at a temperature of 00 to 1900 ° C.

【0029】その後、前記セラミックーヒータ1を研削
することにより、露出した電極取り出し部4にAu、N
i、Vを含有したペーストを用いてスクリーン印刷法に
より金属層5を塗布し、800〜1300℃の真空雰囲
気中で焼き付け処理を行って、金属層5を被着形成し
た。
Thereafter, by grinding the ceramic heater 1, Au, N
The metal layer 5 was applied by a screen printing method using a paste containing i and V, and baked in a vacuum atmosphere at 800 to 1300 ° C. to form the metal layer 5 by adhesion.

【0030】次にセラミックヒータ1に、幅2mm×長
さ3mm×厚さ0.2mmのFe−Ni−Co合金から
なる接合応力緩和材6に予めNiのリード線7をスポッ
ト溶接により接続した電極金具8を800〜1300℃
の真空雰囲気中でロウ付けした。
Next, an electrode in which a Ni lead wire 7 was previously connected to the ceramic heater 1 by spot welding to a bonding stress relieving material 6 made of an Fe—Ni—Co alloy having a width of 2 mm × a length of 3 mm × a thickness of 0.2 mm. Metal fitting 8 at 800 to 1300 ° C
In a vacuum atmosphere.

【0031】かくして得られたセラミックヒータ1の電
極取り出し部4を含む部分を切断、研磨し、電極取り出
し部4のビッカース硬度を荷重20kgfの条件にて測
定した。
The ceramic heater 1 thus obtained was cut and polished at the portion including the electrode take-out portion 4 and the Vickers hardness of the electrode take-out portion 4 was measured under a load of 20 kgf.

【0032】また、セラミックヒータ1を室温と450
℃の温度雰囲気にそれぞれ曝すのを1サイクルとして繰
り返し、3000サイクル後のセラミックヒータ1の抵
抗値を測定し、試験前の初期抵抗値に対する抵抗変化率
を測定した。尚、この試験では、各条件の差を明確にす
る為、クラックが入りやすいように接合応力緩和材6の
端部を電極取り出し部4の上に接合した。
The temperature of the ceramic heater 1 is set to room temperature and 450
Each exposure to a temperature atmosphere of ° C. was repeated as one cycle, the resistance value of the ceramic heater 1 after 3000 cycles was measured, and the rate of resistance change with respect to the initial resistance value before the test was measured. In this test, in order to clarify the difference between the conditions, the end of the bonding stress relieving material 6 was bonded onto the electrode take-out portion 4 so that cracks were easily formed.

【0033】結果を表1〜4に示すように、電極取り出
し部4の硬度は、絶縁材と導電材の比率及び絶縁材の粒
径によって決まり、ビッカース硬度が11.5GPa未
満である本発明の請求範囲外の試料番号1〜15、21
〜30、41〜45ではいずれも抵抗変化率が10%以
上あった。
As shown in Tables 1 to 4, the hardness of the electrode take-out portion 4 is determined by the ratio of the insulating material to the conductive material and the particle size of the insulating material, and the Vickers hardness of the present invention is less than 11.5 GPa. Sample numbers 1 to 15 and 21 outside the claims
-30, 41-45, the resistance change rate was 10% or more.

【0034】これに対し、電極取り出し部4のビッカー
ス硬度が11.5GPa以上である本発明実施例では、
抵抗変化率が10%未満でクラックの進展が効果的に緩
和されていることが分かる。
On the other hand, in the embodiment of the present invention in which the Vickers hardness of the electrode take-out portion 4 is 11.5 GPa or more,
It can be seen that when the rate of change in resistance is less than 10%, the progress of cracks is effectively mitigated.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】次に、接合応力緩和材6に対して、リード
線7を接合する位置、長さを表5、6に示すように変化
させ、接合強度を評価した。評価用のセラミックヒータ
1を固定し、接合した電極金具のリード線7をセラミッ
クヒータ1と垂直方向に引っ張り、セラミックヒータ1
と接合応力緩和材6間、あるいは接合応力緩和材6とリ
ード線7間が破断したときの剥離強度(kgf)を計測
して破断モードと共に評価した。
Next, the joining position and length of the lead wire 7 to the joining stress relieving material 6 were changed as shown in Tables 5 and 6, and the joining strength was evaluated. The ceramic heater 1 for evaluation was fixed, and the lead wire 7 of the joined electrode fitting was pulled in a direction perpendicular to the ceramic heater 1, and the ceramic heater 1 was heated.
The peel strength (kgf) when the fracture between the bonding stress relieving material 6 and between the bonding stress relieving material 6 and the lead wire 7 was measured and evaluated together with the fracture mode.

