JP2000127003A - Constant pressure grinding method - Google Patents

Constant pressure grinding method

Info

Publication number
JP2000127003A
JP2000127003A JP10303696A JP30369698A JP2000127003A JP 2000127003 A JP2000127003 A JP 2000127003A JP 10303696 A JP10303696 A JP 10303696A JP 30369698 A JP30369698 A JP 30369698A JP 2000127003 A JP2000127003 A JP 2000127003A
Authority
JP
Japan
Prior art keywords
grinding
revolution
grinding wheel
constant pressure
clogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10303696A
Other languages
Japanese (ja)
Other versions
JP3070839B2 (en
Inventor
Toshiharu Ito
俊治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Prefecture
Original Assignee
Aichi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Prefecture filed Critical Aichi Prefecture
Priority to JP10303696A priority Critical patent/JP3070839B2/en
Publication of JP2000127003A publication Critical patent/JP2000127003A/en
Application granted granted Critical
Publication of JP3070839B2 publication Critical patent/JP3070839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a lowering of grinding efficiency due to clogging, to dispense with frequent resetting, to lengthen the life of a grinding wheel and to simplify a grinding process by fluctuating the number of revolution of the grinding wheel in chaos. SOLUTION: A computer 21 is incorporated into a control panel and the control panel controls the number of revolution of an AC servo motor 8 rotating and driving a grinding wheel. A secular target number of revolution outputted from the computer 21 is determined as a number of revolution proportional to a time series Z solution between a maximum value and a minimum value by solving a Lorentz equation and obtaining the time series Z solution showing a chaos behavior. The number of revolution is reproduced at the same time as the starting of an operation of a grinding device and is outputted to a servo amplifier 23. The servo amplifier 23 controls the number of revolution of the AC servo motor 8 to follow up the target number of revolution, referring to a feedback signal from an encoder incorporated into the AC servo motor 8. As a result, grinding efficiency becomes efficient and clogging of the grinding wheel is effectively prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は定圧研削法に関し、
特に研削効率の向上を図った定圧研削法に関する。
The present invention relates to a constant pressure grinding method,
In particular, the present invention relates to a constant pressure grinding method for improving grinding efficiency.

【0002】[0002]

【従来の技術】砥石端面を用いた湿式定圧研削は、粒径
の比較的大きい1種類の砥石で滑らかな仕上がり面を得
ることができるため、自動化に好適であるとされ注目さ
れている。そして、このような研削砥石は従来、定速回
転で使用されている。
2. Description of the Related Art Attention has been paid to wet constant pressure grinding using a grinding wheel end face because it is suitable for automation because a smooth finished surface can be obtained with one kind of grinding wheel having a relatively large particle diameter. And such a grinding wheel is conventionally used at a constant speed rotation.

【0003】[0003]

【発明が解決しようとする課題】この場合、砥石を低速
で回転させたのでは研削量を大きくできないため、高速
回転で行おうとすると、短時間で目詰まりを生じて研削
効率が低下することから頻繁な目立てが必要となり、砥
石の寿命低下と研削工程の段取りの煩雑化をもたらすと
いう問題があった。
In this case, if the grindstone is rotated at a low speed, the grinding amount cannot be increased. Therefore, if the grindstone is rotated at a high speed, clogging occurs in a short time and the grinding efficiency is reduced. Frequent sharpening is required, which causes a problem that the life of the grinding wheel is shortened and the setup of the grinding process is complicated.

【0004】そこで、本発明はこのような課題を解決す
るもので、目詰まりによる研削効率の低下を防止して頻
繁な目立てを不要とし、もって砥石の寿命延長と研削工
程の簡素化を実現した定圧研削法を提供することを目的
とする。
Accordingly, the present invention has been made to solve such a problem, and has prevented a decrease in grinding efficiency due to clogging, thereby eliminating the need for frequent dressing, thereby extending the life of the grinding wheel and simplifying the grinding process. An object is to provide a constant pressure grinding method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の定圧研削法は、砥石面を一定圧で被研削面
に押しつけて研削を行う定圧研削法であって、上記砥石
面の移動速度をカオス的に変動させるものである。ここ
で、カオス的とは、一見周期的であるが、非線形の決定
論的法則で支配される非周期的な現象を言い、例えばロ
ーレンツ方程式の解から生成される。
In order to achieve the above object, a constant pressure grinding method of the present invention is a constant pressure grinding method in which a grinding wheel surface is pressed against a surface to be ground with a constant pressure to perform grinding. The moving speed is chaotically varied. Here, chaotic refers to an aperiodic phenomenon that is apparently periodic but is governed by a nonlinear deterministic law, and is generated from, for example, a solution of the Lorentz equation.

