JP2000123359A - Formation of protective film for magnetic recording medium or of slider for magnetic recording - Google Patents

Formation of protective film for magnetic recording medium or of slider for magnetic recording

Info

Publication number
JP2000123359A
JP2000123359A JP10289168A JP28916898A JP2000123359A JP 2000123359 A JP2000123359 A JP 2000123359A JP 10289168 A JP10289168 A JP 10289168A JP 28916898 A JP28916898 A JP 28916898A JP 2000123359 A JP2000123359 A JP 2000123359A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
carbon
carbon film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10289168A
Other languages
Japanese (ja)
Inventor
Shigeru Hirono
滋 廣野
Shigeru Umemura
茂 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10289168A priority Critical patent/JP2000123359A/en
Publication of JP2000123359A publication Critical patent/JP2000123359A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a thin protective film excellent in durability by forming a silicon nitride or aluminum nitride film between a carbon film and a substrate or between the carbon film and a film present under the carbon film to enhance adhesive strength between them. SOLUTION: A silicon nitride or aluminum nitride film is formed before the formation of an amorphous carbon film. The amorphous carbon film and the silicon nitride or aluminum nitride film are formed by ECR sputtering and an AlTiC substrate (a ceramic substrate comprising a mixture of alumina and titanium carbide) or the like is used as a substrate. When the carbon film is directly formed on the AlTiC substrate, the depth of wear increases suddenly under a prescribed load. When a silicon nitride film is formed, the depth of wear increases slowly. The silicon nitride film is remarkably effective in enhancing the adhesive strength of the carbon film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気記録媒体あるいは磁
気記録用スライダーの保護膜形成方法、さらに詳細には
高密度記録が可能な磁気記録媒体あるいは磁気ヘッドに
用いられるカーボン保護膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a protective film on a magnetic recording medium or a slider for magnetic recording, and more particularly to a method for producing a carbon protective film used for a magnetic recording medium or a magnetic head capable of high-density recording. .

【0002】[0002]

【従来の技術】近年、コンピューターの外部記憶装置で
あるハードディスクでは、高記録密度化に伴い磁気ヘッ
ドの浮上量低減が要求されるため、この浮上量は50n
m程度と著しく狭まっている。今後、ハードディスクの
記録密度を一層増大させるためには、磁気ヘッドの浮上
量をさらに低減することが求められており、磁気ヘッド
と媒体を接触走行させるコンタクトレコーディング技術
および、超低浮上量を可能とするトライボロジー技術の
確立が将来の高密度化へのブレークスルーとして、強く
求められている。このためには、磁性薄膜上に形成され
る保護膜および、磁気ヘッドのスライダー上に形成され
る保護膜の耐久性の向上が特に重要である。近年、ハー
ドディスク用の媒体およびスライダーの保護膜として
は、主にダイアモンドライクカーボン(DLC)と呼ば
れるアモルファスカーボン膜が主に使用されてきた。
2. Description of the Related Art In recent years, in a hard disk which is an external storage device of a computer, the flying height of a magnetic head is required to be reduced in accordance with the increase in recording density.
m. In the future, in order to further increase the recording density of hard disks, it is required to further reduce the flying height of the magnetic head. There is a strong demand for the establishment of new tribology technology as a breakthrough for higher density in the future. For this purpose, it is particularly important to improve the durability of the protective film formed on the magnetic thin film and the protective film formed on the slider of the magnetic head. In recent years, an amorphous carbon film called diamond-like carbon (DLC) has been mainly used as a protective film for a medium for a hard disk and a slider.

【0003】保護膜の耐久性向上には、1)保護膜その
ものの硬度を改良し耐久性を向上させること、および
2)保護膜と基板間あるいは、保護膜とその下部に位置
する薄膜との密着力を向上させることが必要である。実
ドライブの耐久性の向上には、これらの片方のみの対策
を施すだけでは不十分で、この二つの要求を同時に満足
させないと、耐久性の向上を図ることはできない。保護
膜の膜厚が薄くなった場合には、密着力の効果が厚い保
護膜の場合に比べ、顕著になるため、特に、密着力の向
上が必要である。保護膜固有の耐久性が優れていても、
密着力に乏しいと、保護膜の優秀性を顕在化させること
はできない。
In order to improve the durability of the protective film, 1) improving the hardness of the protective film itself to improve the durability; and 2) forming the protective film between the protective film and the thin film located below the protective film. It is necessary to improve the adhesion. To improve the durability of an actual drive, it is not enough to take only one of these measures, and it is not possible to improve the durability unless these two requirements are satisfied simultaneously. When the thickness of the protective film is reduced, the effect of the adhesion becomes more remarkable as compared with the case of the protective film having a large thickness. Therefore, it is particularly necessary to improve the adhesion. Even if the durability inherent to the protective film is excellent,
If the adhesion is poor, the superiority of the protective film cannot be realized.

