JP2000123836A - Manufacture of positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery - Google Patents

Manufacture of positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Info

Publication number
JP2000123836A
JP2000123836A JP10314022A JP31402298A JP2000123836A JP 2000123836 A JP2000123836 A JP 2000123836A JP 10314022 A JP10314022 A JP 10314022A JP 31402298 A JP31402298 A JP 31402298A JP 2000123836 A JP2000123836 A JP 2000123836A
Authority
JP
Japan
Prior art keywords
nickel
active material
nickel oxyhydroxide
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10314022A
Other languages
Japanese (ja)
Inventor
Junichi Maruta
順一 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP10314022A priority Critical patent/JP2000123836A/en
Publication of JP2000123836A publication Critical patent/JP2000123836A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high performance active material by passing a lithium salt solution through a compound selected from a group composed of nickel oxyhydroxide, nickel oxyhydroxide containing one or more kinds of metallic elements other than nickel and a mixture of nickel oxyhydroxide and nickel oxyhyroxide containing one or more kinds of metallic elements other than nickel. SOLUTION: A lithium hydroxide aqueous solution is used, and nickel oxyhydroxide containing at least one kind of cobalt or aluminum is desirably used. Nickel oxyhydroxide powder is filled in a reactor, and the lithium hydroxide aqueous solution as a moving phase is passed into the reactor to a moving phase discharge port 3 from a moving phase introducing port 2. After performing this liquid passing process, for example for six hours, water is passed for three minutes for washing, and reactant powder is taken out and dried to obtain a positive electrode active material. This active material easily diffuses ions and is homogeneous in a discharge characteristic, so that a cycle service life characteristic can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池用正
極活物質の製造方法に関する。
The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術】近年、ポータブル電子機器の発達にとも
ない、高性能電池の開発が望まれている。負極に炭素材
料を、正極に層状構造を有する複合酸化物であるコバル
ト酸リチウムを用いたリチウムイオン電池は、作動電圧
が高く、エネルギー密度が高い非水溶液電池として実用
化されている。しかし、コバルト酸リチウムは資源的に
乏しくかつ高価なため、その代替物質としてリチウム含
有マンガン複合酸化物あるいはニッケル酸リチウムが提
案されている。リチウム含有マンガン複合酸化物の場
合、理論容量密度が低く、しかも充放電サイクルにとも
なって、容量減少が大きくなるという課題がある。
2. Description of the Related Art In recent years, with the development of portable electronic devices, development of high-performance batteries has been desired. Lithium-ion batteries using a carbon material for the negative electrode and lithium cobalt oxide, which is a composite oxide having a layered structure for the positive electrode, have been put into practical use as a non-aqueous battery having a high operating voltage and a high energy density. However, since lithium cobaltate is scarce and expensive as a resource, a lithium-containing manganese composite oxide or lithium nickelate has been proposed as a substitute. In the case of the lithium-containing manganese composite oxide, there is a problem that the theoretical capacity density is low and the capacity decrease is increased with charge / discharge cycles.

【0003】一方、ニッケル酸リチウム(リチウム含有
ニッケル酸化物)は、実用化されているコバルト酸リチ
ウムと同じ結晶構造の層状化合物であり、エッジを共有
しているNiO6八面体の層間にリチウムが挿入されて
いるものである。その製造方法は、ニッケル源としてN
i(NO3)2,Ni(OH)2,NiCO3,NiOおよびN
iOOHなどを、リチウム源としてLiOH,LiNO
3,Li2CO3およびLi22などを使用し、両者を混合
したのち酸素気流中、約600℃〜900℃の熱処理を
おこなうのが一般的である。
[0003] On the other hand, lithium nickelate (lithium-containing nickel oxide) is a layered compound having the same crystal structure as that of lithium cobaltate that has been put into practical use, and lithium is inserted between NiO6 octahedral layers sharing edges. Is what is being done. The manufacturing method uses N as a nickel source.
i (NO 3 ) 2 , Ni (OH) 2 , NiCO 3 , NiO and N
LiOH, LiNO as a lithium source using iOOH or the like
3 , Li 2 CO 3, Li 2 O 2, etc. are used, and after mixing both, a heat treatment at about 600 ° C. to 900 ° C. is generally performed in an oxygen stream.

【0004】しかしながら、Solid State
Ionics,44,87(1990)やChem.E
xpress,7,689(1992)あるいは第33
回電池討論会講演要旨集P.21(1992)で報告さ
れているように、その構造は、岩塩形構造に類似してお
り、ニッケルとリチウムイオンとが容易に置換されて、
不斉構造が生じるため容量が低下するという課題があ
る。
[0004] However, Solid State
Ionics, 44, 87 (1990) and Chem. E
xpress, 7, 689 (1992) or 33rd
Abstracts of the Annual Meeting of the Japan Battery Association P. 21 (1992), its structure resembles a rock-salt structure, in which nickel and lithium ions are easily replaced,
There is a problem that the capacity is reduced due to the generation of an asymmetric structure.