【0006】本発明においては、砥石面の移動速度がカ
オス的に変動させられ、この結果、砥石の目詰まりが軽
減されて研削効率が向上する。したがって、頻繁な目立
てが不要となり、砥石の寿命が延長されるとともに研削
工程も簡素化される。
In the present invention, the moving speed of the grindstone surface is chaotically varied. As a result, clogging of the grindstone is reduced and the grinding efficiency is improved. Therefore, frequent dressing is not required, the life of the grinding wheel is extended, and the grinding process is simplified.

【0007】砥石の目詰まりが防止される理由は次の通
りであると考えられる。すなわち、砥石面の移動速度が
カオス的に変動すると、砥石面のポケットに付着した切
り粉が遊離状態になって、その運動が複雑になる。この
結果、切り粉はポケットから脱出して砥石面と被研削面
との間に介在する。砥石面と被研削面との間に介在する
切り粉は、砥石面の回転数がカオス的に変動するため複
雑に運動して容易に砥石面と被研削面との間より排出さ
れ、砥石面への付着堆積が防止される。この結果、堆積
形目詰まりが軽減される。
It is considered that the reason why clogging of the grindstone is prevented is as follows. That is, when the moving speed of the grinding wheel surface fluctuates chaotically, the chips attached to the pockets of the grinding wheel surface are released, and the movement becomes complicated. As a result, the cutting powder escapes from the pocket and intervenes between the grindstone surface and the ground surface. Chips interposed between the grinding wheel surface and the surface to be ground are complicatedly moved because the rotation speed of the grinding wheel surface fluctuates chaotically, and are easily discharged from between the grinding wheel surface and the grinding surface. Adhesion and deposition on the substrate is prevented. As a result, the accumulation type clogging is reduced.

【0008】また、砥石面の移動速度のカオス的変動
と、研削初期における被研削物の表面性状に含まれる凹
凸とが相乗的に作用して、切り粉が凝着した切れ刃砥粒
を脱落させる力変動を生じさせ、自己ドレッシングを誘
発して凝着形目詰まりを軽減する。
In addition, chaotic fluctuations in the moving speed of the grinding wheel surface and irregularities included in the surface properties of the workpiece in the initial stage of grinding act synergistically, causing the cutting edge abrasive grains to which the cutting powder has adhered to fall off. Causing self-dressing to reduce sticky clogging.

【0009】砥石面の移動速度のカオス的変動は、ポケ
ットにこぼれ落ちた脱落砥粒の運動を複雑化させてポケ
ットからの脱出を促進する。この脱落砥粒は二次的に遊
離砥粒として他の切れ刃砥粒に作用し、他の切れ刃砥粒
に凝着した切り粉を掻き出して、凝着形目詰まりを軽減
する。
The chaotic fluctuation of the moving speed of the grindstone surface complicates the movement of the falling abrasive grains spilled into the pocket and promotes the escape from the pocket. The dropped abrasive grains secondarily act as free abrasive grains on the other cutting edge abrasive grains, scrape out the cutting powder adhered to the other cutting edge abrasive grains, and reduce the adhesion type clogging.