【0004】現在このアモルファスカーボン膜は大別し
て、スパッタ法とCVD法の2種類の方法で研究開発が
なされている。スパッタリング法は、スパッタガスイオ
ンとの衝突により、ターゲットの構成原子を叩き出す手
法である。スパッタ法にはダイオードスパッタ、イオン
ビームスパッタ、ECRスパッタ法などが知られてい
る。一方、CVD法はCH4などの原料ガスをプラズマ
中で分解して、イオン化し、これに電場を印加し基板に
衝突させて薄膜を形成する方法である。現在まで、これ
らの多くの手法で、カーボン膜に固有の耐久性を向上さ
せる研究がなされており、特にECRスパッタで作製し
たカーボン膜では、ほぼ、バルクのダイアモンドに匹敵
する耐久性を有する膜まで得られるようになっている
(例えば、特願平8−250205号)。
At present, this amorphous carbon film is roughly classified into two types of research and development, namely, a sputtering method and a CVD method. The sputtering method is a method in which constituent atoms of a target are knocked out by collision with sputtering gas ions. Known sputtering methods include diode sputtering, ion beam sputtering, and ECR sputtering. On the other hand, the CVD method is a method in which a raw material gas such as CH 4 is decomposed and ionized in a plasma to be ionized, and an electric field is applied thereto to collide with a substrate to form a thin film. Until now, many methods have been studied to improve the inherent durability of carbon films.Especially, carbon films produced by ECR sputtering have a durability almost equivalent to that of bulk diamond. (For example, Japanese Patent Application No. 8-250205).

【0005】従来、カーボン膜そのものの、耐久性の向
上については、精力的に研究開発がなされてきたが、基
板との密着力については、検討があまりなされてきてい
ない。通常、膜を硬度化すると、膜内の内部応力が増大
する場合が多く、このような場合、密着力が低下する場
合がある。さらに、磁気ヘッドと媒体間の距離を低減す
るためには、保護膜の厚さを低減する必要があり、この
場合には、従来以上に、密着力を向上させないと、耐久
性に優れた、保護膜を形成することは困難である。
Conventionally, research and development have been energetically made on the improvement of the durability of the carbon film itself, but much less studies have been made on the adhesion to the substrate. Normally, when the film is hardened, the internal stress in the film often increases, and in such a case, the adhesion may decrease. Further, in order to reduce the distance between the magnetic head and the medium, it is necessary to reduce the thickness of the protective film. In this case, if the adhesion is not improved more than before, the durability is excellent. It is difficult to form a protective film.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の問題点
を改善するために提案されたもので、その目的は保護膜
と基板、あるいは、保護膜とその下部に存在する膜との
密着力を向上させ、薄層でかつ耐久性にすぐれた保護膜
を形成する手法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been proposed to solve the above problems, and has as its object the adhesion between a protective film and a substrate or between the protective film and a film existing thereunder. It is an object of the present invention to provide a method for forming a protective film having a thin layer and excellent durability.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明では、カーボン膜と基板との間、および、カ
ーボン膜と下部に存在する膜との間に、窒化シリコン膜
あるいは窒化アルミ膜を形成することを特徴とする。こ
の手段を用いることにより、カーボン膜と基板あるい
は、カーボン膜と下地膜との密着力が強化され、薄層で
かつ、耐久性にすぐれた保護膜を形成することが可能と
なる。
According to the present invention, a silicon nitride film or an aluminum nitride film is provided between a carbon film and a substrate and between a carbon film and an underlying film. The method is characterized in that a film is formed. By using this means, the adhesion between the carbon film and the substrate or between the carbon film and the base film is strengthened, and a thin and durable protective film can be formed.