【0040】なお、接合応力緩和材6の長さaは3mm
であり、表5、6中のD寸法とは、図2に示すように接
合部の中間点から接合応力緩和材6の発熱体側外周端ま
での距離のことである。
The length a of the joining stress relieving material 6 is 3 mm.
The dimension D in Tables 5 and 6 is the distance from the midpoint of the joint to the outer peripheral end of the joint stress relieving member 6 on the heating element side as shown in FIG.

【0041】表5、6から明らかなように、接合部から
接合応力緩和材6の電極側外周端6aまでの長さBと、
接合長さCのいずれかが本発明の範囲外であるものは、
剥離強度にばらつきが大きく10kgfを下回る物があ
った。即ち、接合長さCが接合応力緩和材6の長さAの
25%未満の場合、両者間の接合力が小さい。また、接
合応力緩和材6の電極側外周端6aまでの長さBが、接
合応力緩和材6の長さAの25%未満であるか75%を
越える場合は、応力が電極側外周端6aに集中し、接合
強度が安定しない。
As is clear from Tables 5 and 6, the length B from the joining portion to the outer peripheral end 6a on the electrode side of the joining stress relieving material 6 and
If any of the bond lengths C is outside the scope of the present invention,
There was a substance having a large variation in the peeling strength and less than 10 kgf. That is, when the joining length C is less than 25% of the length A of the joining stress relieving material 6, the joining force between them is small. When the length B of the joining stress relieving material 6 to the electrode side outer peripheral end 6a is less than 25% or more than 75% of the length A of the joining stress relieving material 6, the stress is reduced to the electrode side outer peripheral end 6a. And the bonding strength is not stable.

【0042】これに対し、本発明実施例では、剥離強度
が15kgf以上で安定し、応力が効果的に緩和され、
かつ、接合応力緩和材6とリード線7間の接合力も保て
ることが分かる。
On the other hand, in the embodiment of the present invention, the peel strength is stable at 15 kgf or more, the stress is effectively reduced,
Further, it can be seen that the joining force between the joining stress relieving material 6 and the lead wire 7 can be maintained.

【0043】なお、本実施例で、リード線7は線径φ
1.0mmのものを用いたが、線径がφ0.7mmより
細い場合、破壊モードはリード線7が破断することとな
り、リード線7の引っ張り強度で決まるようになると思
われる。
In this embodiment, the lead wire 7 has a wire diameter φ.
Although a wire having a diameter of 1.0 mm was used, when the wire diameter was smaller than φ0.7 mm, the breaking mode would be that the lead wire 7 would break, and it would be determined by the tensile strength of the lead wire 7.

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【発明の効果】本発明によれば、非酸化物セラミックス
に発熱部と電極取り出し部を備え、電極取り出し部の一
端にロウ材を用いてリード線を接合したセラミックヒー
タにおいて、上記電極取り出し部の硬度を11.5GP
a以上にしたことによって、クラックの進展をくいと
め、抵抗変化の少ない優れた耐久性をもったセラミック
ヒータを得ることが出来る。
According to the present invention, there is provided a ceramic heater in which a non-oxide ceramic is provided with a heat generating portion and an electrode take-out portion, and a lead wire is joined to one end of the electrode take-out portion by using a brazing material. Hardness 11.5 GP
By setting a or more, it is possible to suppress the development of cracks and obtain a ceramic heater having excellent resistance and little resistance change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明のセラミックヒータを示す斜視
図、(b)は電極取り出し部の断面図である。
FIG. 1A is a perspective view showing a ceramic heater of the present invention, and FIG. 1B is a cross-sectional view of an electrode take-out portion.

【図2】本発明のセラミックヒータに用いる電極金具を
示す斜視図である。
FIG. 2 is a perspective view showing an electrode fitting used for the ceramic heater of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックヒータ 2 発熱部 3 セラミック体 4 電極取り出し部 5 金属層 6 接合応力緩和材 7 リード線 8 電極金具 A 接合応力緩和材の長さ B リード線の接合部から接合応力緩和材の電極側外
周端までの長さ C 接合応力緩和材とリード線の接合長さ
DESCRIPTION OF SYMBOLS 1 Ceramic heater 2 Heating part 3 Ceramic body 4 Electrode take-out part 5 Metal layer 6 Bonding stress relieving material 7 Lead wire 8 Electrode fitting A Length of bonding stress relieving material B Outer side of joining stress relieving material from the lead wire joint Length to end C Joining length of joining stress relieving material and lead wire

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非酸化物セラミック体に発熱部と電極取り
出し部を備え、該電極取り出し部の一端にロウ材を用い
てリード線を接合したセラミックヒータにおいて、上記
電極取り出し部が無機導電材と無機絶縁材の混合体から
成り、その硬度が11.5GPa以上であることを特徴
とするセラミックヒータ。
1. A ceramic heater comprising a non-oxide ceramic body having a heat generating portion and an electrode take-out portion, and a lead wire joined to one end of the electrode take-out portion using a brazing material, wherein the electrode take-out portion is made of an inorganic conductive material. A ceramic heater comprising a mixture of inorganic insulating materials and having a hardness of 11.5 GPa or more.
【請求項2】上記無機導電材はW,Mo,Ti等の窒化
物、珪化物、炭化物の少なくとも一種類以上を主成分と
することを特徴とする請求項1記載のセラミックヒー
タ。
2. The ceramic heater according to claim 1, wherein the inorganic conductive material contains at least one of nitride, silicide, and carbide such as W, Mo, and Ti as a main component.
【請求項3】上記電極取り出し部の一端に接合応力緩和
材を介してリード線を接合し、接合応力緩和材とリード
線の接合長さを接合応力緩和材の長さに対し25〜75
%とし、かつ接合部から接合応力緩和材の電極側外周端
外周までの距離を接合応力緩和材の長さに対して25%
以上としたことを特徴とする請求項1記載のセラミック
ヒータ。
3. A lead wire is joined to one end of the electrode take-out portion via a joining stress relieving material, and the joining length between the joining stress relieving material and the lead wire is 25 to 75 with respect to the length of the joining stress relieving material.
%, And the distance from the joining portion to the outer periphery of the outer peripheral end of the joining stress relieving material on the electrode side is 25% with respect to the length of the joining stress relieving material.
2. The ceramic heater according to claim 1, wherein:
JP10308629A 1998-10-29 1998-10-29 Ceramic heater Pending JP2000133419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10308629A JP2000133419A (en) 1998-10-29 1998-10-29 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10308629A JP2000133419A (en) 1998-10-29 1998-10-29 Ceramic heater

Publications (1)

Publication Number Publication Date
JP2000133419A true JP2000133419A (en) 2000-05-12

Family

ID=17983359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10308629A Pending JP2000133419A (en) 1998-10-29 1998-10-29 Ceramic heater

Country Status (1)

Country Link
JP (1) JP2000133419A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100421A (en) * 2001-09-26 2003-04-04 Kyocera Corp Ceramic heater
JP2009302117A (en) * 2008-06-10 2009-12-24 Minebea Co Ltd Method for connecting tab pattern and lead wire
JP2017091956A (en) * 2015-11-16 2017-05-25 京セラ株式会社 Ceramic heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100421A (en) * 2001-09-26 2003-04-04 Kyocera Corp Ceramic heater
JP4688376B2 (en) * 2001-09-26 2011-05-25 京セラ株式会社 Ceramic heater
JP2009302117A (en) * 2008-06-10 2009-12-24 Minebea Co Ltd Method for connecting tab pattern and lead wire
JP2017091956A (en) * 2015-11-16 2017-05-25 京セラ株式会社 Ceramic heater

Similar Documents

Publication Publication Date Title
JP4751392B2 (en) Brazing structure, ceramic heater and glow plug
JPWO2012014872A1 (en) Heater and glow plug equipped with the same
JP2003229236A (en) Production method of ceramic heater and production method of glow plug
JP3121985B2 (en) Silicon nitride ceramic heater
JP3811440B2 (en) Ceramic heater
JP3886699B2 (en) Glow plug and manufacturing method thereof
JP2000133419A (en) Ceramic heater
JP3078418B2 (en) Ceramic heating element
JP3588227B2 (en) Ceramic heater
JP2001052845A (en) Ceramic heater
JP3762103B2 (en) Ceramic heater
JP2735725B2 (en) Ceramic heating element
JPH07167435A (en) Ceramic heat-generating member
JP3924378B2 (en) Ceramic heater
JP2534847B2 (en) Ceramic Heater
JP4025641B2 (en) Ceramic heater
JP2735729B2 (en) Ceramic heating element
JP2003100421A (en) Ceramic heater
JP2735721B2 (en) Ceramic heating element
JP4153840B2 (en) Ceramic heater
JP2001043962A (en) Silicon nitride ceramic heater
JP3874581B2 (en) Ceramic heater and glow plug using the same
JPH09196375A (en) Ceramic heater
JPH07151332A (en) Ceramic glow plug
JP4038138B2 (en) Ceramic heater and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530