【0010】砥石面の移動速度のカオス的変動は、周辺
の流体(空気あるいは研削油剤)の挙動を複雑化し、流
体の対流を多く引き起こして、研削加工によって生じた
熱を急速に流出さる。この結果、表面エネルギーが低下
し、切り粉と砥粒、切り粉と被研削材、あるいは切り粉
同士の凝着を防止する。
[0010] Chaotic fluctuations in the moving speed of the grinding wheel surface complicate the behavior of the surrounding fluid (air or grinding fluid), cause a large amount of convection of the fluid, and quickly discharge the heat generated by the grinding process. As a result, the surface energy is reduced, and adhesion between the chips and the abrasive grains, between the chips and the material to be ground, or between the chips is prevented.

【0011】本発明は定圧研削装置としても実現でき、
定圧研削装置は、カオス的に変動する経時データを生成
する手段と、経時データに応じて目標回転数を決定する
手段と、砥石の回転数を上記目標回転数に追従させる手
段と、上記砥石の砥石面を一定圧で被研削面に押し付け
る手段とを具備している。砥石の回転数がカオス的に変
動する結果、砥石面の移動速度がカオス的に変動させら
れ、上記定圧研削法におけると同様の作用効果が得られ
る。
The present invention can also be realized as a constant pressure grinding device,
The constant-pressure grinding device is means for generating time-varying data that fluctuates chaotically, means for determining a target rotation speed according to the time-lapse data, means for causing the rotation speed of the grindstone to follow the target rotation speed, and Means for pressing the grindstone surface against the surface to be ground with a constant pressure. As a result of the chaotic change in the number of revolutions of the grindstone, the moving speed of the grindstone surface is chaotically changed, and the same operation and effect as in the constant pressure grinding method can be obtained.

【0012】[0012]

【発明の実施の形態】図1には本発明の方法を実施する
研削装置の外観を示す。図1において、研削装置の細長
いベッド1上には長手方向のX軸方向へテーブル2が載
置されている。テーブル2上にはZ軸方向へ垂直にコラ
ム3が立設されて、図略の駆動機構によりテーブル2に
沿って移動可能である。コラム3には水平のY軸方向へ
延びる水平アーム4が支持されて、コラム3に沿って上
下方向へ移動可能である。また、水平アーム4にはこれ
に沿って移動可能に支持アーム5が設けられている。上
記X軸〜Z軸は互いに直交しており、支持アーム5は三
次元空間の所望位置に移動して位置決めされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the appearance of a grinding apparatus for carrying out the method of the present invention. In FIG. 1, a table 2 is placed on an elongated bed 1 of a grinding device in a longitudinal X-axis direction. A column 3 is erected vertically on the table 2 in the Z-axis direction, and can be moved along the table 2 by a drive mechanism (not shown). The column 3 supports a horizontal arm 4 extending in the horizontal Y-axis direction, and is movable in the vertical direction along the column 3. The horizontal arm 4 is provided with a support arm 5 movably along the horizontal arm 4. The X axis to the Z axis are orthogonal to each other, and the support arm 5 moves to a desired position in the three-dimensional space and is positioned.

【0013】支持アーム部の詳細を図2に示す。図2に
おいて、支持アーム5の下端にはACサーボモータ6が
設けてあり、その出力軸mにはL字形のブラケット9が
固定されて、出力軸m回りにα矢印方向へ回転可能とな
っている。ブラケット9にはACサーボモータ7が設け
てあり、その出力軸nは上記ACサーボモータ6の出力
軸mに直交するとともに、出力軸nには公知の空圧式定
圧機構のシリンダケース10が固定されて出力軸n回り
にβ矢印方向へ回転可能となっている。
FIG. 2 shows details of the support arm. In FIG. 2, an AC servomotor 6 is provided at a lower end of the support arm 5, and an L-shaped bracket 9 is fixed to an output shaft m thereof, and is rotatable around the output shaft m in the direction of the arrow α. I have. An AC servomotor 7 is provided on the bracket 9, and its output shaft n is orthogonal to the output shaft m of the AC servomotor 6, and a cylinder case 10 of a known pneumatic constant pressure mechanism is fixed to the output shaft n. Thus, it is rotatable around the output shaft n in the direction of the arrow β.