【0008】[0008]

【発明の実施の形態】本発明の特徴とする点は、アモル
ファスカーボン膜を形成する前に窒化シリコン膜、ある
いは窒化アルミ膜を形成することを特徴とする。以下、
実施例に基づいて、本発明について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A feature of the present invention is that a silicon nitride film or an aluminum nitride film is formed before an amorphous carbon film is formed. Less than,
The present invention will be described based on examples.

【0009】[0009]

【実施例1】アモルファスカーボン膜、および、窒化シ
リコン膜、窒化アルミ膜はECRスパッタ法を用いて作
製した。基板にはアルチック基板(アルミナとチタンカ
ーバイドを混合したセラミック基板)、および、シリコ
ン基板上にRFスパッタ法でTiを30nm、さらにこ
の上、CoCr膜を70nm形成した基板を用いた。
Embodiment 1 An amorphous carbon film, a silicon nitride film, and an aluminum nitride film were formed by ECR sputtering. As the substrate, an Altic substrate (a ceramic substrate in which alumina and titanium carbide were mixed) and a substrate in which 30 nm of Ti was formed on a silicon substrate by RF sputtering, and a CoCr film was formed thereon to 70 nm were used.

【0010】カーボン膜は以下の表1の条件で作製し
た。密着層を形成したサンプルでは、カーボン層の膜厚
を8nm一定とし、密着層を形成していないサンプルで
は、カーボン層の膜厚を10nm一定とした。また、窒
化シリコン膜は表2の条件で作製し、膜厚は2nm一定
とした。窒化アルミ膜は表3の条件で作製し、膜厚はこ
の場合も2nm一定とした。即ち、いずれの場合にも、
全膜厚を10nm一定とした。なお、実施例1では、密
着層とカーボン保護膜は真空中で、連続して形成した。
A carbon film was prepared under the conditions shown in Table 1 below. In the sample in which the adhesion layer was formed, the thickness of the carbon layer was constant at 8 nm, and in the sample in which the adhesion layer was not formed, the thickness of the carbon layer was constant at 10 nm. The silicon nitride film was formed under the conditions shown in Table 2, and the film thickness was constant at 2 nm. The aluminum nitride film was produced under the conditions shown in Table 3, and the film thickness was constant at 2 nm in this case as well. That is, in either case,
The total film thickness was fixed at 10 nm. In Example 1, the adhesion layer and the carbon protective film were continuously formed in a vacuum.

【0011】カーボン膜の摩耗特性評価にはAFMによ
る面引っ掻き試験を用いた。探針には曲率半径70nm
のダイアモンド探針を用いた。送りピッチは4nmであ
り、1×1μm2の範囲を2サイクル、10〜150μ
Nの荷重で引っ掻き試験を行った。その後、5×5μm
2の範囲を2μN程度の軽荷重条件で膜表面をスキャン
し、摩耗深さを測定した。
For the evaluation of the wear characteristics of the carbon film, a surface scratch test by AFM was used. The tip has a radius of curvature of 70 nm
Was used. The feed pitch is 4 nm, and the range of 1 × 1 μm 2 is 2 cycles, 10 to 150 μm.
A scratch test was performed with a load of N. Then 5 × 5 μm
The film surface was scanned in the range of 2 under a light load condition of about 2 μN, and the wear depth was measured.

【0012】図1にアルチック基板に直接カーボン膜を
形成したサンプルと窒化シリコンを形成してから、カー
ボン膜を形成したサンプルの摩耗深さの荷重依存性を示
す。窒化シリコンを形成せず、直接アルチック上にカー
ボンを形成したサンプルでは、荷重20μNで摩耗深さ
は急激に増大し、約10nmに達する。この膜の、膜厚
は10nmであり、荷重20μNで摩耗深さは膜厚に達
している。一方、窒化シリコンを形成したサンプルで
は、摩耗深さは徐々に増大し、急激な摩耗深さの増大は
認められない。摩耗深さがある荷重で急激に増大し、膜
厚まで達する現象は、密着力が弱いため、この荷重で急
激に膜が剥離することによっている。この図から分かる
ように、窒化シリコン密着層がある場合には、荷重が1
00μNに達しても剥離が生じないのに対し、密着層が
ない場合には、20μNの荷重で剥離が生じている。こ
のように、窒化シリコン膜は、カーボン膜の密着力の向
上に著しく有効であることが分かる。
FIG. 1 shows the load dependency of the wear depth of a sample in which a carbon film was formed directly on an Altic substrate and a sample in which a carbon film was formed after silicon nitride was formed. In a sample in which carbon was directly formed on an AlTiC without forming silicon nitride, the wear depth rapidly increased at a load of 20 μN to reach about 10 nm. The thickness of this film is 10 nm, and the wear depth reaches the film thickness under a load of 20 μN. On the other hand, in the sample on which silicon nitride was formed, the wear depth gradually increased, and no rapid increase in the wear depth was observed. The phenomenon that the abrasion depth rapidly increases at a certain load and reaches the film thickness is due to the film peeling off rapidly at this load because the adhesion is weak. As can be seen from this figure, when there is a silicon nitride adhesion layer, the load is 1
The peeling does not occur even when it reaches 00 μN, whereas when there is no adhesion layer, the peeling occurs at a load of 20 μN. Thus, it can be seen that the silicon nitride film is extremely effective in improving the adhesion of the carbon film.