【0005】また、ニッケル原料としてオキシ水酸化ニ
ッケルを利用する試みがあり、特開昭63−19760
号に記載されている。同号によれば、20〜75%のコ
バルトを含むオキシ水酸化ニッケルをリチウム電池用活
物質として用いることが提案されている。特開平6−3
1045号では、放電特性の向上をはかるため、3価の
ニッケルイオンを含む水酸化物または酸化物をリチウム
塩と混合した後、加熱処理することが提案されている。
これによると、2価の水酸化ニッケル(Ni(OH)2)
を分散した水酸化ナトリウム溶液に次亜塩素酸ナトリウ
ム水溶液、塩素含有水溶液や臭素含有水溶液を反応させ
てオキシ水酸化ニッケルを製作し、このオキシ水酸化ニ
ッケル含む水酸化物または酸化物を硝酸リチウムと混合
した後、加圧・成形・乾燥して600℃〜800℃の空
気中で加熱する。そして、これを再度粉砕成形して70
0℃〜900℃の空気中で加熱焼結し、ニッケル酸リチ
ウムを製造している。
An attempt has been made to utilize nickel oxyhydroxide as a nickel raw material.
No. According to the same publication, it is proposed to use nickel oxyhydroxide containing 20 to 75% of cobalt as an active material for a lithium battery. JP-A-6-3
No. 1045 proposes that a hydroxide or oxide containing trivalent nickel ions is mixed with a lithium salt and then heat-treated in order to improve the discharge characteristics.
According to this, divalent nickel hydroxide (Ni (OH) 2 )
A sodium hypochlorite aqueous solution, a chlorine-containing aqueous solution or a bromine-containing aqueous solution is reacted with the sodium hydroxide solution in which nickel oxyhydroxide is dispersed to produce nickel oxyhydroxide. After mixing, pressurization, molding, drying, and heating in air at 600 ° C to 800 ° C. Then, it is pulverized and molded again, and
Heating and sintering in air at 0 ° C to 900 ° C produces lithium nickelate.

【0006】ところが、これらの方法によるニッケル酸
リチウムは、純粋なものを製造することが困難であり、
なんといっても充放電特性の電圧が多段階、例えば4段
階に変化し、さらに高率放電性能も低下するという大き
な欠点があった。この問題を解決するための新規合成法
として、特願平7−129663号(本願と同一出願
人)がある。この方法は、コバルトを含有するオキシ水
酸化ニッケルに硝酸リチウムとを作用させ、均一な充放
電反応を示すニッケル酸リチウムを合成するというもの
である。
[0006] However, it is difficult to produce pure lithium nickelate by these methods,
Above all, there is a major drawback that the voltage of the charge / discharge characteristics changes in multiple steps, for example, four steps, and the high-rate discharge performance is also reduced. As a novel synthesis method for solving this problem, there is Japanese Patent Application No. 7-129661 (the same applicant as the present application). In this method, lithium nitrate is allowed to act on nickel oxyhydroxide containing cobalt to synthesize lithium nickelate exhibiting a uniform charge / discharge reaction.

【0007】このような固相焼成法ではない、低温合成
法のひとつの試みとして特開平6−349494で提案
されているイオン交換による合成法があるが、ニッケル
酸リチウムに関する実証例がなく、不純物をほとんど含
まないニッケル酸リチウムを得ることが難しい。199
6年電気化学秋季大会や第37回電池討論会では、イオ
ン交換法のニッケル酸リチウムに関する実証例が報告さ
れているが、その電気化学的な特性は十分であるとはい
いがたく、製造方法に改善の余地がある。
As one attempt of a low-temperature synthesis method other than such a solid-phase sintering method, there is a synthesis method by ion exchange proposed in JP-A-6-349494. It is difficult to obtain lithium nickelate containing almost no. 199
At the 2006 Autumn Meeting of Electrochemistry and the 37th Battery Symposium, demonstration examples of lithium nickel oxide by the ion exchange method were reported, but their electrochemical characteristics were not sufficient, but the manufacturing method There is room for improvement.

【0008】一方、化学的な合成方法ではなく、電気化
学的な方法でニッケル酸リチウムを生成することが、S
oviet Electrochem.,6,1268
(1970)、GS News 37,84(197
8)やGS News 45,23(1986)に記載
されているが、アルカリ電池に関する電極挙動について
述べられているだけである。
On the other hand, the production of lithium nickelate not by a chemical synthesis method but by an electrochemical method is called S
Oviet Electrochem. , 6,1268
(1970), GS News 37, 84 (197)
8) and GS News 45, 23 (1986), but only describes electrode behavior for alkaline batteries.

【0009】このような電気化学的に製造したニッケル
酸リチウムをリチウム電池に適用した例として特開昭6
3−19761号がある。同号では、水酸化ニッケルを
水酸化リチウム溶液中でアノード酸化したものを活物質
として用いることが提案されてはいるが、この方法によ
って得られる活物質は、組成が不明瞭で、製造工程の管
理をすることが難しい。
An example of applying such electrochemically produced lithium nickelate to a lithium battery is disclosed in
No. 3-19761. In the same issue, it is proposed to use anodized nickel hydroxide in a lithium hydroxide solution as an active material, but the active material obtained by this method has an unclear composition, and the Difficult to manage.