【0014】シリンダケース10の上面にはACサーボ
モータ8が固定されており、下方へ向くその出力軸(図
示略)には、シリンダケース10から下方へ突出する回
転軸11が定圧機構を介して連結されており、回転軸1
1の先端に円盤状の砥石12が装着されている。砥石1
2は本実施形態では外径13mm、内径6mmのカップ
形のものが使用され、その砥粒はAl23、粒度は♯1
20である。砥石12はα矢印方向とβ矢印方向への旋
回によってその下面が常に被研削面に適正に接するよう
に姿勢制御されるとともに、定圧機構によって被研削面
に対して650g程度の一定力で押圧されている。
An AC servomotor 8 is fixed to the upper surface of the cylinder case 10, and a rotating shaft 11 projecting downward from the cylinder case 10 is provided on an output shaft (not shown) facing downward via a constant pressure mechanism. Connected to the rotating shaft 1
A disc-shaped grindstone 12 is mounted on the tip of the wheel 1. Whetstone 1
2 is a cup-shaped one having an outer diameter of 13 mm and an inner diameter of 6 mm in the present embodiment, the abrasive grains of which are Al 2 O 3 and the grain size is # 1.
20. The posture of the grinding stone 12 is controlled by turning in the directions of the arrows α and β so that the lower surface thereof always comes into contact with the surface to be ground properly, and is pressed with a constant force of about 650 g against the surface to be ground by the constant pressure mechanism. ing.

【0015】図1において、ベッド1に隣接してブロッ
ク状の加工物取付台13が配設されており、この取付台
13上に固定された被研削物(図示略)の上面に上記砥
石12の下面が一定圧で圧接して研削油剤を介在させつ
つ研削が行われる。なお、ベッド1の一端部には制御盤
14が設けられて、研削油剤循環装置や圧縮空気供給装
置を含む上記研削装置を制御する。
In FIG. 1, a block-shaped workpiece mounting base 13 is disposed adjacent to the bed 1, and the grinding wheel 12 is mounted on the upper surface of a workpiece (not shown) fixed on the mounting base 13. The lower surface is pressed at a constant pressure to perform grinding while a grinding oil is interposed. A control panel 14 is provided at one end of the bed 1 to control the above-mentioned grinding device including a grinding oil circulation device and a compressed air supply device.

【0016】制御盤14にはコンピュータが内蔵されて
おり、砥石12を回転駆動する上記ACサーボモータ8
の回転数を制御する。その制御系の構成を図3に示す。
図3において、コンピュータ21から出力される経時的
な目標回転数は、バッファアンプとして機能するファン
クションジェネレータ22に記憶され、研削装置の作動
開始とともに再生されてサーボアンプ23に出力され
る。サーボアンプ23はACサーボモータ8に内蔵され
たエンコーダ(図示略)からのフィードバック信号を参
照しつつ、ACサーボモータ8の回転数を目標回転数に
追従させるように制御する。
A computer is built in the control panel 14, and the AC servo motor 8 for rotating and driving the grindstone 12 is provided.
To control the number of revolutions. FIG. 3 shows the configuration of the control system.
In FIG. 3, the target rotational speed over time output from the computer 21 is stored in the function generator 22 functioning as a buffer amplifier, reproduced at the start of the operation of the grinding device, and output to the servo amplifier 23. The servo amplifier 23 controls the rotation speed of the AC servomotor 8 to follow the target rotation speed while referring to a feedback signal from an encoder (not shown) built in the AC servomotor 8.

【0017】図4には、コンピュータ21内での目標回
転数の生成手順を示す。図4において、ステップ100
の数値計算ルーチンでは、下式(1)〜(3)に示すロ
ーレンツ方程式を解いて、その時系列Z解を得る。この
時系列Z解はパラメータを適当に選ぶとカオス的挙動を
示す(ローレンツ・カオス)ことが知られており、上記
数値計算ルーチンは時系列Z解をCSV(コンマ・セパ
レーテッド・バリュー)形式データにしてステップ20
0の波形作成ルーチンへ与える。
FIG. 4 shows a procedure for generating the target rotational speed in the computer 21. Referring to FIG.
In the numerical calculation routine, the time series Z solution is obtained by solving the Lorentz equations shown in the following equations (1) to (3). It is known that this time series Z solution exhibits chaotic behavior when parameters are appropriately selected (Lorentz chaos), and the above numerical calculation routine converts the time series Z solution into CSV (comma separated value) format data. And step 20
0 to the waveform creation routine.