【0013】図2にアルチック基板に直接カーボン膜を
形成したサンプルと窒化アルミを形成してから、カーボ
ン膜を形成したサンプルの摩耗深さの荷重依存性を示
す。密着層がある場合の摩耗深さが図1に比べ、少し増
大しているが、ほぼ図1と同様な結果が得られた。密着
層がある場合の摩耗深さが図1のそれに比べて大きいの
は、窒化アルミ膜の方が、窒化シリコン膜よりも、硬度
が劣ることによると考えられる。
FIG. 2 shows the load dependency of the wear depth of a sample in which a carbon film was formed directly on an Altic substrate and a sample in which a carbon film was formed after aluminum nitride was formed. Although the abrasion depth with the adhesion layer slightly increased as compared with FIG. 1, almost the same results as in FIG. 1 were obtained. It is considered that the reason why the wear depth in the presence of the adhesion layer is larger than that in FIG. 1 is that the hardness of the aluminum nitride film is lower than that of the silicon nitride film.

【0014】図3に基板にCoCr/Ti/シリコン基
板を用い、密着層に窒化シリコンを用いた場合の、摩耗
深さの荷重依存性を示す。密着層がない場合、荷重が1
5μNの時、摩耗深さは膜厚に達しており、著しく密着
力が低下していることが分かる。一方、密着層がある場
合、荷重が100μNまで、膜の剥離は生じていない。
このように、CoCr/Ti/シリコン基板を用いた場
合も、窒化シリコンは密着力の向上に有効である。この
場合、図1と同じ密着層を用い、カーボン膜の成膜条件
も同じであるのに、摩耗深さが深くなっている。これ
は、密着層の下部には金属膜であるCoCr層が存在
し、この硬度が基板より低いため、カーボン保護膜に
は、よりおおきな応力が作用するため、摩耗深さが大き
くなったものと推定される。
FIG. 3 shows the load dependency of the wear depth when a CoCr / Ti / silicon substrate is used as the substrate and silicon nitride is used as the adhesion layer. When there is no adhesion layer, the load is 1
At 5 μN, the wear depth reaches the film thickness, and it can be seen that the adhesion is significantly reduced. On the other hand, when there is an adhesion layer, the film is not peeled up to a load of 100 μN.
As described above, even when a CoCr / Ti / silicon substrate is used, silicon nitride is effective in improving the adhesion. In this case, although the same adhesion layer as in FIG. 1 is used and the conditions for forming the carbon film are the same, the wear depth is deep. This is because the CoCr layer, which is a metal film, is present below the adhesion layer and has a hardness lower than that of the substrate. Presumed.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】以上はカーボン保護膜をECRスパッタ法
で作製した場合の実施結果である。次に、カーボン保護
膜をRFスパッタ法で作製した場合の結果について示
す。
The above is the result of the case where the carbon protective film is formed by the ECR sputtering method. Next, the results when the carbon protective film is formed by the RF sputtering method will be described.

【0019】[0019]

【実施例2】アモルファスカーボン膜はRFスパッタ法
で作製した。窒化シリコン膜はECRスパッタ法を用い
て作製した。基板にはアルチック基板を用いた。
Embodiment 2 An amorphous carbon film was formed by an RF sputtering method. The silicon nitride film was formed using an ECR sputtering method. An Altic substrate was used as the substrate.