【0010】[0010]

【発明が解決しようとする課題】前述したように、ニッ
ケル酸リチウムは、ニッケル化合物とリチウム化合物と
を混合して酸化雰囲気で600℃〜900℃で焼成する
方法が一般的な合成法であるが、高温で生じる結晶構造
の不規則配列化が深刻な問題となっている。また、充放
電特性の電圧が多段階、例えば4段階に変化し、加えて
高率放電性能も低下するという大きな欠点があるため、
同じ層状構造のコバルト酸リチウムの代替品にはなって
いない。これを電極反応の観点からみると、ニッケル酸
リチウムは、充放電反応にともなうリチウムイオンの拡
散が困難なことと、その拡散が均質におこらないことに
よるものと考えられる。
As described above, a common synthesis method for lithium nickel oxide is to mix a nickel compound and a lithium compound and to fire the mixture at 600 ° C. to 900 ° C. in an oxidizing atmosphere. In addition, the irregular arrangement of the crystal structure that occurs at high temperatures is a serious problem. In addition, since the voltage of the charge / discharge characteristics changes in multiple stages, for example, four stages, and in addition, there is a major drawback that the high-rate discharge performance also decreases,
It is not a replacement for lithium cobaltate of the same layered structure. Considering this from the viewpoint of the electrode reaction, it is considered that lithium nickelate is due to the difficulty of diffusion of lithium ions accompanying the charge / discharge reaction and the non-uniform diffusion.

【0011】また、均質な構造のニッケル酸リチウムを
得るため、低温で合成する試みがなされているが、固相
焼成法では低温になると反応性が低下するので、均質な
試料を得ることが困難である。したがって、固相焼成法
とは異なり、かつ簡略化されたプロセスによる低温合成
法の提案が望まれており、特にイオン交換法による製造
方法は、安全性やコストの観点からも、非常に有用であ
ると考えられるが、リチウム塩溶液中にオキシ水酸化ニ
ッケル粉末を分散させる、従来のいわゆるバッチ式の方
法では、イオン交換率を60〜70%以上に向上させる
ことは非常に困難であり、その結果活物質としての性能
も、実用化に至らないレベルにとどまっている。
Attempts have been made to synthesize at a low temperature in order to obtain lithium nickelate having a homogeneous structure. However, it is difficult to obtain a homogeneous sample in the solid-state sintering method because the reactivity decreases at low temperatures. It is. Therefore, unlike the solid-phase sintering method, a proposal for a low-temperature synthesis method using a simplified process is desired. In particular, a production method using an ion exchange method is very useful from the viewpoint of safety and cost. It is considered that it is very difficult to improve the ion exchange rate to 60 to 70% or more by a conventional so-called batch method of dispersing nickel oxyhydroxide powder in a lithium salt solution. As a result, the performance as an active material is still at a level that does not lead to practical use.

【0012】[0012]

【課題を解決するための手段】本発明による非水電解質
電池用正極活物質は、オキシ水酸化ニッケル、ニッケル
以外の1種以上の金属元素を含むオキシ水酸化ニッケル
及びオキシ水酸化ニッケルとニッケル以外の1種以上の
金属元素を含むオキシ水酸化ニッケルの混合物よりなる
群から選ばれた化合物にリチウム塩溶液を通液する工程
を備えたことを特徴とするものである。さらに、リチウ
ム塩溶液としては水酸化リチウム水溶液を使用すること
が好ましく、また、ニッケル以外の1種以上の金属元素
を含むオキシ水酸化ニッケルとしてはコバルトまたはア
ルミニウムの少なくとも1種を含むオキシ水酸化ニッケ
ルを用いることが好ましい。また、本発明による非水電
解質電池は、上記の本発明の製造方法によって得られた
正極活物質を備えたことを特徴とするものである。
The positive electrode active material for a non-aqueous electrolyte battery according to the present invention comprises nickel oxyhydroxide, nickel oxyhydroxide containing one or more metal elements other than nickel, and nickel oxyhydroxide and nickel oxyhydroxide and nickel. A step of passing a lithium salt solution through a compound selected from the group consisting of a mixture of nickel oxyhydroxides containing one or more metal elements. Further, an aqueous solution of lithium hydroxide is preferably used as the lithium salt solution, and nickel oxyhydroxide containing at least one of cobalt and aluminum is preferably used as the nickel oxyhydroxide containing at least one metal element other than nickel. It is preferable to use Further, a nonaqueous electrolyte battery according to the present invention includes the positive electrode active material obtained by the above-described method of the present invention.