【0018】[0018]

【数1】 (Equation 1)

【0019】上式において、σ、r、bの値の一例は、
σ=10、r=28、b=8/3である。
In the above equation, one example of the values of σ, r, b is:
σ = 10, r = 28, b = 8/3.

【0020】波形作成ルーチンは、ACサーボモータの
上限回転数とサーボアンプ出力の下限値とを考慮して、
目標回転数の最大値(本実施形態では12000rp
m)と最小値(本実施形態では4580rpm)を決定
し、この間を時系列Z解に比例する回転数として目標回
転数を決める。また、この波形作成ルーチンは、目標回
転数の平均周期が、ACサーボモータが追従できる適当
な値(本実施形態では1秒程度)になるように時系列Z
解の周期を時間軸方向へ拡大する。このようにして得ら
れた目標回転数の経時変動(波形)の一例を図5に示
す。波形作成ルーチンで得られた目標回転数波形はステ
ップ300でファンクションジェネレータ22(図3)
へ出力される。
The waveform creation routine takes into account the upper limit rotation speed of the AC servomotor and the lower limit value of the servo amplifier output.
The maximum value of the target rotation speed (12000 rpm in this embodiment)
m) and the minimum value (4580 rpm in this embodiment) are determined, and the target rotation speed is determined as the rotation speed proportional to the time series Z solution. Further, this waveform creation routine is performed so that the average cycle of the target rotation speed becomes an appropriate value (about 1 second in this embodiment) that the AC servomotor can follow.
Expand the solution cycle in the time axis direction. FIG. 5 shows an example of the temporal variation (waveform) of the target rotational speed obtained in this manner. In step 300, the target rotation speed waveform obtained by the waveform generation routine is used as the function generator 22 (FIG. 3).
Output to

【0021】本発明の効果を確認するために、砥石12
の回転数をカオス的に変動させつつ図6に示すように被
研削物を研削した。図6に示す直線的な研削範囲e〜h
は実際には重なっており、60mm、45mm、30m
m、15mmの各範囲e〜hをそれぞれ同一往復回研削
する。例えば各範囲e〜hについてそれぞれ5往復回研
削すると、60mmの範囲eは5往復回、45mmの範
囲fは10往復回、30mmの範囲gは15往復回、1
5mmの範囲hは20往復回研削されることになる。以
下の実験で被研削物としてはダイス鋼SKD11を焼き
入れ、焼き戻しして、硬度HRC56に調質したものを
使用し、被研削面はワイヤカット放電加工した。
In order to confirm the effect of the present invention, the grinding stone 12
The object to be ground was ground as shown in FIG. Linear grinding range eh shown in FIG.
Actually overlap, 60mm, 45mm, 30m
The respective ranges e to h of m and 15 mm are respectively reciprocated and ground. For example, when each of the ranges e to h is ground 5 reciprocations, the range e of 60 mm is 5 reciprocations, the range f of 45 mm is 10 reciprocations, and the range g of 30 mm is 15 reciprocations.
A range h of 5 mm will be ground 20 times. In the experiments described below, a die steel SKD11 was quenched, tempered and tempered to a hardness of HRC56 as a work to be ground, and the surface to be ground was subjected to wire cut electric discharge machining.

【0022】本発明と比較するために、(1)4580
rpmの一定値での低速回転、(2)12000rpm
の一定値での高速回転、(3)4580rpmと120
00rpmの間で正弦波的(周期1秒)に回転数を変
動、(4)4580rpmと12000rpmの間でラ
ンダム(周期1秒)に回転数を変動、の4種類について
同様の研削を行った。その結果を図7と図8に示す。各
図において、横軸は研削加工に要する時間であり、各測
定点はそれぞれ5,10,15,20の研削往復回に対
応するものである。
For comparison with the present invention, (1) 4580
Low speed rotation at a constant value of rpm, (2) 12000 rpm
Rotation at a constant value of (3) 4580 rpm and 120
The same grinding was performed on four kinds of rotations: a sinusoidal rotation (period of 1 second) between 00 rpm and a random rotation (period of 1 second) between (4) 4580 rpm and 12000 rpm. The results are shown in FIGS. In each of the figures, the horizontal axis represents the time required for grinding, and the measurement points correspond to 5, 10, 15, and 20 reciprocating grinding cycles, respectively.