【0020】カーボン膜は以下の表4の条件で作製し
た。密着層を形成したサンプルでは、カーボン層の膜厚
を8nm一定とし、密着層を形成していないサンプルで
は、カーボン層の膜厚を10nm一定とした。また、窒
化シリコン膜は実施例1と同じ表2の条件で作製し、膜
厚は2nm一定とした。即ち、この場合も、実施例1と
同じように、全膜厚の10nm一定とした。なお、実施
例2では、密着層とカーボン保護膜は、異なるスパッタ
装置で成膜しており、密着層形成後、サンプルを一旦大
気に取り出し、その後RFスパッタ装置にサンプルを移
動してから成膜を行った。密着力測定、摩耗測定は実施
例1と同じ手法を用いた。
The carbon film was prepared under the conditions shown in Table 4 below. In the sample in which the adhesion layer was formed, the thickness of the carbon layer was constant at 8 nm, and in the sample in which the adhesion layer was not formed, the thickness of the carbon layer was constant at 10 nm. The silicon nitride film was manufactured under the same conditions as in Table 2 as in Example 1, and the film thickness was fixed at 2 nm. That is, also in this case, as in Example 1, the total film thickness was fixed at 10 nm. In the second embodiment, the adhesion layer and the carbon protective film are formed by different sputtering apparatuses. Was done. The same method as in Example 1 was used for measuring the adhesion and the wear.

【0021】図4にカーボン膜をRFスパッタ法で作製
した場合の摩耗深さの荷重依存性を示す。窒化シリコン
密着層がない場合には、荷重15μNで摩耗深さは膜厚
に達しており、この荷重で剥離が始まっている。一方、
窒化シリコン密着層がある場合、急激な摩耗深さの増大
は認められず、優れた密着力を示す。しかし、RFスパ
ッタ法で作製したカーボン膜は、耐摩耗特性は、ECR
スパッタ法で作製したカーボン膜に比べ、劣っているた
め、摩耗深さは、図1のそれに比べ、大きくなってい
る。
FIG. 4 shows the load dependency of the wear depth when a carbon film is produced by the RF sputtering method. When there is no silicon nitride adhesion layer, the wear depth has reached the film thickness at a load of 15 μN, and peeling has started with this load. on the other hand,
When there is a silicon nitride adhesion layer, a sharp increase in wear depth is not observed, and excellent adhesion is exhibited. However, the carbon film produced by the RF sputtering method has a wear resistance characteristic of ECR.
Since it is inferior to the carbon film produced by the sputtering method, the wear depth is larger than that of FIG.

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【発明の効果】以上説明してきたように、本発明によれ
ば、密着層として、窒化シリコン、窒化アルミを用いた
カーボン膜は、著しく密着力を向上させることができ
る。このため、薄層で耐久性に優れた、保護膜を形成す
ることが可能となる。
As described above, according to the present invention, the carbon film using silicon nitride or aluminum nitride as the adhesion layer can significantly improve the adhesion. For this reason, it becomes possible to form a thin protective film having excellent durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】AFMを用いて測定した、カーボン膜の摩耗深
さの荷重依存性を示す図。
FIG. 1 is a diagram showing the load dependency of the wear depth of a carbon film measured using an AFM.

【図2】AFMを用いて測定した、カーボン膜の摩耗深
さの荷重依存性を示す図。
FIG. 2 is a view showing the load dependency of the wear depth of a carbon film measured using an AFM.

【図3】AFMを用いて測定した、カーボン膜の摩耗深
さの荷重依存性を示す図。
FIG. 3 is a diagram showing the load dependency of the wear depth of a carbon film measured using an AFM.