【0013】[0013]

【発明の実施の形態】本発明による非水電解質電池用正
極活物質は、従来のイオン交換反応を用いた非水電解質
電池用正極活物質の製造方法とは異なり、オキシ水酸化
ニッケル、ニッケル以外の1種以上の金属元素を含むオ
キシ水酸化ニッケル及びオキシ水酸化ニッケルとニッケ
ル以外の1種以上の金属元素を含むオキシ水酸化ニッケ
ルの混合物よりなる群から選ばれた化合物にリチウム塩
溶液を通液する工程を備えたことを特徴とするものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode active material for a non-aqueous electrolyte battery according to the present invention is different from a conventional method for producing a positive electrode active material for a non-aqueous electrolyte battery using an ion exchange reaction, except for nickel oxyhydroxide and nickel. Passing a lithium salt solution through a compound selected from the group consisting of nickel oxyhydroxide containing one or more metal elements and a mixture of nickel oxyhydroxide and nickel oxyhydroxide containing one or more metal elements other than nickel. It is characterized by comprising a step of liquefying.

【0014】その工程の一例としては、オキシ水酸化ニ
ッケル等の化合物を固定相、リチウム塩溶液を移動相と
し、固定相に移動相を通液する工程がある。この方法に
よって、従来の、リチウム塩溶液中にオキシ水酸化ニッ
ケルを分散させるバッチ式の製造方法よりも、反応収率
を飛躍的に向上させることができ、高性能の活物質を得
ることができる。
As an example of the step, there is a step of passing a mobile phase through a stationary phase using a compound such as nickel oxyhydroxide as a stationary phase and a lithium salt solution as a mobile phase. By this method, the reaction yield can be dramatically improved and a high-performance active material can be obtained, as compared with a conventional batch-type production method in which nickel oxyhydroxide is dispersed in a lithium salt solution. .

【0015】ここで、リチウム塩溶液として水酸化リチ
ウム水溶液を選択することによって、反応収率をさらに
向上させることができる。このとき、コバルトまたはア
ルミニウムの少なくとも1種を含むオキシ水酸化ニッケ
ルを用いると、より均一な放電特性を示し、サイクル寿
命特性が向上する。この正極活物質を用いて作製した本
発明による非水電解質電池は、従来の活物質を用いた非
水電解質電池に比べて高容量かつ長寿命である。
Here, by selecting an aqueous solution of lithium hydroxide as the lithium salt solution, the reaction yield can be further improved. At this time, when nickel oxyhydroxide containing at least one of cobalt and aluminum is used, more uniform discharge characteristics are exhibited, and cycle life characteristics are improved. The non-aqueous electrolyte battery according to the present invention produced using this positive electrode active material has a higher capacity and longer life than a non-aqueous electrolyte battery using a conventional active material.

【0016】[0016]

【実施例】以下、本発明を好適な実施例を用いて説明す
るが、本発明の適用範囲はこれに限定されるものではな
い。
The present invention will be described below with reference to preferred embodiments, but the scope of the present invention is not limited thereto.

【0017】[実施例1]図1は、本発明になる正極活
物質を製造するための反応容器の断面を示したもので、
図1において、1はオキシ水酸化ニッケル等の反応物
質、2は移動相導入口、3は移動相排出口、4はテフロ
ン製管、5は孔径1μmのPTFEメンブランフィルタ
ーである。
Example 1 FIG. 1 shows a cross section of a reaction vessel for producing a cathode active material according to the present invention.
In FIG. 1, 1 is a reactant such as nickel oxyhydroxide, 2 is a mobile phase inlet, 3 is a mobile phase outlet, 4 is a Teflon tube, and 5 is a PTFE membrane filter having a pore diameter of 1 μm.

【0018】固定相としての粒子径5〜50μのオキシ
水酸化ニッケル粉末100gを、図1の様に反応容器内
に充填し、移動相としての80℃、4Mの水酸化リチウ
ム水溶液を毎分600mlの流速で、移動相導入口2か
ら移動相排出口3へと反応容器中を通液した。この通液
工程を6時間実施した後、同様に水を3分間通液する事
によって水洗し、反応物質粉末1を取り出して乾燥し、
本発明による正極活物質aを得た。
As shown in FIG. 1, 100 g of nickel oxyhydroxide powder having a particle diameter of 5 to 50 μm as a stationary phase was filled in a reaction vessel, and a 4 M aqueous solution of lithium hydroxide at 80 ° C. and 600 ml / min was used as a mobile phase. The liquid was passed through the reaction vessel from the mobile phase inlet 2 to the mobile phase outlet 3 at a flow rate of. After this liquid passing step is carried out for 6 hours, water is similarly passed through for 3 minutes to wash with water, and the reactant powder 1 is taken out and dried.
A positive electrode active material a according to the present invention was obtained.

【0019】このようにして得られた正極活物質a、導
電剤としてのアセチレンブラック粉末、バインダーとし
てのポリ二フッ化ビニリデン(PVdF)のN−メチル
−2−ピロリドン(NMP)溶液を混合、混練して得た
ペーストを導電性基体としてのアルミニウム網に塗布し
た後、100℃で乾燥して、本発明に用いる、20mm
×20mmの大きさの正極板を製作した。
The thus obtained positive electrode active material a, acetylene black powder as a conductive agent, and an N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene difluoride (PVdF) as a binder are mixed and kneaded. The paste obtained in this manner is applied to an aluminum net as a conductive substrate, and then dried at 100 ° C. to be used in the present invention.
A positive electrode plate having a size of × 20 mm was manufactured.

【0020】上記のようにして製作した正極板1枚と負
極に同じ大きさのリチウム金属板2枚と、電解液に、1
Mの過塩素酸リチウムを含む、エチレンカーボネートと
ジエチルカーボネートとの混合溶媒50mlを用いて本
発明による電池Aを製作した。
One positive electrode plate manufactured as described above, two lithium metal plates of the same size for the negative electrode,
Battery A according to the present invention was manufactured using 50 ml of a mixed solvent of ethylene carbonate and diethyl carbonate containing M lithium perchlorate.

【0021】[実施例2]移動相として、80℃、4M
の水酸化リチウム水溶液のかわりに、70℃、1Mの過
塩素酸リチウムのアセトニトリル溶液を用いること以外
は実施例1と全く同様にして、本発明による正極活物質
bおよび電池Bを得た。
Example 2 As a mobile phase, 80 ° C., 4M
A positive electrode active material b and a battery B according to the present invention were obtained in exactly the same manner as in Example 1 except that a 1 M solution of lithium perchlorate in acetonitrile at 70 ° C. was used instead of the aqueous lithium hydroxide solution.

【0022】[実施例3]オキシ水酸化ニッケルのかわ
りにCo含有量が10mol%{Co/(Ni+C
o)}であるオキシ水酸化ニッケルを用いること以外は
実施例1と全く同様にして、本発明による正極活物質c
および電池Cを得た。
Example 3 Instead of nickel oxyhydroxide, the content of Co was 10 mol% {Co / (Ni + C
o) The positive electrode active material c according to the present invention was prepared in exactly the same manner as in Example 1 except that
And Battery C were obtained.

【0023】[実施例4]オキシ水酸化ニッケルのかわ
りに、CoおよびAlを含み、Coの含有量が10mo
l%{Co/(Ni+Co+Al)}、Alの含有量が
3mol%{Al/(Ni+Co+Al)}であるオキ
シ水酸化ニッケルを用いること以外は実施例1と全く同
様にして、本発明による正極活物質dおよび電池Dを得
た。
Example 4 Instead of nickel oxyhydroxide, Co and Al were contained, and the Co content was 10 mol.
1% {Co / (Ni + Co + Al)}, positive electrode active material according to the present invention in exactly the same manner as in Example 1, except that nickel oxyhydroxide having an Al content of 3 mol% {Al / (Ni + Co + Al)} is used. d and Battery D were obtained.

【0024】[実施例5]オキシ水酸化ニッケルのかわ
りにLa含有量が5mol%{La/(Ni+La)}
であるオキシ水酸化ニッケルを用いること以外は実施例
1と全く同様にして、本発明による正極活物質eおよび
電池Eを得た。
Example 5 Instead of nickel oxyhydroxide, the La content was 5 mol% {La / (Ni + La)}
A positive electrode active material e and a battery E according to the present invention were obtained in exactly the same manner as in Example 1 except that nickel oxyhydroxide was used.

【0025】[実施例6]オキシ水酸化ニッケルのかわ
りに、MgおよびCeを含み、Mgの含有量が3mol
%{Co/(Ni+Mg+Ce)}、Ceの含有量が3
mol%{Ce/(Ni+Mg+Ce)}であるオキシ
水酸化ニッケルを用いること以外は実施例1と全く同様
にして、本発明による正極活物質fおよび電池Fを得
た。
Example 6 Instead of nickel oxyhydroxide, Mg and Ce were contained, and the content of Mg was 3 mol.
% {Co / (Ni + Mg + Ce)}, Ce content is 3%
A positive electrode active material f and a battery F according to the present invention were obtained in exactly the same manner as in Example 1 except that nickel oxyhydroxide, which was mol% {Ce / (Ni + Mg + Ce)}, was used.

【0026】[従来例1]比較のための従来例として、
粒子径5〜50μのオキシ水酸化ニッケル粉末100g
を、4Mの水酸化リチウム水溶液2リットル中で、80
℃において12時間撹拌し、その後生成物固体を水洗・
濾過・乾燥することによって、従来正極活物質gおよび
従来電池Gを得た。
[Conventional example 1] As a conventional example for comparison,
100 g of nickel oxyhydroxide powder having a particle size of 5 to 50 μm
In a 2M aqueous 4M lithium hydroxide solution
Stir at 12 ° C. for 12 hours, then wash the product solid with water.
By filtering and drying, a conventional positive electrode active material g and a conventional battery G were obtained.

【0027】[活物質同定]本発明による正極活物質
a、bおよび従来活物質gの粉末X線回折図形(CuK
α)を図2に示す。X線回折の条件は、出力電圧が50
kV、出力電流が200mA、スキャンスピードが4゜
/minとした。
[Identification of Active Material] Powder X-ray diffraction patterns (CuK) of the positive electrode active materials a and b according to the present invention and the conventional active material g
α) is shown in FIG. The condition of the X-ray diffraction is that the output voltage is 50
kV, the output current was 200 mA, and the scan speed was 4 ° / min.

【0028】図2において、ニッケル酸リチウム(Li
NiO2)のX線回折のピークは※印で示した。図2に
よると、本発明による活物質の方が、従来活物質に比べ
てニッケル酸リチウムに対応する回折ピークがより発達
しており、本発明による製造方法の適用によって、式
(1)に示すイオン交換反応の収率が向上していること
を示している。
In FIG. 2, lithium nickelate (Li
The peak of X-ray diffraction of NiO 2 ) is indicated by *. According to FIG. 2, the active material according to the present invention has a more advanced diffraction peak corresponding to lithium nickelate than the conventional active material. This shows that the yield of the ion exchange reaction is improved.

【0029】 NiOOH + Li+ → LiNiO2 + H+ (1) 活物質aとbとを比較すると、aの方がニッケル酸リチ
ウムに対応する回折ピークがより発達しており、リチウ
ム塩溶液として水酸化リチウム溶液を用いたときの方
が、上記イオン交換反応の収率が高いことを示してい
る。なお、本発明による正極活物質c、d、eおよびf
についても正極活物質aと同程度のイオン交換反応の収
率の向上がみられた。
NiOOH + Li + → LiNiO 2 + H + (1) Comparing the active materials a and b, a has a more developed diffraction peak corresponding to lithium nickelate. The results show that the use of a lithium oxide solution has a higher yield of the ion exchange reaction. The positive electrode active materials c, d, e and f according to the present invention
As for the positive electrode active material a, an improvement in the yield of the ion exchange reaction was observed at about the same level.

【0030】[電池評価試験]本発明による電池A、
B、C、D、E、Fおよび従来電池Gを、25℃、0.
5mA/cm2の電流密度で4.2Vまで充電した後、
同じ電流密度で3.0Vまで放電をおこなった。
[Battery Evaluation Test] Battery A according to the present invention,
B, C, D, E, F and the conventional battery G were heated at 25 ° C.
After charging to 4.2 V at a current density of 5 mA / cm 2,
Discharging was performed to 3.0 V at the same current density.

【0031】本発明による電池A、B、Cおよび従来電
池Gの放電特性を図3に示す。また、それらの電池の充
放電サイクルの経過に伴う放電容量の推移を図4に示
す。
FIG. 3 shows the discharge characteristics of the batteries A, B, C according to the present invention and the conventional battery G. FIG. 4 shows changes in the discharge capacity of the batteries with the progress of the charge / discharge cycle.

【0032】[評価結果]図3より、A、BおよびCい
ずれの電池においても、放電特性は連続した一段階の曲
線であり、リチウムイオンの拡散が均質におこっている
ことが示されている。これは、低温合成法によって得ら
れた活物質における非常に特徴的な現象であり、一般的
な高温固相焼成法による活物質に比べて充放電に伴うリ
チウムイオンの拡散がより均質なものであることを示唆
している。
[Evaluation Results] FIG. 3 shows that in each of the batteries A, B, and C, the discharge characteristic is a continuous one-step curve, indicating that lithium ion diffusion occurs uniformly. . This is a very characteristic phenomenon in active materials obtained by low-temperature synthesis, in which the diffusion of lithium ions during charge and discharge is more uniform than in active materials obtained by general high-temperature solid-state firing. Suggest that there is.

【0033】各電池を比較すると、本発明による電池
A,BおよびCいずれの場合も、従来電池Gに比べて放
電容量の増加がみられる。これは、本発明の製造方法適
用による、イオン交換反応の収率向上に起因することに
ほかならない。
Comparing the batteries, all of the batteries A, B and C according to the present invention show an increase in the discharge capacity as compared with the conventional battery G. This is not only due to the improvement of the yield of the ion exchange reaction by applying the production method of the present invention.

【0034】その中でも、電池AおよびCの放電容量が
大きく、リチウム塩溶液として水酸化リチウム水溶液を
用いると、イオン交換反応の収率をより高めることがで
きるといえる。なかでも、電池Cは、図4における充放
電サイクル特性がもっとも良好である。この結果は、コ
バルトを含むオキシ水酸化ニッケルを原料として用いた
ことによって、放電時のリチウムイオンの拡散がより均
質なものになったことを示唆している。
Above all, the discharge capacities of the batteries A and C are large, and it can be said that the use of an aqueous solution of lithium hydroxide as the lithium salt solution can further increase the yield of the ion exchange reaction. Among them, the battery C has the best charge / discharge cycle characteristics in FIG. This result suggests that the use of nickel oxyhydroxide containing cobalt as a raw material has made diffusion of lithium ions more uniform during discharge.

【0035】表1に、各電池の1サイクル目および30
サイクル目の放電容量を示す。
Table 1 shows the first cycle and the 30th cycle of each battery.
The discharge capacity at the cycle is shown.

【0036】[0036]

【表1】 表1によると、上述の電池A、BおよびCのみならず、
本発明による電池D、EおよびFについても、従来電池
を上回る性能が得られた。これは、いかなる異種元素を
含んでいようとも、上記の反応収率向上の機構による放
電容量増加の効果には何ら悪影響を与えないことを示し
ている。したがって、これらオキシ水酸化ニッケル類縁
体についても、本発明の非水電解質電池用正極活物質の
製造方法は非常に有効であるといえる。
[Table 1] According to Table 1, not only the batteries A, B and C described above,
Also for the batteries D, E and F according to the present invention, performances exceeding those of the conventional batteries were obtained. This shows that no matter what kind of element is contained, there is no adverse effect on the effect of increasing the discharge capacity by the above-described mechanism for improving the reaction yield. Therefore, it can be said that the method for producing a positive electrode active material for a non-aqueous electrolyte battery of the present invention is also very effective for these nickel oxyhydroxide analogs.

【0037】上記実施例においては、本発明になる非水
電解質電池用正極活物質を製造する際の反応物質として
は、オキシ水酸化ニッケルあるいはオキシ水酸化ニッケ
ルのNi一部をCo、Al、Mg、La、Ceなどで置
換した化合物を使用したが、正極活物質を製造する際の
反応物質としてはこれらに限定されるものではなく、そ
の他の種々の金属や希土類元素を使用できるし、これら
の金属や希土類元素の混合比も特に限定されない。
In the above embodiment, as a reactant for producing the positive electrode active material for a non-aqueous electrolyte battery according to the present invention, nickel oxyhydroxide or a part of nickel of nickel oxyhydroxide is Co, Al, Mg , La, Ce and the like were used, but the reactants used in producing the positive electrode active material are not limited to these, and various other metals and rare earth elements can be used. The mixing ratio of metals and rare earth elements is not particularly limited.

【0038】さらに、本発明になる非水電解質電池用正
極活物質を製造する際の反応物質としては、オキシ水酸
化ニッケルとニッケル以外の1種以上の金属元素を含む
オキシ水酸化ニッケルの混合物を使用してもよい。
Further, as a reactant for producing the positive electrode active material for a non-aqueous electrolyte battery according to the present invention, a mixture of nickel oxyhydroxide and nickel oxyhydroxide containing at least one metal element other than nickel is used. May be used.

【0039】また、本発明になる非水電解質電池用正極
活物質を製造する際の反応物質としてニッケル以外の1
種以上の金属元素を含むオキシ水酸化ニッケルを使用す
る場合には、優れた電池特性が得られるという点から
は、特にコバルトまたはアルミニウムの少なくとも1種
を含むオキシ水酸化ニッケルが好ましい。
In addition, as a reactant when producing the positive electrode active material for a non-aqueous electrolyte battery according to the present invention, one other than nickel is used.
When nickel oxyhydroxide containing at least one kind of metal element is used, nickel oxyhydroxide containing at least one of cobalt and aluminum is particularly preferable from the viewpoint that excellent battery characteristics can be obtained.

【0040】さらに、固定相に移動相を通液する反応容
器の形状も、実施例に限定されるものではなく、あらゆ
る形状の反応容器を使用することができる。また、移動
相としは、イオン交換反応の収率を高くするためには、
水酸化リチウム溶液を使用することが好ましい。
Furthermore, the shape of the reaction vessel through which the mobile phase is passed through the stationary phase is not limited to the examples, and any shape of reaction vessel can be used. In order to increase the yield of the ion exchange reaction as the mobile phase,
It is preferred to use a lithium hydroxide solution.

【0041】[0041]

【発明の効果】本発明になる非水電解質電池用正極活物
質の製造方法によって、従来の、イオン交換反応による
非水電解質電池用正極活物質の低温合成方法の反応収率
を飛躍的に向上させることができ、高性能の活物質を得
ることができる。さらには、得られた活物質はリチウム
イオンの拡散がより容易で、放電特性が非常に均質であ
り、そのためにサイクル寿命性能も向上させることがで
きる。
According to the method for producing a positive electrode active material for a non-aqueous electrolyte battery according to the present invention, the reaction yield of the conventional low-temperature synthesis method for a positive electrode active material for a non-aqueous electrolyte battery by an ion exchange reaction is dramatically improved. And a high-performance active material can be obtained. Furthermore, the obtained active material is easier to diffuse lithium ions, has very uniform discharge characteristics, and therefore can improve cycle life performance.

【0042】それゆえに本発明の工業的価値は極めて大
である。
Therefore, the industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において用いる反応容器の一例の断面
図。
FIG. 1 is a cross-sectional view of an example of a reaction vessel used in the present invention.

【図2】本発明による正極活物質a、b、cおよび従来
正極活物質gのX線回折図形。
FIG. 2 is an X-ray diffraction pattern of positive electrode active materials a, b, and c according to the present invention and a conventional positive electrode active material g.

【図3】本発明による電池A、B、Cおよび従来電池G
の放電特性を比較した図。
FIG. 3 shows batteries A, B and C according to the present invention and conventional battery G
FIG. 4 is a diagram comparing discharge characteristics of the first and second embodiments.

【図4】本発明による電池A、B、Cおよび従来電池G
の充放電サイクルの経過に伴う放電容量の推移を比較し
た図。
FIG. 4 shows batteries A, B and C according to the present invention and conventional battery G
FIG. 4 is a diagram comparing the transition of the discharge capacity with the passage of the charge / discharge cycle of FIG.

【符号の説明】[Explanation of symbols]

1:反応物質 2:移動相導入口 3:移動相排出口 4:テフロン製管 5:PTFEメンブランフィルター(孔径1μm) 1: Reactant 2: Mobile phase inlet 3: Mobile phase outlet 4: Teflon tube 5: PTFE membrane filter (pore diameter 1 μm)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オキシ水酸化ニッケル、ニッケル以外の
1種以上の金属元素を含むオキシ水酸化ニッケル及びオ
キシ水酸化ニッケルとニッケル以外の1種以上の金属元
素を含むオキシ水酸化ニッケルの混合物よりなる群から
選ばれた化合物にリチウム塩溶液を通液する工程を備え
たことを特徴とする、非水電解質電池用正極活物質の製
造方法。
1. Nickel oxyhydroxide, nickel oxyhydroxide containing at least one metal element other than nickel, and a mixture of nickel oxyhydroxide and nickel oxyhydroxide containing at least one metal element other than nickel. A method for producing a positive electrode active material for a non-aqueous electrolyte battery, comprising a step of passing a lithium salt solution through a compound selected from the group.
【請求項2】 請求項1の方法により得られる非水電解
質電池用正極活物質を備えた非水電解質電池。
2. A non-aqueous electrolyte battery provided with the positive electrode active material for a non-aqueous electrolyte battery obtained by the method of claim 1.
JP10314022A 1998-10-15 1998-10-15 Manufacture of positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery Pending JP2000123836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10314022A JP2000123836A (en) 1998-10-15 1998-10-15 Manufacture of positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10314022A JP2000123836A (en) 1998-10-15 1998-10-15 Manufacture of positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2000123836A true JP2000123836A (en) 2000-04-28

Family

ID=18048273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10314022A Pending JP2000123836A (en) 1998-10-15 1998-10-15 Manufacture of positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2000123836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325954A (en) * 2000-05-17 2001-11-22 Sony Corp Beta type nickel oxyhydroxide and its manufacturing method, positive electrode active material and nickel- zinc cell
US8652577B2 (en) 2008-02-13 2014-02-18 Sony Corporation Method of manufacturing cathode active material
WO2015049796A1 (en) * 2013-10-04 2015-04-09 日産自動車株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325954A (en) * 2000-05-17 2001-11-22 Sony Corp Beta type nickel oxyhydroxide and its manufacturing method, positive electrode active material and nickel- zinc cell
US8652577B2 (en) 2008-02-13 2014-02-18 Sony Corporation Method of manufacturing cathode active material
WO2015049796A1 (en) * 2013-10-04 2015-04-09 日産自動車株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
JPWO2015049796A1 (en) * 2013-10-04 2017-03-09 日産自動車株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US9705131B2 (en) 2013-10-04 2017-07-11 Nissan Motor Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Similar Documents

Publication Publication Date Title
JP4756715B2 (en) Positive electrode active material for lithium battery, method for producing positive electrode active material, and lithium battery including positive electrode active material
KR100738192B1 (en) Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and Method for preparing thereof
JP4063350B2 (en) Method for producing composite oxide using sol-gel method
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
JP3702353B2 (en) Method for producing positive electrode active material for lithium battery and lithium battery
JP3624539B2 (en) Method for producing lithium nickelate positive electrode plate and lithium battery
CN109873140B (en) Graphene composite ternary cathode material of lithium ion battery and preparation method of graphene composite ternary cathode material
CN112563474B (en) In-situ coated composite NCMA quaternary positive electrode material and preparation method thereof
CN113871603B (en) High-nickel ternary cathode material and preparation method thereof
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
KR20240011822A (en) Surface coated cathode material and manufacturing method thereof, lithium ion battery
US6074784A (en) Lithium battery
JPH1032005A (en) Lithium nickelate positive electrode active material and its manufacture, and lithium battery furnishing the active material
JP3532139B2 (en) Method for producing nickel-containing oxide electrode material and battery using the electrode material
JPH10316432A (en) Production of nickel oxyhydroxide and nonaqueous electrolytic battery
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP2000123836A (en) Manufacture of positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2007053116A (en) Non-aqueous electrolyte battery
JPH10270025A (en) Manufacture of positive electrode active material for nonaqueous electrolyte battery and the battery with the material
JPH10326619A (en) Manufacture of positive electrode active material for nonacqueous electrolyte battery and battery equipped with positive electrode active material
CN116947122B (en) Surface cobalt-doped ultrahigh nickel monocrystal ternary cathode material, preparation method thereof and lithium ion battery
JPH10188988A (en) Lithium battery
JP3893641B2 (en) Method for producing nickel oxyhydroxide and battery using nickel oxyhydroxide produced by the method
JP3646897B2 (en) Method for producing lithium nickelate positive electrode active material for lithium secondary battery
JP3624508B2 (en) Method for producing lithium nickelate positive electrode plate and lithium battery