【0023】図7は研削時の被研削体の除去体積を比較
したもので、砥石回転にカオス変動を与える本発明の方
法は除去体積が最も大きく、正弦波変動を与えたものが
それに次ぐ。そして、12000rpmの定回転やラン
ダム変動を与えたものがこの順に除去体積が小さく、4
580rpmの定回転は最も除去体積が小さい。
FIG. 7 compares the removal volume of the object to be ground at the time of grinding. In the method of the present invention for giving the fluctuation of the chaos to the rotation of the grinding wheel, the removal volume is the largest, followed by the one giving the sinusoidal variation. The one with a constant rotation of 12000 rpm or random fluctuation has a smaller removal volume in this order.
The constant rotation of 580 rpm has the smallest removal volume.

【0024】図8は研削効率を比較したものである。研
削効率は上記除去体積を消費電力量で除したもので、エ
ネルギーが有効使用されていることの指標となるもので
ある。図8より明かなように、砥石回転にカオス変動を
与える本発明の方法は、研削効率の点においても458
0rpmの定回転を上回って最も良い値を示す。正弦波
変動やランダム変動を与えたものでは研削効率は劣り、
12000rpmの定回転では研削効率が最も悪い。
FIG. 8 compares the grinding efficiencies. The grinding efficiency is obtained by dividing the removal volume by the amount of power consumption, and is an index that the energy is used effectively. As is clear from FIG. 8, the method of the present invention for providing chaos fluctuation to the rotation of the grinding wheel also has a reduction in grinding efficiency of 458.
It shows the best value exceeding the constant rotation of 0 rpm. Grinding efficiency is poor with sine wave fluctuations and random fluctuations,
At a constant rotation of 12000 rpm, the grinding efficiency is the worst.

【0025】以上より明らかなように、本発明の方法は
研削時の除去体積が大きい上に、研削効率も良く、エネ
ルギーの無駄が少ない。その理由としては既に説明した
原理によって砥石の目詰まりが効果的に防止されること
によると思われる。
As is clear from the above, the method of the present invention has a large removal volume at the time of grinding, good grinding efficiency, and little waste of energy. It is considered that the reason is that clogging of the grindstone is effectively prevented by the principle described above.

【0026】なお、上記実施形態ではローレンツ・カオ
スに基づいて砥石回転を変動させたが、他のカオス状態
に基づくことも、もちろん可能である。また、砥石はそ
の下面(端面)を使用したが、周面を使用しても良い。
また、本発明は乾式研削にも適用することができる。
In the above embodiment, the rotation of the grindstone is varied based on Lorentz chaos. However, it is of course possible to vary the grinding wheel based on other chaotic states. Although the lower surface (end surface) of the grindstone is used, a peripheral surface may be used.
Further, the present invention can be applied to dry grinding.

【0027】[0027]

【発明の効果】以上のように、本発明の定圧研削法によ
れば、目詰まりによる研削効率の低下が防止される結
果、頻繁な目立てが不要となり、砥石の寿命延長と研削
工程の簡素化が実現される。
As described above, according to the constant pressure grinding method of the present invention, a decrease in grinding efficiency due to clogging is prevented, so that frequent dressing is not required, and the life of the grinding wheel is extended and the grinding process is simplified. Is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】研削装置の全体斜視図である。FIG. 1 is an overall perspective view of a grinding device.

【図2】支持アーム部の拡大斜視図である。FIG. 2 is an enlarged perspective view of a support arm unit.

【図3】サーボモータ制御系のブロック構成図である。FIG. 3 is a block diagram of a servo motor control system.