【図4】AFMを用いて測定した、カーボン膜の摩耗深
さの荷重存性を示す図。
FIG. 4 is a view showing a load dependency of a wear depth of a carbon film measured using an AFM.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5D006 AA02 AA06 DA03 EA03 FA02 5D042 AA07 NA02 SA03 5D112 AA07 AA11 AA24 BC04 BC05 BC07 FA04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5D006 AA02 AA06 DA03 EA03 FA02 5D042 AA07 NA02 SA03 5D112 AA07 AA11 AA24 BC04 BC05 BC07 FA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気記録媒体に用いられる磁性薄膜上
へ、窒化シリコン膜または窒化アルミ膜を形成し、引き
続きカーボン膜を形成することを特徴とする磁気記録媒
体用保護膜形成方法。
1. A method for forming a protective film for a magnetic recording medium, comprising: forming a silicon nitride film or an aluminum nitride film on a magnetic thin film used for a magnetic recording medium, and subsequently forming a carbon film.
【請求項2】 磁気ヘッド搭載用のスライダー上へ、窒
化シリコン膜または窒化アルミ膜を形成し、引き続きカ
ーボン膜を形成することを特徴とする磁気記録用スライ
ダーの保護膜形成方法。
2. A method for forming a protective film for a slider for magnetic recording, comprising forming a silicon nitride film or an aluminum nitride film on a slider for mounting a magnetic head and subsequently forming a carbon film.
JP10289168A 1998-10-12 1998-10-12 Formation of protective film for magnetic recording medium or of slider for magnetic recording Pending JP2000123359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10289168A JP2000123359A (en) 1998-10-12 1998-10-12 Formation of protective film for magnetic recording medium or of slider for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10289168A JP2000123359A (en) 1998-10-12 1998-10-12 Formation of protective film for magnetic recording medium or of slider for magnetic recording

Publications (1)

Publication Number Publication Date
JP2000123359A true JP2000123359A (en) 2000-04-28

Family

ID=17739651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10289168A Pending JP2000123359A (en) 1998-10-12 1998-10-12 Formation of protective film for magnetic recording medium or of slider for magnetic recording

Country Status (1)

Country Link
JP (1) JP2000123359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369115C (en) * 2004-05-27 2008-02-13 日立环球储存科技荷兰有限公司 Magnetic head
CN103741106A (en) * 2013-12-25 2014-04-23 西安交通大学 Ultrathin carbon film prepared with ECR (Electron Cyclotron Resonance) oxygen-argon plasma etching technology and method of preparing ultrathin carbon film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369115C (en) * 2004-05-27 2008-02-13 日立环球储存科技荷兰有限公司 Magnetic head
CN103741106A (en) * 2013-12-25 2014-04-23 西安交通大学 Ultrathin carbon film prepared with ECR (Electron Cyclotron Resonance) oxygen-argon plasma etching technology and method of preparing ultrathin carbon film

Similar Documents

Publication Publication Date Title
US8018682B2 (en) Magnetic disk comprising an aluminum alloy oxynitride underlayer and a diamond-like carbon overcoat
TW564405B (en) Multi-layer texture layer
Gupta et al. Mechanical and tribological properties of hard carbon coatings for magnetic recording heads
US5275850A (en) Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias
US6524687B2 (en) Bilayer carbon overcoating for magnetic data storage disks and magnetic head/slider constructions
KR20080073258A (en) Magnetic recording head and media overcoat
KR20080086403A (en) Metal oxynitride adhesion/corrosion barrier layer and a diamond-like carbon overcoat
CN101042880A (en) Method of manufacturing patterned media
US5607783A (en) Magnetic recording medium and method for fabricating the same
JP2008123646A (en) Perpendicular magnetic recording medium and its manufacturing method
JPH08180407A (en) Manufacture of textured magnetic storage disk
US20090208778A1 (en) Patterned magnetic recording medium and method for manufacturing same
JPH1192934A (en) Hard carbon thick coating and its production
KR102268582B1 (en) CMP MANUFACTURING METHOD AND CMP PAD Conditioner USING THE SAME
JP2000123359A (en) Formation of protective film for magnetic recording medium or of slider for magnetic recording
JPH05143972A (en) Metal thin film magnetic recording medium and its production
JPH10326406A (en) Magnetic head slider and its production
Liu et al. X-ray reflectivity and nanotribological study of deposition-energy-dependent thin CN x overcoats on CoCr magnetic films
JP4639477B2 (en) Method for manufacturing magnetic recording medium
JP2901706B2 (en) Magnetic recording medium and magnetic disk drive
JP3422990B2 (en) Magnetic head
GB2343543A (en) Head drum with diamond-like carbon protective layer
JPS6313116A (en) Thin film magnetic recording medium
Wang et al. Mechanical Properties of Pure Carbon and Carbonnitrogen Coatings on Thin Film Head Sliders
JPH06195694A (en) Magnetic recording medium and its production