【図4】コンピュータ内での目標回転数の生成手順を示
すフローチャートである。
FIG. 4 is a flowchart showing a procedure for generating a target rotation speed in a computer.

【図5】目標回転数のカオス的変動の一例を示すグラフ
である。
FIG. 5 is a graph showing an example of chaotic fluctuation of a target rotation speed.

【図6】研削範囲を示す説明図である。FIG. 6 is an explanatory diagram showing a grinding range.

【図7】研削時の除去体積を比較したグラフである。FIG. 7 is a graph comparing removal volumes during grinding.

【図8】研削効率を比較したグラフである。FIG. 8 is a graph comparing grinding efficiencies.

【符号の説明】[Explanation of symbols]

2…テーブル、3…コラム、4…水平アーム、5…支持
アーム、8…ACサーボモータ、12…砥石、21…コ
ンピュータ、23…サーボアンプ。
2 ... table, 3 ... column, 4 ... horizontal arm, 5 ... support arm, 8 ... AC servomotor, 12 ... grinding stone, 21 ... computer, 23 ... servo amplifier.

【手続補正書】[Procedure amendment]

【提出日】平成11年11月15日(1999.11.
15)
[Submission date] November 15, 1999 (1999.11.
15)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の定圧研削法は、砥石の砥石面を一定圧で被
研削面に押しつけて研削を行う定圧研削法であって、上
砥石の回転数をカオス的に変動させるものである。こ
こで、カオス的とは、一見周期的であるが、非線形の決
定論的法則で支配される非周期的な現象を言い、例えば
ローレンツ方程式の解から生成される。
To achieve the above object, according to an aspect of, constant pressure grinding method of the present invention is a constant pressure grinding method of performing grinding grindstone surface of the grinding at a constant pressure against the abradable surface, the grindstone the rotational speed is intended to chaotically change. Here, chaotic refers to an aperiodic phenomenon that is apparently periodic but is governed by a nonlinear deterministic law, and is generated from, for example, a solution of the Lorentz equation.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】本発明においては、砥石の回転数がカオス
的に変動させられることにより砥石面の移動速度がカオ
ス的に変動し、この結果、砥石の目詰まりが軽減されて
研削効率が向上する。したがって、頻繁な目立てが不要
となり、砥石の寿命が延長されるとともに研削工程も簡
素化される。
In the present invention, the rotational speed of the grindstone is chaotic.
The movement speed of the grindstone surface fluctuates chaotically due to the fluctuation, and as a result, the clogging of the grindstone is reduced, and the grinding efficiency is improved. Therefore, frequent dressing is not required, the life of the grinding wheel is extended, and the grinding process is simplified.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】砥石の目詰まりが防止される理由は次の通
りであると考えられる。すなわち、砥石面の移動速度が
カオス的に変動すると、砥石面のポケットに付着した切
り粉が遊離状態になって、その運動が複雑になる。この
結果、切り粉はポケットから脱出して砥石面と被研削面
との間に介在する。砥石面と被研削面との間に介在する
切り粉は、砥石面の移動速度がカオス的に変動するため
複雑に運動して容易に砥石面と被研削面との間より排出
され、砥石面への付着堆積が防止される。この結果、堆
積形目詰まりが軽減される。
It is considered that the reason why clogging of the grindstone is prevented is as follows. That is, when the moving speed of the grinding wheel surface fluctuates chaotically, the chips attached to the pockets of the grinding wheel surface are released, and the movement becomes complicated. As a result, the cutting powder escapes from the pocket and intervenes between the grindstone surface and the ground surface. Chips interposed between the grinding wheel surface and the grinding surface are chaotically moved because the moving speed of the grinding wheel surface fluctuates, and are easily discharged from between the grinding wheel surface and the grinding surface. Adhesion and deposition on the substrate is prevented. As a result, the accumulation type clogging is reduced.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】砥石面の移動速度のカオス的変動は、周辺
の流体(空気あるいは研削油剤)の挙動を複雑化し、流
体の対流を多く引き起こして、研削加工によって生じた
熱を急速に流出さる。この結果、表面エネルギーが低
下し、切り粉と砥粒、切り粉と被研削材、あるいは切り
粉同士の凝着が防止される
[0010] grinding surface chaotic fluctuation of the moving speed of the behavior of the surrounding fluid (air or grinding oil) complicated, causing a lot of fluid convection, Ru is rapidly flow out heat generated by the grinding . As a result, the surface energy is reduced, and the adhesion of chips and abrasive grains, the chips and the material to be ground, or the adhesion of chips is prevented .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 砥石面を一定圧で被研削面に押しつけて
研削を行う定圧研削法であって、前記砥石面の移動速度
をカオス的に変動させることを特徴とする定圧研削法。
1. A constant pressure grinding method for performing grinding by pressing a grindstone surface against a surface to be ground with a constant pressure, wherein the moving speed of the grindstone surface is chaotically varied.
【請求項2】 前記カオス的変動はローレンツ方程式の
解に基づくものである請求項1に記載の定圧研削法。
2. The constant pressure grinding method according to claim 1, wherein the chaotic fluctuation is based on a solution of the Lorentz equation.
JP10303696A 1998-10-26 1998-10-26 Constant pressure grinding method Expired - Fee Related JP3070839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10303696A JP3070839B2 (en) 1998-10-26 1998-10-26 Constant pressure grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10303696A JP3070839B2 (en) 1998-10-26 1998-10-26 Constant pressure grinding method

Publications (2)

Publication Number Publication Date
JP2000127003A true JP2000127003A (en) 2000-05-09
JP3070839B2 JP3070839B2 (en) 2000-07-31

Family

ID=17924152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10303696A Expired - Fee Related JP3070839B2 (en) 1998-10-26 1998-10-26 Constant pressure grinding method

Country Status (1)

Country Link
JP (1) JP3070839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105341A1 (en) * 2012-01-13 2013-07-18 旭硝子株式会社 Dressing method for glass substrate edge-grinding grindstone and glass substrate manufacturing method using said dressing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105341A1 (en) * 2012-01-13 2013-07-18 旭硝子株式会社 Dressing method for glass substrate edge-grinding grindstone and glass substrate manufacturing method using said dressing method
JP5500313B2 (en) * 2012-01-13 2014-05-21 旭硝子株式会社 Method for dressing a grinding wheel for end grinding of a glass substrate and method for producing a glass substrate using the dressing method
CN103945985A (en) * 2012-01-13 2014-07-23 旭硝子株式会社 Dressing method for glass substrate edge-grinding grindstone and glass substrate manufacturing method using said dressing method

Also Published As

Publication number Publication date
JP3070839B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US3152385A (en) Ceramic tools
CN110653698A (en) Grinding device, grinding method and blade of aircraft engine
JP3070839B2 (en) Constant pressure grinding method
JP7113456B2 (en) Grinding device and grinding method
JP4755846B2 (en) Grinding method and grinding machine
JPH10550A (en) Abrasive cloth dressing method and its device
JP2000263437A (en) Cylindrical grinding wheel
JPWO2016021460A1 (en) Brush polishing apparatus and polishing method
JP2007260881A (en) Method of truing grinding wheel
CN1119138A (en) Soft-elastic dressing method for diamond grinding wheel
JP5589717B2 (en) Grinding method and grinding machine
JP2023050722A (en) Dressing method of superabrasive grinding wheel and device
JP2007260880A (en) Method of truing grinding wheel, and grinding machine
JPS62241648A (en) Flattening method and device thereof
JP2619363B2 (en) Grinding method and end face grinding device
JP2003053664A (en) Machine tool and machining method
JP3781415B2 (en) Grinding equipment
JP2024084493A (en) Wafer Grinding Equipment
JPH0451300B2 (en)
JP2024084494A (en) SiC wafer grinding equipment
JP2023138275A (en) Internal grinder maintenance method, internal griding system, and ring-shaped component manufacturing method
JP2003089040A (en) Combined grinding device using free abrasive grain
JP2002239902A (en) Control system for machine tool, and recording medium
RU2355551C1 (en) Method of grinding (versions)
JPH06335860A (en) Dressing device for grinding wheel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees