JP2000122336A - Negative charge type toner for developing electrostatic latent image - Google Patents

Negative charge type toner for developing electrostatic latent image

Info

Publication number
JP2000122336A
JP2000122336A JP29358798A JP29358798A JP2000122336A JP 2000122336 A JP2000122336 A JP 2000122336A JP 29358798 A JP29358798 A JP 29358798A JP 29358798 A JP29358798 A JP 29358798A JP 2000122336 A JP2000122336 A JP 2000122336A
Authority
JP
Japan
Prior art keywords
toner
inorganic particles
particles
carrier
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29358798A
Other languages
Japanese (ja)
Inventor
Masayuki Haki
雅之 葉木
Junichi Tamaoki
順一 玉置
Takeshi Arai
健 新井
Hiroyuki Fukuda
洋幸 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP29358798A priority Critical patent/JP2000122336A/en
Publication of JP2000122336A publication Critical patent/JP2000122336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a negative charge type toner for developing an electrostatic latent image capable of attaining a remarkably prolonged service life of a developer. SOLUTION: Two or more additives are mixed and added to toner particles used for a two-component developer after it is mixed with a carrier and containing at least a colorant and a binder resin to obtain the objective negative charge type toner. The additives are at least positive charge type inorganic particles A of 80-800 nm number average diameter including <=20% by number of particles of >=1,000 nm diameter, and negative charge type inorganic particles B of 5-50 nm number average diameter. The release rates (d) of the inorganic particles A and B under the application of a certain level of ultrasonic energy to the toner are 20-50 wt.% each of the weight of the added particles. The weight ratio of the inorganic particles A to B contained in the toner is 2.5:7.5 to 7.5:2.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子写真、静電印刷
等に用いられる静電潜像現像用負帯電性トナーに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negatively chargeable toner for developing an electrostatic latent image used in electrophotography, electrostatic printing and the like.

【0002】[0002]

【従来の技術】現在、実用化されている種々の静電複写
方式における乾式現像法としては、トナー及び鉄粉等の
キャリアを用いる2成分現像方式が最も広く用いられて
いる方式であるが、トナー粒子やトナー構成成分、特に
外添剤がキャリア表面に付着することによってキャリア
の帯電付与能が低下し、現像剤が劣化することが知られ
ている。このような現象はトナーの流動性を高めるため
に多量の外添剤を有するデジタル複写機用トナーやフル
カラー複写機用トナーにおいては更に顕著となる。一般
にデジタル及びフルカラー複写機用現像剤はアナログ複
写機用現像剤よりもキャリアの劣化速度が速く、従って
アナログ複写機用現像剤よりも少ない複写枚数で帯電不
良を生じ、カブリや機内でのトナー飛散等が悪化すると
いう問題があった。
2. Description of the Related Art At present, as a dry developing method in various electrostatic copying methods that are put into practical use, a two-component developing method using a carrier such as toner and iron powder is the most widely used method. It is known that toner particles and toner constituents, particularly external additives, adhere to the carrier surface, thereby reducing the charge-imparting ability of the carrier and deteriorating the developer. Such a phenomenon becomes more remarkable in a toner for a digital copying machine or a toner for a full-color copying machine which has a large amount of an external additive in order to enhance the fluidity of the toner. In general, the developer of digital and full-color copiers has a faster carrier deterioration rate than the developer of analog copiers, and therefore causes poor charging with fewer copies than the developer for analog copiers, causing fogging and toner scattering in the machine. And so on.

【0003】このような問題に対しては、従来から種々
のアプローチが考案されている。例えば、劣化キャリア
に対しても十分に荷電するようにトナーに含金属染料な
どの帯電制御剤等を添加したり、トナー外添成分を機械
的エネルギーによりトナー表面に強く固定化させること
によりキャリアへの外添剤の移行を抑制したり(特開平
9−146293号公報)、あるいはキャリア表面をフ
ッ素樹脂やシリコーン樹脂などの低エネルギー材料でコ
ーティングすることによりキャリア表面にトナー構成成
分が付着しにくい性質にすることで、キャリア劣化を抑
制することなどが考案されている。しかしながら、いず
れの方法においてもキャリアへのトナー構成成分、特に
流動化剤の付着を完全に無くすことは困難であり、現像
剤の飛躍的な長寿命化には至っていないのが現状であ
る。
[0003] Various approaches have been devised to address such problems. For example, a charge control agent such as a metal-containing dye is added to the toner to sufficiently charge the deteriorated carrier, or the toner externally added component is strongly fixed to the toner surface by mechanical energy to the carrier. Transfer of external additives (JP-A-9-146293), or by coating the carrier surface with a low-energy material such as a fluororesin or silicone resin so that the toner constituents are less likely to adhere to the carrier surface. In order to suppress carrier deterioration, it has been devised. However, it is difficult to completely eliminate the adhesion of the toner component, particularly the fluidizing agent, to the carrier by any of the methods, and at present, the life of the developer has not been significantly increased.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みなされたものであり、現像剤の飛躍的な長寿命化を
達成できる静電潜像現像用負帯電性トナーを提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a negatively chargeable toner for developing an electrostatic latent image capable of achieving a remarkably long life of a developer. Aim.

【0005】[0005]

【課題を解決するための手段】本発明は、キャリアと混
合されて2成分現像剤として用いられ、少なくとも着色
剤及びバインダー樹脂を含有してなるトナー粒子に少な
くとも2種以上の外添剤を混合添加してなる静電潜像現
像用負帯電性トナーであって、外添剤が少なくとも、個
数平均径が80〜800nmであり、且つ1000nm
以上の粒子の個数割合が20%以下である正帯電性の無
機粒子Aと、個数平均径が5〜50nmである負帯電性
の無機粒子Bとからなり、トナーへの一定の超音波エネ
ルギー付与による無機粒子A、Bの離脱率dがそれぞれ
添加重量の20重量%以上、50重量%以下であり、無
機粒子AおよびBの含有比率(無機粒子A:無機粒子
B)が重量比で2.5:7.5〜7.5:2.5である
ことを特徴とする静電潜像現像用負帯電性トナーに関す
る。
According to the present invention, a toner is used as a two-component developer by being mixed with a carrier, and at least two or more external additives are mixed with toner particles containing at least a colorant and a binder resin. A negatively chargeable toner for developing an electrostatic latent image, wherein the number of external additives is at least 80 to 800 nm and 1000 nm.
It comprises positively chargeable inorganic particles A having a number ratio of the above particles of 20% or less and negatively chargeable inorganic particles B having a number average diameter of 5 to 50 nm, and imparts a certain amount of ultrasonic energy to the toner. Is 20% by weight or more and 50% by weight or less of the added weight, and the content ratio of inorganic particles A and B (inorganic particles A: inorganic particles B) is 2. 5: 7.5 to 7.5: 2.5, which relates to a negatively chargeable toner for developing an electrostatic latent image.

【0006】本発明の発明者等は、現像剤の寿命を、外
添剤粒子の帯電性や粒径等の物性と、トナー粒子に対す
る外添剤粒子の付着状態との観点から鋭意検討した結
果、外添剤に用いられる少なくとも2種の無機粒子を粒
径及び帯電性について規定し、これらの外添剤とトナー
粒子との付着強度(離脱率)を特定の範囲に設定するこ
とにより、当該トナーを用いた現像剤の耐久性は飛躍的
に向上することを見出し、本発明を完成させるに至っ
た。
The inventors of the present invention have earnestly studied the life of the developer from the viewpoints of physical properties such as the chargeability and particle size of the external additive particles and the state of attachment of the external additive particles to the toner particles. By defining at least two types of inorganic particles used for the external additive in terms of particle size and chargeability, and setting the adhesion strength (separation rate) between these external additives and toner particles in a specific range, It has been found that the durability of a developer using a toner is dramatically improved, and the present invention has been completed.

【0007】本発明においては、正帯電性の比較的大粒
径な無機粒子Aを負帯電性の比較的小粒径な無機粒子B
とともに用いることにより、無機粒子Aがトナー粒子か
ら剥がれ易く、無機粒子Bがトナー粒子から剥がれにく
い構成として、これら粒子のキャリアへの移行量のバラ
ンスをとりつつ、キャリアの極性を低下させない正帯電
性の無機粒子Aを積極的にキャリアへ移行させる。この
ため、キャリア極性が保持(補助)されることから、従
来から問題となっていた小粒径無機粒子Bのキャリアへ
の移行に伴うキャリアの荷電能力の低下を防止し、これ
によって当該トナーを用いた現像剤の長寿命化が達成で
きると考えられる。
In the present invention, the positively chargeable relatively large particle size inorganic particles A are replaced by the negatively chargeable relatively small particle size inorganic particles B.
When used together, the inorganic particles A are easily peeled off from the toner particles, and the inorganic particles B are hardly peeled off from the toner particles. Is positively transferred to the carrier. For this reason, since the carrier polarity is maintained (assisted), a decrease in the charge capability of the carrier due to the transfer of the small-diameter inorganic particles B to the carrier, which has conventionally been a problem, is prevented, whereby the toner can be used. It is considered that a longer life of the developer used can be achieved.

【0008】本発明の負帯電性トナーは少なくとも着色
剤及びバインダー樹脂を含有してなるトナー粒子に、少
なくとも無機粒子AおよびBを混合添加(外添)してな
る。
The negatively chargeable toner of the present invention is obtained by mixing (externally adding) at least inorganic particles A and B to toner particles containing at least a colorant and a binder resin.

【0009】本発明の負帯電性トナーにおいて外添され
る無機粒子Aは、個数平均径が80〜800nm、好ま
しくは150〜750nm、より好ましくは280〜7
20nmであり、且つ1000nm以上の粒子個数が2
0%以下、好ましくは10%以下でる。粒子径が80n
mよりも小さいとトナーを被覆する正帯電性粒子の数が
多すぎて適切なトナーの負帯電性が得られなくなり、一
方、800nmより大きいと粒子がトナーに付着しにく
く、現像剤中においてもトナーとキャリアの間で浮遊す
るような形態となり、粒子がキャリアの正帯電性を補う
作用が損なわれてしまう。また、1000nm以上の粒
子個数が20%を越えると感光体に傷をつけやすくな
り、画像欠損などのノイズの原因となる。
In the negatively chargeable toner of the present invention, the externally added inorganic particles A have a number average diameter of 80 to 800 nm, preferably 150 to 750 nm, more preferably 280 to 7 nm.
20 nm and the number of particles of 1000 nm or more is 2
0% or less, preferably 10% or less. Particle size 80n
If it is less than m, the number of positively chargeable particles covering the toner is too large to obtain an appropriate negative chargeability of the toner. On the other hand, if it is more than 800 nm, the particles hardly adhere to the toner, and even in the developer. This results in a form floating between the toner and the carrier, which impairs the function of the particles to supplement the positive chargeability of the carrier. On the other hand, if the number of particles having a size of 1000 nm or more exceeds 20%, the photosensitive member is easily damaged, which causes noise such as image defects.

【0010】このような無機粒子Aの材料としては特に
限定されるものではなく、従来から流動化剤として使用
されているいかなる公知の無機粒子も使用することがで
き、例えば、シリカ粒子、アルミナ粒子、チタニア粒子
等の無機酸化物粒子、ステアリン酸アルミニウム粒子、
ステアリン酸亜鉛粒子等の無機ステアリン酸化合物微粒
子、およびチタン酸ストロンチウム粒子、チタン酸亜鉛
粒子等の無機チタン酸化合物粒子等を使用することがで
きる。
The material of the inorganic particles A is not particularly limited, and any known inorganic particles conventionally used as a fluidizing agent can be used. For example, silica particles, alumina particles , Inorganic oxide particles such as titania particles, aluminum stearate particles,
Inorganic stearic acid compound fine particles such as zinc stearate particles, and inorganic titanate compound particles such as strontium titanate particles and zinc titanate particles can be used.

【0011】また、無機粒子Aは、本発明の上記の現像
剤耐久性向上効果を発揮すべく、トナー粒子に対して正
帯電性を有する。すなわち、無機粒子の帯電性はトナー
粒子およびキャリアとの摩擦帯電系列上の相対的な関係
により決定され、無機粒子Aは現像剤中、トナー粒子お
よびキャリアとの混合・撹拌によってトナー粒子より正
に帯電される。換言すれば、無機粒子Aの帯電量は摩擦
帯電系列上、トナー粒子の帯電量よりもプラス側に位置
する。無論、無機粒子Aは帯電量がトナー粒子及びキャ
リア粒子いずれの帯電量よりも摩擦帯電系列上プラス側
に位置する材料で構成されていることが好ましいが、キ
ャリア粒子の帯電量よりもマイナス側に位置する材料で
構成されていても、トナー粒子の帯電量からある程度遠
いプラス側の位置となる材料であれば本発明を達成する
ことができる。また、上述のような関係にない材料であ
っても表面処理を施すことによって上述の関係に制御す
ることができる。また、正帯電性を有する材料を、さら
に正帯電性に制御してもよい。無機粒子Aを正帯電性に
制御する手段としては、アルミナ粒子、チタン酸ストロ
ンチウム粒子、ステアリン酸アルミニウム粒子、ステア
リン酸亜鉛粒子など外添粒子の母材自身の帯電性が正帯
電性のものを選択するという方法や、母材表面に正帯電
性を有するような処理剤を添加し被覆させるという方法
が挙げられるが、無機材料の種類によらず正帯電性に制
御することができる後者の方法が適している。
The inorganic particles A have a positive charging property with respect to the toner particles in order to exhibit the effect of improving the developer durability of the present invention. That is, the chargeability of the inorganic particles is determined by the relative relationship between the toner particles and the carrier in the triboelectric series, and the inorganic particles A are more positive than the toner particles by mixing and stirring with the toner particles and the carrier in the developer. Be charged. In other words, the charge amount of the inorganic particles A is on the plus side of the charge amount of the toner particles in the triboelectric series. Of course, the inorganic particles A are preferably formed of a material whose charge amount is located on the positive side in the triboelectric series relative to the charge amount of any of the toner particles and the carrier particles, but is more negative than the charge amount of the carrier particles. The present invention can be achieved even if it is made of a material that is positioned, as long as it is a material that is located on the plus side to some extent from the charge amount of the toner particles. Further, even if the material does not have the above-mentioned relationship, it can be controlled to the above-mentioned relationship by performing a surface treatment. Further, a material having positive chargeability may be further controlled to have positive chargeability. As a means for controlling the inorganic particles A to be positively chargeable, a chargeable base material of the externally added particles such as alumina particles, strontium titanate particles, aluminum stearate particles, and zinc stearate particles is selected. There is a method of adding a treatment agent having a positive charge to the surface of the base material and coating the same, but the latter method that can be controlled to a positive charge regardless of the type of inorganic material. Are suitable.

【0012】無機粒子Aに正帯電性を付与するために使
用される処理剤としては、アミノ基やニトリル基、イソ
シアネート基を有する公知の表面処理剤を用いることが
できる。例えばウレタン変性樹脂、アクリロニトリル樹
脂等の合成樹脂や、γ−(2−アミノエチル)アミノプ
ロピルトリメトキシシラン、γ−(2−アミノエチル)
アミノプロピルメチルジメトキシシラン、アミノシラ
ン、γ−アミノプロピルトリエトキシシラン、N−(2
−アミノエチル)3−アミノプロピルトリメトキシシラ
ン、N−β−(N−ビニルベンジルアミノエチル)−γ
−アミノプロピルトリメトキシシラン等のシランカップ
リング剤や、アミノ変性シリコーンオイル等のシリコー
ンオイル等が挙げられる。
As the treating agent used to impart a positive charge to the inorganic particles A, a known surface treating agent having an amino group, a nitrile group, or an isocyanate group can be used. For example, synthetic resins such as urethane-modified resin and acrylonitrile resin, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl)
Aminopropylmethyldimethoxysilane, aminosilane, γ-aminopropyltriethoxysilane, N- (2
-Aminoethyl) 3-aminopropyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ
Silane coupling agents such as aminopropyltrimethoxysilane, and silicone oils such as amino-modified silicone oil.

【0013】また、無機粒子Aはトナー中において、ト
ナーへの一定の超音波エネルギー付与による離脱率d
(%)が添加重量に対して20%以上、好ましくは30
〜70%に制御されている。無機粒子Aの該離脱率dが
20%未満の場合、無機粒子Aのキャリアへの移行量が
少なく、キャリア帯電性の補助効果が得られにくくな
る。なお、離脱率が70%を越えると現像剤の帯電性の
バランスがくずれ易くなり、繰り返しの使用に伴って帯
電レベルが上昇し続けるという問題が生じる傾向が強
い。
In addition, the inorganic particles A are separated from the toner by a constant ultrasonic energy applied to the toner.
(%) Is 20% or more, preferably 30%, based on the added weight.
It is controlled to ~ 70%. When the detachment rate d of the inorganic particles A is less than 20%, the transfer amount of the inorganic particles A to the carrier is small, and it is difficult to obtain the auxiliary effect of the chargeability of the carrier. If the detachment rate exceeds 70%, the chargeability of the developer tends to be lost, and there is a strong tendency that the charge level continues to increase with repeated use.

【0014】当該離脱率はトナー粒子からの無機粒子の
離脱のしやすさを表し、離脱率が大きいほど当該無機粒
子はトナー粒子から離脱しやすいことを示す。本明細書
中において「一定の超音波エネルギー付与」とは、超音
波式ホモジナイザー(US1200T;日本精機製作所
社製)を用いて、周波数15kHz、出力40Wで1分
間超音波振動させることを意味する。具体的には離脱率
dは、界面活性剤(重合度10のポリオキシエチレンオ
クチルフェニルエーテル)0.2重量%水溶液40cc
中にトナー2gを濡れさせ浸した後、超音波式ホモジナ
イザー(US1200T;日本精機製作所社製)を用い
て、その分散液中に36φの超音波振動子を浸し、周波
数15kHz、出力40Wで1分間超音波振動させるこ
とにより、トナー粒子表面からの無機粒子の離脱を促進
した後、分散液をデカンテーション(静置)により上澄
み液と沈殿物(トナー)に分離し、沈殿物(トナー)の
洗浄、乾燥後、乾燥トナーを蛍光X線分析にかけ、トナ
ー粒子表面に残存する無機粒子AおよびBを同時に定量
することによって算出される値である。
The detachment ratio indicates the ease of detachment of the inorganic particles from the toner particles. The higher the detachment ratio, the easier the inorganic particles detach from the toner particles. In the present specification, "constant application of ultrasonic energy" means that ultrasonic vibration is performed for 1 minute at a frequency of 15 kHz and an output of 40 W using an ultrasonic homogenizer (US1200T; manufactured by Nippon Seiki Seisakusho). Specifically, the detachment rate d is determined by using a surfactant (polyoxyethylene octyl phenyl ether having a degree of polymerization of 10) of 0.2 wt% aqueous solution of 40 cc.
After 2 g of the toner is wet and immersed therein, an ultrasonic vibrator of 36φ is immersed in the dispersion using an ultrasonic homogenizer (US1200T; manufactured by Nippon Seiki Seisaku-sho, Ltd.), and the frequency is 15 kHz and the output is 40 W for 1 minute The ultrasonic vibration is used to promote the separation of the inorganic particles from the surface of the toner particles, and then the dispersion is separated into a supernatant and a precipitate (toner) by decantation (rest), and the precipitate (toner) is washed. This is a value calculated by subjecting the dried toner to X-ray fluorescence analysis after drying, and simultaneously quantifying the inorganic particles A and B remaining on the surface of the toner particles.

【0015】なお、無機粒子Aが後述される無機粒子B
と同種の材料である場合(例えば、無機粒子AおよびB
が共にシリカ等である場合)、上記の手段によっては無
機粒子AおよびBそれぞれを同時に定量できないため、
無機粒子Aを単独で添加して得られたトナーを用いるこ
と以外は、上記測定手段と同様にして算出される離脱率
を無機粒子Aの離脱率としている。
Incidentally, the inorganic particles A are replaced with inorganic particles B described later.
(For example, inorganic particles A and B
Are both silica or the like), since the inorganic particles A and B cannot be simultaneously determined by the above means,
Except for using the toner obtained by adding the inorganic particles A alone, the detachment rate calculated in the same manner as the above-described measuring means is defined as the detachment rate of the inorganic particles A.

【0016】当該離脱率dは、後述するように無機粒子
のトナーへの外添処理時の機械的エネルギーによって制
御することが可能であり、具体的にはQミキサーやヘン
シェルミキサー(共に、三井金属鉱山社製)等の混合機
の羽根回転数や混合処理時間によって制御可能である。
The detachment rate d can be controlled by mechanical energy at the time of externally adding the inorganic particles to the toner, as described later. Specifically, a Q mixer and a Henschel mixer (both are Mitsui Kinzoku It can be controlled by the blade rotation speed of a mixer such as Mining Co., Ltd.) and the mixing processing time.

【0017】本発明の負帯電性トナーにおいて外添され
ている無機粒子Bは、個数平均径が5〜50nm、好ま
しくは10〜35nmである。粒子径が5nmよりも小
さいと現像器内での機械的ストレスにより当該粒子がト
ナーに埋まり込みやすく、流動性低下などの特性変化が
生じやすく、50nmよりも大きいとトナーへの被覆率
が小さくなり、適切な流動性が得られなくなる。
The inorganic particles B externally added in the negatively chargeable toner of the present invention have a number average diameter of 5 to 50 nm, preferably 10 to 35 nm. When the particle diameter is smaller than 5 nm, the particles are easily buried in the toner due to mechanical stress in the developing device, and characteristic changes such as a decrease in fluidity are likely to occur. When the particle diameter is larger than 50 nm, the coverage of the toner decreases. In addition, appropriate fluidity cannot be obtained.

【0018】このような無機粒子Bの材料としては特に
限定されるものではなく、上記の無機粒子Aの材料と同
様のものを使用することができるが、中でもシリカ微粒
子、アルミナ微粒子、チタニア微粒子等の無機酸化物微
粒子が好適に用いられる。また、無機粒子Bについて
は、耐環境性の観点から公知の疎水化剤により疎水化処
理されていることが望ましい。
The material of the inorganic particles B is not particularly limited, and the same materials as the above-mentioned materials of the inorganic particles A can be used. Among them, silica fine particles, alumina fine particles, titania fine particles, etc. The inorganic oxide fine particles are preferably used. In addition, the inorganic particles B are desirably subjected to a hydrophobic treatment with a known hydrophobizing agent from the viewpoint of environmental resistance.

【0019】また、無機粒子Bは、本発明の上記の現像
剤耐久性向上効果を発揮すべく、キャリアに対して負帯
電性を有する。すなわち、上述のように無機粒子の帯電
性はトナー粒子およびキャリアとの摩擦帯電系列上の相
対的な関係により決定され、無機粒子Bは現像剤中、ト
ナー粒子およびキャリアとの混合・撹拌によってキャリ
アより負に帯電される。換言すれば、無機粒子Bの帯電
量は摩擦帯電系列上、キャリア粒子の帯電量よりもマイ
ナス側に位置する。なお、無機粒子Bはトナー粒子と同
程度の帯電量を有することが好ましいが、帯電量がトナ
ー粒子及びキャリア粒子いずれの帯電量よりも摩擦帯電
系列上マイナス側に位置する材料で構成されていても、
または帯電量が、トナー粒子の帯電量よりもプラス側に
位置する材料であって、キャリア粒子の帯電量よりマイ
ナス側に位置する材料で構成されていてもよい。また、
上述のような関係にない材料であっても表面処理を施す
ことによって上述の関係に制御することができる。無機
粒子Bを負帯電性に制御する手段としては、アミノ基や
ニトリル基を有さない公知の表面処理剤、例えば、シラ
ンカップリング剤、シリコーンオイル等により表面処理
を施す方法等を用いることができる。具体的には、シラ
ンカップリング剤としては、ヘキサメチルジシラザン、
トリメチルシラン、トリメチルクロルシラン、ジメチル
ジクロルシラン、メチルトリクロルシラン、アリルジメ
チルクロルシラン、ベンジルジメチルクロルシラン、メ
チルトリメトキシシラン、メチルトリエトキシシラン、
イソブチルトリメトキシシラン、ジメチルジメトキシシ
ラン、ジメチルジエトキシシラン、トリメチルメトキシ
シラン、ヒドロキシプロピルトリメトキシシラン、フェ
ニルトリメトキシシラン、n−ブチルトリメトキシシラ
ン、n−ヘキサデシルトリメトキシシラン、n−オクタ
デシルトリメトキシシラン、ビニルトリメトキシシラ
ン、ビニルトリエトキシシラン、γ−メタクリルオキシ
プロピルトリメトキシシラン、ビニルトリアセトキシシ
ラン等が使用可能であり、シリコーンオイルとしては、
例えばジメチルポリシロキサン、メチルハイドロジェン
ポリシロキサン、メチルフェニルポリシロキサン等が使
用可能である。また、負帯電性を更に強めたい場合はフ
ッ素系のシランカップリング剤やシリコーンオイル等が
使用できる。
Further, the inorganic particles B have a negative charge property to the carrier in order to exhibit the above-mentioned effect of improving the developer durability of the present invention. That is, as described above, the chargeability of the inorganic particles is determined by the relative relationship between the toner particles and the carrier in the triboelectric series, and the inorganic particles B are mixed in the developer and mixed with the toner particles and the carrier to stir the carrier. It is more negatively charged. In other words, the charge amount of the inorganic particles B is on the minus side of the charge amount of the carrier particles in the triboelectric series. It is preferable that the inorganic particles B have the same charge amount as the toner particles, but the charge amount is made of a material that is located on the minus side in the triboelectric series than the charge amount of any of the toner particles and the carrier particles. Also,
Alternatively, the charge amount may be made of a material located on the plus side of the charge amount of the toner particles, and a material located on the minus side of the charge amount of the carrier particles. Also,
Even if the material does not have the above relationship, the relationship can be controlled by performing the surface treatment. As means for controlling the inorganic particles B to be negatively chargeable, a known surface treatment agent having no amino group or nitrile group, for example, a method of performing a surface treatment with a silane coupling agent, silicone oil, or the like may be used. it can. Specifically, as the silane coupling agent, hexamethyldisilazane,
Trimethylsilane, trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, allyldimethylchlorosilane, benzyldimethylchlorosilane, methyltrimethoxysilane, methyltriethoxysilane,
Isobutyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, hydroxypropyltrimethoxysilane, phenyltrimethoxysilane, n-butyltrimethoxysilane, n-hexadecyltrimethoxysilane, n-octadecyltrimethoxysilane , Vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, etc. can be used.
For example, dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane and the like can be used. If it is desired to further enhance the negative chargeability, a fluorine-based silane coupling agent, silicone oil, or the like can be used.

【0020】また、無機粒子Bはトナー中において、ト
ナーへの一定の超音波エネルギー付与による離脱率d
(%)が添加重量に対して50%以下、好ましくは10
〜40%に制御されている。ここでいう離脱率dも上記
と同様の意味を有し、同様の手段によって算出された値
である。無機粒子Bの離脱率dが50%を越えると、無
機粒子Bのキャリアへの移行量が多くなり、キャリアの
荷電能力を低下させてしまう。なお、離脱率が10%未
満であると、無機粒子Bがほとんどトナー母粒子に埋ま
り込んでいる状態となり、トナーの流動性低下等の問題
が生じ易い。
In addition, the inorganic particles B are separated from the toner by a constant ultrasonic energy application to the toner.
(%) Is 50% or less, preferably 10%,
It is controlled to 4040%. The detachment rate d here has the same meaning as described above, and is a value calculated by the same means. When the detachment rate d of the inorganic particles B exceeds 50%, the transfer amount of the inorganic particles B to the carrier increases, and the charge capability of the carrier decreases. If the detachment rate is less than 10%, the inorganic particles B are almost completely embedded in the toner base particles, and problems such as a decrease in the fluidity of the toner are likely to occur.

【0021】なお、無機粒子Bが上記無機粒子Aと同種
の材料である場合は、前記の手段によっては無機粒子A
およびBそれぞれを同時に定量できないため、無機粒子
Bを単独で添加して得られたトナーを用いること以外
は、上記測定手段と同様にして算出される離脱率を無機
粒子Bの離脱率としている。
When the inorganic particles B are made of the same material as the inorganic particles A, the inorganic particles A
Since B and B cannot be simultaneously determined, the detachment rate calculated in the same manner as the above-described measuring means except that the toner obtained by adding the inorganic particles B alone is used as the detachment rate of the inorganic particles B.

【0022】当該離脱率dもまた、後述するように無機
粒子のトナーへの外添処理時の機械的エネルギーによっ
て制御することが可能であり、具体的にはQミキサーや
ヘンシェルミキサー(共に、三井金属鉱山社製)等の混
合機の羽根回転数や混合処理時間によって制御可能であ
る。
The detachment rate d can also be controlled by mechanical energy at the time of externally adding the inorganic particles to the toner, as described later. Specifically, a Q mixer and a Henschel mixer (both are Mitsui It can be controlled by the blade rotation speed of a mixer such as a metal mining company or the like and the mixing processing time.

【0023】本発明の負帯電性トナーにおける上記の無
機粒子AおよびBの含有比率(無機粒子A:無機粒子
B)は重量比で2.5:7.5〜7.5:2.5、好ま
しくは3:7〜7:3である。この範囲からはずれる
と、キャリアへの各無機粒子の移行量のバランスが崩
れ、現像剤の耐久性向上効果が得られなくなり、また、
トナー流動性や帯電性のバランスがとれなくなる。
The content ratio of the inorganic particles A and B (inorganic particles A: inorganic particles B) in the negatively chargeable toner of the present invention is 2.5: 7.5 to 7.5: 2.5 by weight. Preferably it is 3: 7 to 7: 3. If it is out of this range, the balance of the transfer amount of each inorganic particle to the carrier is lost, and the effect of improving the durability of the developer cannot be obtained.
The balance between the fluidity of the toner and the chargeability cannot be maintained.

【0024】無機粒子Aおよび無機粒子Bの含有量は、
含有比率が上記範囲内であれば、プロセスで要求される
流動特性等に応じて適宜調整可能であるが、これらの総
含有量がトナー粒子に対して0.5〜5重量%、好まし
くは1〜3重量%になるよう含有されることが望まし
い。総含有量が0.5重量%未満の場合、所望の流動性
が得られなくなり、5重量%を越える場合はブレードク
リーニングプロセスでの感光体ノイズや感光体研磨量の
増大などの副作用が懸念されるため、適さない。
The content of the inorganic particles A and the inorganic particles B is as follows:
If the content ratio is within the above range, it can be appropriately adjusted according to the flow characteristics and the like required in the process, but the total content thereof is 0.5 to 5% by weight, preferably 1%, based on the toner particles. It is desirable that the content be contained to be about 3% by weight. When the total content is less than 0.5% by weight, desired fluidity cannot be obtained, and when the total content exceeds 5% by weight, side effects such as photoconductor noise in a blade cleaning process and an increase in photoconductor polishing amount are concerned. Not suitable.

【0025】また、本発明の負帯電性トナーにおいて、
無機粒子AおよびBは、後で使用されるキャリアに対す
るブローオフ帯電量が特定の値を有することが好まし
い。鉄粉に対するブローオフ帯電量は無機粒子Aが+5
0〜+300(μc/g)、無機粒子Bが−2000〜
−100(μc/g)であることが好ましい。このよう
にブローオフ帯電量を特定の値に設定することにより本
発明の上記現像剤耐久性向上効果が一層顕著に現れるた
めである。無機粒子Aのブローオフ帯電量が+50μc
/gよりも低い場合、キャリアに移行してもキャリアの
プラス性を補助する能力が低く、すなわちキャリア劣化
抑制作用が少なくなり好ましくない。一方、+300μ
c/gより高いとキャリアに移行したときに極端にキャ
リアのプラス性が強くなり、適正な現像剤の帯電性が得
られなくなったり、また、無機粒子Aの正帯電性が強す
ぎるためにトナーへの付着性が強すぎてキャリアに移行
しにくくなる現象が起こり、いずれにせよ現像剤帯電性
の制御が困難となり好ましくない。また、無機粒子Bの
ブローオフ帯電量が−2000よりも低いとトナーの負
帯電性が極端に強くなり、好ましくなく、−100より
も高いとトナーの負帯電性が極端に弱くなり好ましくな
い。なお、ブローオフ帯電量は、キャリアとして鉄粉を
用い、ブローオフ法に基づきブローオフ帯電量測定装置
(TB−200:東芝ケミカル社製)を用いて測定され
る値である。
Further, in the negatively chargeable toner of the present invention,
It is preferable that the inorganic particles A and B have a specific value of a blow-off charge amount for a carrier used later. Blow-off charge amount for iron powder is +5 for inorganic particles A
0 to +300 (μc / g), the inorganic particles B are −2000 to
It is preferably −100 (μc / g). By setting the blow-off charge amount to a specific value in this manner, the above-described effect of improving the developer durability of the present invention appears more remarkably. Blow-off charge of inorganic particles A is +50 μc
If it is lower than / g, the ability to assist the plusness of the carrier even when transferred to the carrier is low, that is, the effect of suppressing carrier deterioration is reduced, which is not preferable. On the other hand, + 300μ
When the ratio is higher than c / g, the positive property of the carrier becomes extremely strong when the toner is transferred to the carrier, and the proper chargeability of the developer cannot be obtained. Further, the positive chargeability of the inorganic particles A is too strong. A phenomenon occurs in which the toner is not easily transferred to the carrier due to too strong adhesion to the carrier, and in any case, it is difficult to control the chargeability of the developer, which is not preferable. Further, if the blow-off charge amount of the inorganic particles B is lower than -2000, the negative chargeability of the toner becomes extremely strong, which is not preferable. If it is higher than -100, the negative chargeability of the toner becomes extremely weak, which is not preferable. The blow-off charge is a value measured using an iron powder as a carrier and a blow-off charge measuring device (TB-200: manufactured by Toshiba Chemical Corporation) based on a blow-off method.

【0026】さらに、本発明の負帯電性トナーにおいて
は、無機粒子Aの鉄粉に対する上記ブローオフ帯電量Q
(μc/g)と無機粒子Aの前記離脱率dとの積が特定
の範囲内にあることが好ましい。無機粒子Aの鉄粉に対
するブローオフ帯電量Q(μc/g)と無機粒子Aの前
記離脱率dが 10≦Q・d≦50、好ましくは20≦Q・d≦50 の関係を満たすことが望ましい。無機粒子Aがキャリア
に移行することによってキャリアの正帯電性を向上させ
る作用は、その原理から無機粒子Aの持つ静電荷電量
(ブローオフ帯電量Q)とトナーから剥がれやすさ(離
脱率d)が大きな因子であると考えられ、これらの積を
規定することにより本発明の上記現像剤耐久性向上効果
が最適に発揮されるためである。すなわち、上式でQ・
dは、無機粒子Aが持つ物質としてのキャリアへの電荷
の移行のしやすさの指標であり、この値が10よりも小
さいとキャリア荷電能力を維持する効果が得られなくな
り、50よりも大きいと逆にキャリアの正帯電レベルが
耐久に従い増加傾向となり、現像剤の帯電量が上昇して
現像量が低下してしまう。なお、ブローオフ帯電量Qが
90(μc/g)であり、離脱率dが30(wt%)で
あるときのQ・dは27である。
Furthermore, in the negatively chargeable toner of the present invention, the blow-off charge amount Q
It is preferable that the product of (μc / g) and the separation rate d of the inorganic particles A be within a specific range. It is desirable that the blow-off charge amount Q (μc / g) of the inorganic particles A with respect to the iron powder and the detachment rate d of the inorganic particles A satisfy the relationship of 10 ≦ Q · d ≦ 50, preferably 20 ≦ Q · d ≦ 50. . The action of improving the positive chargeability of the carrier by the transfer of the inorganic particles A to the carrier is based on the principle that the electrostatic charge (blow-off charge Q) of the inorganic particles A and the easiness of peeling from the toner (detachment rate d) are reduced. This is considered to be a major factor, and by defining the product of these, the effect of improving the developer durability of the present invention is optimally exhibited. That is, Q ·
d is an index of the easiness of charge transfer to the carrier as a substance of the inorganic particles A. If this value is smaller than 10, the effect of maintaining the carrier charging ability cannot be obtained, and the value is larger than 50. Conversely, the positive charge level of the carrier tends to increase in accordance with the durability, the charge amount of the developer increases, and the development amount decreases. When the blow-off charge amount Q is 90 (μc / g) and the detachment rate d is 30 (wt%), Q · d is 27.

【0027】本発明の負帯電性トナーにおいては、上記
の無機粒子AおよびBのほか、クリーニング性を補助す
るために潤滑性を有する有機系の微粒子を添加してもよ
い。例えば、ポリオレフィン系ワックス等の微粒子や金
属せっけん等の微粒子、テフロン微粒子等が添加でき
る。
In the negatively chargeable toner of the present invention, in addition to the above-mentioned inorganic particles A and B, organic fine particles having lubricity may be added to assist the cleaning property. For example, fine particles such as polyolefin wax, fine particles such as metal soap, and Teflon fine particles can be added.

【0028】以上の無機粒子が外添されているトナー粒
子は、少なくともバインダー樹脂および着色剤を含有し
てなり、必要に応じて磁性体微粉末、離型剤、帯電制御
剤等が適宜含有されている。
The toner particles to which the above-mentioned inorganic particles are externally added contain at least a binder resin and a colorant, and optionally contain a magnetic fine powder, a release agent, a charge control agent, and the like as needed. ing.

【0029】本発明において使用されるバインダー樹脂
としては、公知の合成樹脂及び天然樹脂ならば如何なる
ものでも用いることができる。具体的には、スチレン系
樹脂、アクリル系樹脂、オレフィン系樹脂、ジエン系樹
脂、ポリエステル系樹脂、ポリアミド系樹脂、エポキシ
系樹脂、シリコーン系樹脂、フェノール系樹脂、石油樹
脂、ウレタン系樹脂等の合成樹脂及び天然樹脂が挙げら
れる。
As the binder resin used in the present invention, any known synthetic resins and natural resins can be used. Specifically, synthesis of styrene resin, acrylic resin, olefin resin, diene resin, polyester resin, polyamide resin, epoxy resin, silicone resin, phenol resin, petroleum resin, urethane resin, etc. Resins and natural resins.

【0030】着色剤としては、公知の顔料及び染料が使
用される。例えば、カーボンブラック、アニリンブル
ー、カルコイルブルー、クロムイエロー、ウルトラマリ
ンブルー、デュポンオイルレッド、キノリンイエロー、
メチレンブルークロリド、銅フタロシアニン、マラカイ
トグリーンオキサレート、ランプブラック、ローズベン
ガル、C.I.ピグメント・レッド48:1、C.I.
ピグメント・レッド122、C.I.ピグメント・レッ
ド57:1、C.I.ピグメント・レッド184、C.
I.ピグメント・イエロー97、C.I.ピグメント・
イエロー12、C.I.ピグメント・イエロー17、
C.I.ソルベント・イエロー162、C.I.ピグメ
ント・ブルー15:1、C.I.ピグメント・ブルー1
5:3等を挙げることができる。着色剤はバインダー樹
脂100重量部に対して1.5〜10重量部含有されて
いることが望ましく、複数使用される場合は合計量が上
記範囲内になるよう使用される。
As the coloring agent, known pigments and dyes are used. For example, carbon black, aniline blue, calcoil blue, chrome yellow, ultramarine blue, Dupont oil red, quinoline yellow,
Methylene blue chloride, copper phthalocyanine, malachite green oxalate, lamp black, rose bengal, C.I. I. Pigment Red 48: 1, C.I. I.
Pigment Red 122, C.I. I. Pigment Red 57: 1, C.I. I. Pigment Red 184, C.I.
I. Pigment Yellow 97, C.I. I. Pigment
Yellow 12, C.I. I. Pigment Yellow 17,
C. I. Solvent Yellow 162, C.I. I. Pigment Blue 15: 1, C.I. I. Pigment Blue 1
5: 3 and the like. It is desirable that the colorant is contained in an amount of 1.5 to 10 parts by weight with respect to 100 parts by weight of the binder resin.

【0031】また、磁性トナーとして用いる場合は、上
記着色剤の一部または全部を磁性体と置き換えればよ
い。このような磁性体としてはマグネタイト、フェライ
ト、鉄粉、ニッケル等が挙げられる。磁性体はバインダ
ー樹脂100重量部に対して100〜200重量部含有
されていることが望ましく、複数使用される場合は合計
量が上記範囲内になるよう使用される。
When used as a magnetic toner, a part or all of the colorant may be replaced with a magnetic substance. Examples of such a magnetic material include magnetite, ferrite, iron powder, nickel and the like. The magnetic material is desirably contained in an amount of 100 to 200 parts by weight based on 100 parts by weight of the binder resin. When a plurality of magnetic substances are used, the total amount is used within the above range.

【0032】本発明のトナー粒子には、目的に応じて帯
電制御剤や離型剤等の添加剤をバインダー樹脂中に含有
させることができる。例えば、帯電制御剤としては、フ
ッ素系界面活性剤、サリチル酸金属錯体、アゾ系金属化
合物のような含金属染料、マレイン酸を単量体成分とし
て含む共重合体の如き高分子酸、第4級アンモニウム
塩、ニグロシン等のアジン系染料、カーボンブラック等
を添加することができる。特に、カーボンブラックは抵
抗の調整に有効である。離型剤としては、炭素数8以上
のパラフィン、オレフィン等が好ましく、例えば、パラ
フィンワックス、パラフィンラテックス、マイクロクリ
スタリンワックス、低分子量ポリプロピレン、低分子量
ポリエチレン等が使用できる。帯電制御剤および離型剤
はそれぞれバインダー樹脂100重量部に対して0〜5
重量部、0〜5重量部含有されていることが望ましく、
複数使用される場合は合計量が上記範囲内になるよう使
用される。
The toner particles of the present invention may contain additives such as a charge controlling agent and a release agent in the binder resin according to the purpose. For example, examples of the charge control agent include a fluorine-containing surfactant, a metal-containing dye such as a salicylic acid metal complex and an azo-based metal compound, a polymer acid such as a copolymer containing maleic acid as a monomer component, and a quaternary. Ammonium salts, azine dyes such as nigrosine, carbon black and the like can be added. In particular, carbon black is effective for adjusting the resistance. As the release agent, paraffins and olefins having 8 or more carbon atoms are preferable, and for example, paraffin wax, paraffin latex, microcrystalline wax, low molecular weight polypropylene, low molecular weight polyethylene and the like can be used. The charge control agent and the release agent are each 0 to 5 parts by weight based on 100 parts by weight of the binder resin.
Parts by weight, preferably 0 to 5 parts by weight,
When two or more are used, they are used so that the total amount is within the above range.

【0033】本発明のトナー粒子は、公知の如何なる方
法によっても製造できるが、特に混練・粉砕方式による
方法が好ましい。すなわち、バインダー樹脂と着色剤、
その他の添加剤を混練機を用いて溶融混練し、これを冷
却した後、粉砕し、分級する方法が好ましい。このよう
にして得られたトナー粒子は、トナーの体積平均粒径を
4〜12μmの範囲に設定することが好ましい。これよ
り小さいと流動性の低下やカブリの原因となりやすく、
また、これより大きいと解像度が低下し、高画質の画像
が得られない。
The toner particles of the present invention can be produced by any known method, but a method of kneading and pulverizing is particularly preferable. That is, a binder resin and a colorant,
A method is preferred in which other additives are melt-kneaded using a kneader, cooled, pulverized and classified. It is preferable that the toner particles thus obtained have a volume average particle diameter of 4 to 12 μm. If it is smaller than this, it tends to cause a decrease in fluidity and fog,
On the other hand, if it is larger than this, the resolution is reduced, and a high-quality image cannot be obtained.

【0034】本発明の負帯電性トナーは、このようにし
て得られたトナー粒子に、無機粒子AおよびBを外添
し、従来から使用されている公知の混合機、例えば、Q
ミキサー、ヘンシェルミキサー等によって混合すること
によって得ることができる。
The negatively chargeable toner of the present invention is obtained by externally adding the inorganic particles A and B to the toner particles thus obtained, and using a known mixer such as Q
It can be obtained by mixing with a mixer, Henschel mixer or the like.

【0035】本発明において、無機粒子AおよびBはト
ナー中、前記離脱率dを有し、当該離脱率はいかなる手
段によって調整されてもよい。例えば、無機粒子のトナ
ー粒子への外添処理時の機械的エネルギーによって、離
脱率を制御することが可能である。例えば、トナー粒子
に所定量の無機粒子Bを添加して、Qミキサー(三井鉱
山社製)によって2000〜6000rpmにて1〜5
分間混合した後、所定量の無機粒子Aをさらに添加し、
同回転数にてさらに1〜20分間混合することによっ
て、本発明のトナーを得ることができる。
In the present invention, the inorganic particles A and B have the above-mentioned detachment ratio d in the toner, and the detachment ratio may be adjusted by any means. For example, the detachment rate can be controlled by mechanical energy at the time of externally adding inorganic particles to toner particles. For example, a predetermined amount of the inorganic particles B is added to the toner particles, and the Q mixer (manufactured by Mitsui Mining Co., Ltd.) is used.
After mixing for a minute, a predetermined amount of inorganic particles A is further added,
By further mixing at the same rotation speed for 1 to 20 minutes, the toner of the present invention can be obtained.

【0036】このようにして得られたトナーは、所定の
キャリアと混合して2成分現像剤として使用され、当該
現像剤の飛躍的な長寿命化を達成することができる。本
発明のトナーとともに使用されるキャリアとしては、公
知のキャリアを使用することができ、例えば、鉄粉、フ
ェライト等の磁性粒子よりなるキャリア、磁性粒子表面
を樹脂等の被覆剤で被覆したコート型キャリア、あるい
はバインダー樹脂中に磁性体微粉末を分散してなるバイ
ンダー型キャリア等いずれも使用可能である。このよう
なキャリアとしては体積平均粒径が15〜100μm、
好ましくは20〜80μmのものが好適である。
The toner thus obtained is mixed with a predetermined carrier and used as a two-component developer, whereby a drastically long life of the developer can be achieved. As the carrier used together with the toner of the present invention, known carriers can be used, for example, a carrier composed of magnetic particles such as iron powder and ferrite, and a coat type in which the surface of the magnetic particles is coated with a coating material such as a resin. Either a carrier or a binder-type carrier obtained by dispersing magnetic fine powder in a binder resin can be used. Such a carrier has a volume average particle size of 15 to 100 μm,
Preferably, the thickness is 20 to 80 μm.

【0037】本発明の負帯電性トナーは表面に正帯電性
の樹脂が存在するキャリアとともに用いることが好まし
い。このような樹脂としてはアクリル系樹脂、スチレン-
アクリル系樹脂、シリコーン系樹脂等が挙げられる。以
下、実施例により本発明をさらに詳しく説明する。実施
例中、特記しない限り「部」は「重量部」を意味するも
のとする。
The negatively chargeable toner of the present invention is preferably used together with a carrier having a positively chargeable resin on the surface. Acrylic resin, styrene-
Acrylic resins, silicone resins, and the like are listed. Hereinafter, the present invention will be described in more detail with reference to examples. In the examples, “parts” means “parts by weight” unless otherwise specified.

【0038】[0038]

【実施例】<無機粒子Aの種類>無機粒子Aとしては以
下の無機粒子A1〜A5を用いた。 (A1)個数平均粒径300nmのチタン酸ストロンチ
ウム粒子にN−(2−アミノエチル)3−アミノプロピ
ルトリメトキシシランで表面処理し、正帯電性無機粒子
A1を得た。この粒子のブローオフ帯電量Qは[+9
2]μc/gであった。また、1000nm以上の粒子
の個数割合は5%であった。 (A2)個数平均粒径350nmの酸化チタン粒子にN
−(2−アミノエチル)3−アミノプロピルトリメトキ
シシランで表面処理し、正帯電性無機粒子A2を得た。
この粒子のブローオフ帯電量Qは[+121]μc/g
であった。また、1000nm以上の粒子の個数割合は
6%であった。
EXAMPLES <Types of Inorganic Particles A> As the inorganic particles A, the following inorganic particles A1 to A5 were used. (A1) Strontium titanate particles having a number average particle size of 300 nm were subjected to a surface treatment with N- (2-aminoethyl) 3-aminopropyltrimethoxysilane to obtain positively chargeable inorganic particles A1. The blow-off charge amount Q of these particles is [+9
2] μc / g. The number ratio of particles having a size of 1000 nm or more was 5%. (A2) Titanium oxide particles having a number average particle size of 350 nm
Surface treatment was performed with-(2-aminoethyl) 3-aminopropyltrimethoxysilane to obtain positively chargeable inorganic particles A2.
The blow-off charge amount Q of these particles is [+121] μc / g
Met. The number ratio of particles having a size of 1000 nm or more was 6%.

【0039】(A3)個数平均粒径700nmのシリカ
粒子にN−(2−アミノエチル)3−アミノプロピルト
リメトキシシランで表面処理し、正帯電性無機粒子A3
を得た。この粒子のブローオフ帯電量Qは[+231]
μc/gであった。また、1000nm以上の粒子の個
数割合は11%であった。 (A4)個数平均粒径300nmのチタン酸ストロンチ
ウム粒子に3,3,3−トリフロロプロピルトリメトキ
シシランで表面処理し、負帯電性無機粒子A4を得た。
この粒子のブローオフ帯電量Qは[−95]μc/gで
あった。また、1000nm以上の粒子の個数割合は4
%であった。 (A5)個数平均粒径300nmのチタン酸ストロンチ
ウム粒子を表面処理を行わずにA5として用いた。この
粒子のブローオフ帯電量Qは[+5]μc/gであっ
た。また、1000nm以上の粒子の個数割合は0%で
あった。
(A3) A silica particle having a number average particle diameter of 700 nm is subjected to a surface treatment with N- (2-aminoethyl) 3-aminopropyltrimethoxysilane to obtain positively chargeable inorganic particles A3.
I got The blow-off charge amount Q of these particles is [+231]
μc / g. The number ratio of particles having a size of 1000 nm or more was 11%. (A4) Strontium titanate particles having a number average particle size of 300 nm were subjected to a surface treatment with 3,3,3-trifluoropropyltrimethoxysilane to obtain negatively chargeable inorganic particles A4.
The blow-off charge Q of the particles was [−95] μc / g. The number ratio of particles having a size of 1000 nm or more is 4
%Met. (A5) Strontium titanate particles having a number average particle size of 300 nm were used as A5 without surface treatment. The blow-off charge Q of the particles was [+5] μc / g. The number ratio of particles having a size of 1000 nm or more was 0%.

【0040】<無機粒子Bの種類>無機粒子Bとしては
以下の無機粒子B1〜B3を用いた。 (B1)個数平均粒径15nmのシリカ粒子にヘキサメ
チルジシラザンで表面処理し、負帯電性無機粒子B1を
得た。この粒子のブローオフ帯電量Qは[−1110]
μc/gであった。 (B2)個数平均粒径30nmのアナターゼ型チタニア
粒子に3,3,3−トリフロロプロピルトリメトキシシ
ランで表面処理し、負帯電性無機粒子B2を得た。この
粒子のブローオフ帯電量Qは[−310]μc/gであ
った。 (B3)個数平均粒径15nmのシリカ粒子にN−(2
−アミノエチル)3−アミノプロピルトリメトキシシラ
ンで表面処理し、正帯電性無機粒子B3を得た。この粒
子のブローオフ帯電量Qは[+213]μc/gであっ
た。
<Type of Inorganic Particle B> As the inorganic particles B, the following inorganic particles B1 to B3 were used. (B1) Silica particles having a number average particle size of 15 nm were subjected to a surface treatment with hexamethyldisilazane to obtain negatively chargeable inorganic particles B1. The blow-off charge amount Q of these particles is [-1110].
μc / g. (B2) Anatase-type titania particles having a number average particle size of 30 nm were subjected to a surface treatment with 3,3,3-trifluoropropyltrimethoxysilane to obtain negatively chargeable inorganic particles B2. The blow-off charge amount Q of the particles was [−310] μc / g. (B3) N- (2
-Aminoethyl) 3-aminopropyltrimethoxysilane was subjected to surface treatment to obtain positively chargeable inorganic particles B3. The blow-off charge Q of the particles was [+213] μc / g.

【0041】 <トナー粒子の製造> (顔料マスターバッチ) ビスフェノール系ポリエステル樹脂 70部 (Tg:58℃、Tm:100℃) マゼンタ顔料(C.I.ビグメントレッド184) 30部 上記組成よりなる混合物を加圧ニーダーに仕込み混練し
た。得られた混練物を冷却後フェザーミルにより粉砕し
顔料マスターバッチを得た。 (トナー粒子) 上記ポリエステル樹脂 93部 上記顔料マスターバッチ 10部 上記組成よりなる材料をヘンシェルミキサーで混合した
後、混合物をベント二軸混練装置で混練した。得られた
混練物を冷却した後、フェザーミルで粗粉砕、ジェット
ミルで微粉砕し、さらに分級することにより体積平均粒
径8.5μmのトナー粒子を得た。
<Production of Toner Particles> (Pigment Masterbatch) Bisphenol-based polyester resin 70 parts (Tg: 58 ° C., Tm: 100 ° C.) Magenta pigment (CI Pigment Red 184) 30 parts Mixture having the above composition Was charged into a pressure kneader and kneaded. The obtained kneaded material was cooled and pulverized by a feather mill to obtain a pigment master batch. (Toner particles) 93 parts of the polyester resin 10 parts of the pigment masterbatch 10 parts of the above-mentioned composition were mixed with a Henschel mixer, and the mixture was kneaded with a vented twin-screw kneading apparatus. The resulting kneaded product was cooled, coarsely pulverized by a feather mill, finely pulverized by a jet mill, and classified to obtain toner particles having a volume average particle size of 8.5 μm.

【0042】実施例1 上記トナー粒子100部に対して無機粒子B1を1部添
加(第1添加)し、Qミキサー(三井鉱山社製)により
羽根回転数5000rpmにて2分間混合した。次い
で、無機粒子A1を1部添加し(第2添加)、さらに2
分間混合し、150メッシュの篩を通してトナーを得
た。
Example 1 One part (first addition) of the inorganic particles B1 was added to 100 parts of the toner particles, and the mixture was mixed by a Q mixer (manufactured by Mitsui Mining Co., Ltd.) at a blade rotation speed of 5000 rpm for 2 minutes. Next, 1 part of the inorganic particles A1 was added (second addition), and 2 parts were further added.
And then passed through a 150 mesh sieve to obtain a toner.

【0043】実施例2〜10および比較例1〜6 それぞれの実施例または比較例において、無機粒子A1
の代わりに表1に示す無機粒子Aを表記量だけ使用した
こと、無機粒子B1の代わりに表1に示す無機粒子Bを
表記量だけ使用したこと、および無機粒子A、Bの混合
順序および混合時間を表2に示すように変更したこと以
外、実施例1と同様にして、トナーを得た。
Examples 2 to 10 and Comparative Examples 1 to 6 In each of Examples and Comparative Examples, the inorganic particles A1
, The inorganic particles A shown in Table 1 were used only in the indicated amounts, the inorganic particles B shown in Table 1 were used in the indicated amounts instead of the inorganic particles B1, and the mixing order and mixing of the inorganic particles A and B were performed. A toner was obtained in the same manner as in Example 1, except that the time was changed as shown in Table 2.

【0044】<離脱率dの測定>以上で得られたそれぞ
れのトナーにおける、トナー粒子からの無機粒子の離脱
率dを無機粒子毎に、以下にしたがって測定した。界面
活性剤(重合度10のポリオキシエチレンオクチルフェ
ニルエーテル)0.2重量%水溶液40cc中にトナー
2gを濡れさせ浸した後、超音波式ホモジナイザー(U
S1200T;日本精機製作所社製)を用いて、その分
散液中に36φの超音波振動子を浸し、周波数15kH
z、出力40Wで1分間超音波振動させることにより、
トナー粒子表面から無機粒子を離脱させた。その後、分
散液をデカンテーション(静置)により上澄み液と沈殿
物(トナー)に分離し、離脱した無機粒子が含まれる上
澄み液を除去した。沈殿物(トナー)を純水で穏やかに
洗浄し、乾燥させた。乾燥したトナーを蛍光X線分析に
かけ、トナー粒子表面に残存する無機粒子AおよびBそ
れぞれの定量を同時に行い、トナー粒子に添加された無
機粒子の重量に対する離脱した無機粒子の重量の比率
(重量比)を離脱率dとして算出した。
<Measurement of Detachment Rate d> In each of the toners obtained above, the detachment rate d of the inorganic particles from the toner particles was measured for each inorganic particle as follows. After 2 g of the toner is wetted and immersed in 40 cc of a 0.2% by weight aqueous solution of a surfactant (polyoxyethylene octyl phenyl ether having a degree of polymerization of 10), an ultrasonic homogenizer (U
S1200T; manufactured by Nippon Seiki Seisaku-sho, Ltd.), and immersed a 36φ ultrasonic vibrator in the dispersion liquid at a frequency of 15 kHz.
z, by ultrasonic vibration for 1 minute at an output of 40 W,
The inorganic particles were separated from the toner particle surfaces. Thereafter, the dispersion was separated into a supernatant and a precipitate (toner) by decantation (static), and the supernatant containing the separated inorganic particles was removed. The precipitate (toner) was gently washed with pure water and dried. The dried toner is subjected to X-ray fluorescence analysis to simultaneously determine each of the inorganic particles A and B remaining on the surface of the toner particles, and the ratio of the weight of the separated inorganic particles to the weight of the inorganic particles added to the toner particles (weight ratio) ) Was calculated as the withdrawal rate d.

【0045】なお、無機粒子AおよびBが同種の材料で
ある場合(例えば、無機粒子AおよびBが共にシリカで
ある実施例3)、無機粒子AおよびBそれぞれを同時に
定量できないため、無機粒子Aを単独で添加したこと以
外は、当該実施例または比較例と同様にして製造したト
ナーにおける離脱率を無機粒子Aの離脱率とし、また無
機粒子Bを単独で添加したこと以外は、当該実施例また
は比較例と同様にして製造したトナーにおける離脱率を
無機粒子Bの離脱率とした。
When the inorganic particles A and B are of the same material (for example, Example 3 in which the inorganic particles A and B are both silica), the inorganic particles A and B cannot be simultaneously determined. Was used as the release rate of the inorganic particles A in the toner manufactured in the same manner as in the example or the comparative example, except that the inorganic particles B were added alone. Alternatively, the detachment rate of the toner produced in the same manner as in the comparative example was defined as the detachment rate of the inorganic particles B.

【0046】<現像剤の製造>それぞれのトナーを、後
述のキャリア1とトナー濃度が6重量%となるように混
合し、現像剤(スタータ)を作成した。
<Production of Developer> Each of the toners was mixed with Carrier 1 described below so that the toner concentration was 6% by weight, to prepare a developer (starter).

【0047】<キャリア1の製造>撹拌器、コンデンサ
ー、温度計、窒素導入管、滴下装置を備えた容量500
mlのフラスコにメチルエチルケトンを100部仕込ん
だ。窒素雰囲気下80℃でメチルメタクリレート36.
7部、2−ヒドロキシエチルメタクリレート5.1部、
3−メタクリロシキプロピルトリス(トリメチルシロキ
シ)シラン58.2部および1,1’−アゾビス(シク
ロヘキサン−1−カルボニトリル)1部を、メチルエチ
ルケトン100部に溶解させて得られた溶液を2時間に
わたり反応器中に滴下し5時間熟成させた。得られた樹
脂に対して、架橋剤としてイソホロンジイソシアネート
/トリメチロールプロパンアダクト(IPDI/TMP
系:NCO%=6.1%)をOH/NCOモル比率が1
/1となるように調整した後メチルエチルケトンで希釈
し固定比3重量%であるコート樹脂溶液を調製した。コ
ア材として磁性粉(焼成フェライト粉F−300、体積
平均粒径:50μm、パウダーテック社製)を用い、上
記コート樹脂溶液をコア材に対する被覆樹脂量が1.5
重量%になるようにスピラコーター(岡田精工社製)に
より塗布・乾燥した。得られたキャリアを熱風循環式オ
ーブン中にて160℃で1時間放置して焼成した。冷却
後フェライト粉バルクを目開き106μmと75μmの
スクリーンメッシュを取り付けたフルイ振とう器を用い
て解砕し、樹脂コート型キャリア1を得た。
<Manufacture of Carrier 1> Capacity 500 equipped with a stirrer, condenser, thermometer, nitrogen inlet tube, and dropping device
A 100 ml flask was charged with 100 parts of methyl ethyl ketone. 36. Methyl methacrylate at 80 ° C. under a nitrogen atmosphere
7 parts, 5.1 parts of 2-hydroxyethyl methacrylate,
A solution obtained by dissolving 58.2 parts of 3-methacryloxypropyltris (trimethylsiloxy) silane and 1 part of 1,1′-azobis (cyclohexane-1-carbonitrile) in 100 parts of methyl ethyl ketone was used for 2 hours. The mixture was dropped into the reactor and aged for 5 hours. To the obtained resin, isophorone diisocyanate / trimethylolpropane adduct (IPDI / TMP
System: NCO% = 6.1%) with an OH / NCO molar ratio of 1
/ L, and diluted with methyl ethyl ketone to prepare a coating resin solution having a fixed ratio of 3% by weight. Using magnetic powder (fired ferrite powder F-300, volume average particle size: 50 μm, manufactured by Powder Tech) as the core material, the coating resin solution was coated with the above-mentioned coating resin solution in an amount of 1.5 to the core material.
It was applied and dried by a spira coater (manufactured by Okada Seiko Co., Ltd.) so as to be a weight%. The obtained carrier was calcined at 160 ° C. for 1 hour in a hot-air circulation oven. After cooling, the ferrite powder bulk was crushed using a sieve shaker equipped with a 106 μm and 75 μm screen mesh to obtain a resin-coated carrier 1.

【0048】<キャリア劣化性の評価方法> (耐久試験後のキャリア荷電性)得られた現像剤をフル
カラーコピー機(CF900:ミノルタ社製)にセット
し、画像部が15%の原稿を用いて10万枚耐刷試験
し、耐刷枚数が0枚(スタータ)、5万枚および10万
枚の時点の現像剤をサンプリングした。これらの現像剤
から電界によってトナーを分離し、耐刷枚数0枚時点で
の現像剤(スタータ)から分離したキャリアと基準負帯
電性トナー(CF900用マゼンタトナー:ミノルタ社
製)の帯電量Q0、耐刷枚数5万枚時点での現像剤から
分離したキャリアと上記基準負帯電性トナーの帯電量Q
5、および耐刷枚数10万枚時点での現像剤から分離し
たキャリアと上記基準負帯電性トナーの帯電量Q10
を、図1に示す帯電量測定器により以下に従って測定
し、キャリアの荷電能力を評価した。まず、精密天秤で
計量した現像剤1gを導電性スリーブ(41)の表面全
体に均一になるように載せると共に、この導電性スリー
ブ(41)内に設けられたマグネットロール(42)の
回転数を100rpmにセットした。そして、バイアス
電源(43)よりバイアス電圧をトナーの帯電電位と同
一極性で3KV印加し、30秒間上記導電性スリーブ
(41)を回転させ、この導電性スリーブ(41)を停
止させた時点での円筒電極(44)における電位Vmを
読み取ると共に、上記導電性スリーブ(41)からこの
円筒電極(44)に付着したトナーの重量を精密天秤で
計量して、各トナーの平均帯電量(μC/g)を求め
た。
<Evaluation Method for Carrier Deterioration> (Carrier Chargeability after Durability Test) The obtained developer was set in a full-color copying machine (CF900: manufactured by Minolta Co., Ltd.), and an original having an image portion of 15% was used. A 100,000-sheet printing durability test was conducted, and the developers at the time when the number of printings was 0 (starter), 50,000, and 100,000 were sampled. The toner is separated from these developers by an electric field, and the charge amount Q0 of the carrier separated from the developer (starter) and the reference negative charge toner (magenta toner for CF900: manufactured by Minolta Co., Ltd.) at the time of 0 printings The charge amount Q of the carrier separated from the developer and the reference negatively chargeable toner at the time of 50,000 prints
5, and the charge amount Q10 of the carrier separated from the developer and the reference negatively chargeable toner at the time of 100,000
Was measured by the charge amount measuring device shown in FIG. 1 in accordance with the following, and the charging ability of the carrier was evaluated. First, 1 g of a developer measured by a precision balance is uniformly placed on the entire surface of the conductive sleeve (41), and the number of rotations of a magnet roll (42) provided in the conductive sleeve (41) is reduced. It was set to 100 rpm. Then, a bias voltage of 3 KV is applied from the bias power supply (43) with the same polarity as the charged potential of the toner, and the conductive sleeve (41) is rotated for 30 seconds to stop the conductive sleeve (41). The potential Vm at the cylindrical electrode (44) is read, and the weight of the toner attached to the cylindrical electrode (44) from the conductive sleeve (41) is weighed with a precision balance to determine the average charge amount (μC / g) of each toner. ).

【0049】評価の基準は以下の通りである。「△」は
実用上問題がなく、「×」は実用上問題がある。 〈5万枚耐刷後の荷電能力について> ◎:帯電量変化(Q5−Q0)がQ0に比して±10%
以下; ○:帯電量変化(Q5−Q0)がQ0に比して±20以
下; △:帯電量変化(Q5−Q0)がQ0に比して±30%
以下; ×:帯電量変化(Q5−Q0)がQ0に比して±30%
以上。 <10万枚耐刷後の荷電能力について> ◎:帯電量変化(Q10−Q0)がQ0に比して±10
以下; 〇:帯電量変化(Q10−Q0)がQ0に比して±20
%以下; △:帯電量変化(Q10−Q0)がQ0に比して±30
%以下; ×:帯電量変化(Q10−Q0)がQ0に比して±30
%以上。
The evaluation criteria are as follows. “△” has no practical problem, and “×” has practical problem. <Chargeability after 50,000 sheets have been printed> A: Change in charge amount (Q5-Q0) ± 10% compared to Q0
Below: ○: change in charge amount (Q5-Q0) ± 20 or less compared to Q0; Δ: change in charge amount (Q5-Q0) ± 30% compared to Q0
×: charge amount change (Q5-Q0) ± 30% compared to Q0
that's all. <Chargeability after 100,000 sheets have been printed> A: Change in charge amount (Q10-Q0) is ± 10 compared to Q0.
Below: Δ: change in charge amount (Q10−Q0) ± 20 compared to Q0
% Or less; Δ: change in charge amount (Q10−Q0) ± 30 compared to Q0
%: Change in charge amount (Q10-Q0) ± 30 compared to Q0
%that's all.

【0050】これらの評価結果を、それぞれの製造条件
とともにまとめて下記表1および表2に示した。
The results of these evaluations are shown together with the respective production conditions in Tables 1 and 2 below.

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】<測定方法>なお、本明細書中における測
定値は以下の測定方法を採用して得た値である。 (無機粒子の個数平均粒径および個数割合)無機粒子を
TEMにより観察し、10万倍の写真を撮影する。得ら
れた写真から粒子の個数平均の粒径分布を計算した。 (無機粒子の鉄粉とのブローオフ帯電量Q)ブローオフ
帯電量の測定は、ブローオフ法に基づきブローオフ帯電
量測定装置(TB−200:東芝ケミカル社製)を用い
て行った。基準鉄粉キャリア(Z150/250:パウ
ダーテック社製)25gと試料50mgを25ccのポ
リ瓶中に入れ、ターブラミキサーにより1分間混合した
後、0.1gのキャリア混合試料を400メッシュのス
テンレススクリーンを有する測定容器に入れ、キャリア
ガスとして窒素ガスを1.0kgf/cmの圧力で6
0秒間流入させたときの上記装置による指示値により算
出した。
<Measurement Method> The measurement values in the present specification are values obtained by employing the following measurement methods. (Number average particle diameter and number ratio of inorganic particles) The inorganic particles are observed with a TEM, and a photograph of 100,000 times is taken. The number average particle size distribution of the particles was calculated from the obtained photograph. (Blow-off Charge Amount of Inorganic Particle with Iron Powder) The blow-off charge amount was measured using a blow-off charge amount measuring device (TB-200: manufactured by Toshiba Chemical Corporation) based on the blow-off method. 25 g of a reference iron powder carrier (Z150 / 250: manufactured by Powder Tech) and 50 mg of a sample are placed in a 25 cc plastic bottle, mixed for 1 minute by a turbula mixer, and then 0.1 g of the carrier mixed sample is 400 mesh stainless screen. And a nitrogen gas as a carrier gas at a pressure of 1.0 kgf / cm 2 and a pressure of 6 kg.
It was calculated from the value indicated by the above device when the gas was allowed to flow for 0 seconds.

【0053】(ガラス転移点)ガラス転移点は示差走査
熱量計(DSC−200:セイコー電子社製)を用い
て、リファレンスをアルミナとし、10mgの試料を昇
温速度10℃/minの条件で20〜120℃の間で測
定し、メイン吸熱ピークのショルダー値をガラス転移点
とした。 (樹脂の軟化点)樹脂の軟化点はフローテスター(CF
T−500:島津製作所社製)を用い、ダイスの細孔
(径1mm、長さ1mm)、加圧20kg/cm2、昇
温速度6℃/minの条件下で1cm2の試料を溶融流
出させたときの流出開始点から流出終了点の高さの1/
2に相当する温度を軟化点とした。 (トナー粒径)トナーの粒径はコールターマルチサイザ
ー2(コールター社製)を用いて測定した。
(Glass transition point) The glass transition point was determined by using a differential scanning calorimeter (DSC-200: manufactured by Seiko Denshi Co., Ltd.) using alumina as a reference and subjecting a 10 mg sample to a temperature of 10 ° C./min. The temperature was measured between ℃ 120 ° C., and the shoulder value of the main endothermic peak was defined as the glass transition point. (Softening point of resin) The softening point of the resin was measured using a flow tester (CF
Using a T-500 (manufactured by Shimadzu Corporation), a 1 cm 2 sample was melted and flown out under the conditions of the pores of the die (diameter 1 mm, length 1 mm), pressurization 20 kg / cm 2 , and heating rate 6 ° C./min. 1 / h of the height from the outflow start point to the outflow end point
The temperature corresponding to 2 was taken as the softening point. (Toner Particle Size) The particle size of the toner was measured using Coulter Multisizer 2 (manufactured by Coulter Inc.).

【0054】[0054]

【発明の効果】本発明のトナーによって、現像剤の飛躍
的な長寿命化が容易に達成できる。
According to the toner of the present invention, the life of the developer can be significantly increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 帯電量測定器の概略構成図を示す。FIG. 1 shows a schematic configuration diagram of a charge amount measuring device.

【符号の説明】[Explanation of symbols]

41:導電性スリーブ、42:マグネットロール、4
3:バイアス電源、44:円筒電極
41: conductive sleeve, 42: magnet roll, 4
3: Bias power supply, 44: cylindrical electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 健 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 (72)発明者 福田 洋幸 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 Fターム(参考) 2H005 AA08 BA06 CA26 CA28 CB04 CB07 CB08 CB13 DA02 DA03 EA01 EA05 EA07 EA10 FA02 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Ken Arai 2-3-13-1 Azuchicho, Chuo-ku, Osaka-shi, Osaka Inside Osaka International Building Minolta Co., Ltd. (72) Inventor Hiroyuki Fukuda Azuchi-cho, Chuo-ku, Osaka-shi, Osaka 2-3-1-3 Osaka International Building Minolta Co., Ltd. F-term (reference) 2H005 AA08 BA06 CA26 CA28 CB04 CB07 CB08 CB13 DA02 DA03 EA01 EA05 EA07 EA10 FA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 キャリアと混合されて2成分現像剤とし
て用いられ、少なくとも着色剤及びバインダー樹脂を含
有してなるトナー粒子に少なくとも2種以上の外添剤を
混合添加してなる静電潜像現像用負帯電性トナーであっ
て、外添剤が少なくとも、個数平均径が80〜800n
mであり、且つ1000nm以上の粒子の個数割合が2
0%以下である正帯電性の無機粒子Aと、個数平均径が
5〜50nmである負帯電性の無機粒子Bとからなり、
トナーへの一定の超音波エネルギー付与による無機粒子
A、Bの離脱率dがそれぞれ添加重量の20重量%以
上、50重量%以下であり、無機粒子AおよびBの含有
比率(無機粒子A:無機粒子B)が重量比で2.5:
7.5〜7.5:2.5であることを特徴とする静電潜
像現像用負帯電性トナー。
1. An electrostatic latent image formed by mixing with a carrier to be used as a two-component developer and mixing and adding at least two or more external additives to toner particles containing at least a colorant and a binder resin. A negatively chargeable toner for development, wherein the external additive has at least a number average diameter of 80 to 800 n.
m and the number ratio of particles of 1000 nm or more is 2
0% or less of positively chargeable inorganic particles A and negatively chargeable inorganic particles B having a number average diameter of 5 to 50 nm,
The detachment rate d of the inorganic particles A and B by applying a constant ultrasonic energy to the toner is 20% by weight or more and 50% by weight or less of the added weight, and the content ratio of the inorganic particles A and B (inorganic particles A: inorganic Particles B) having a weight ratio of 2.5:
7.5 to 7.5: 2.5, a negatively chargeable toner for developing an electrostatic latent image.
【請求項2】 無機粒子Aの鉄粉に対するブローオフ帯
電量Qが+50〜+300(μc/g)であり、無機粒
子Bの鉄粉に対するブローオフ帯電量が−2000〜−
100(μc/g)であることを特徴とする請求項1に
記載の静電潜像現像用負帯電性トナー。
2. The blow-off charge Q of the inorganic particles A to the iron powder is +50 to +300 (μc / g), and the blow-off charge of the inorganic particles B to the iron powder is −2000 to −300.
2. The negatively chargeable toner for developing an electrostatic latent image according to claim 1, wherein the toner is 100 (μc / g).
【請求項3】 無機粒子Aの鉄粉に対するブローオフ帯
電量Q(μc/g)と無機粒子Aのトナーへの一定の超
音波エネルギー付与による離脱率dが10≦Q・d≦5
0の関係を満たすことを特徴とする請求項1または2に
記載の静電潜像現像用負帯電性トナー。
3. The blow-off charge amount Q (μc / g) of the inorganic particles A with respect to the iron powder and the detachment rate d of the inorganic particles A by applying constant ultrasonic energy to the toner are 10 ≦ Q · d ≦ 5.
The negatively chargeable toner for developing an electrostatic latent image according to claim 1, wherein the relationship 0 is satisfied.
JP29358798A 1998-10-15 1998-10-15 Negative charge type toner for developing electrostatic latent image Pending JP2000122336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29358798A JP2000122336A (en) 1998-10-15 1998-10-15 Negative charge type toner for developing electrostatic latent image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29358798A JP2000122336A (en) 1998-10-15 1998-10-15 Negative charge type toner for developing electrostatic latent image

Publications (1)

Publication Number Publication Date
JP2000122336A true JP2000122336A (en) 2000-04-28

Family

ID=17796664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29358798A Pending JP2000122336A (en) 1998-10-15 1998-10-15 Negative charge type toner for developing electrostatic latent image

Country Status (1)

Country Link
JP (1) JP2000122336A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1617294A3 (en) * 2004-07-16 2006-05-10 Ricoh Company, Ltd. Toner for developing electrostatic image, method for producing the same, developer, image forming apparatus, process cartridge, and image forming method
US7250243B2 (en) 2003-05-17 2007-07-31 Samsung Electronics Co., Ltd. Nonmagnetic one-component toner for electrophotographic image forming apparatus
JP2008233119A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Single-component developing device
US7664439B2 (en) 2005-12-08 2010-02-16 Ricoh Company, Ltd. Image forming apparatus, and carrier, toner and developer used therein for reducing foggy images
JP2011008243A (en) * 2009-05-27 2011-01-13 Mitsubishi Chemicals Corp Toner for electrostatic charge image development
CN1598702B (en) * 2003-07-01 2012-05-23 株式会社理光 Toner, method for preparing the toner, and image forming method and apparatus using the toner
JP2016057538A (en) * 2014-09-11 2016-04-21 富士ゼロックス株式会社 Developing device, image forming apparatus, developing method, image forming method, and developer set

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250243B2 (en) 2003-05-17 2007-07-31 Samsung Electronics Co., Ltd. Nonmagnetic one-component toner for electrophotographic image forming apparatus
CN1598702B (en) * 2003-07-01 2012-05-23 株式会社理光 Toner, method for preparing the toner, and image forming method and apparatus using the toner
EP1617294A3 (en) * 2004-07-16 2006-05-10 Ricoh Company, Ltd. Toner for developing electrostatic image, method for producing the same, developer, image forming apparatus, process cartridge, and image forming method
US7452645B2 (en) 2004-07-16 2008-11-18 Ricoh Company, Ltd. Toner for developing electrostatic image, method for producing the same, developer, image forming apparatus, process cartridge, and image forming method
US7727700B2 (en) 2004-07-16 2010-06-01 Ricoh Company, Ltd. Toner for developing electrostatic image, method for producing the same, developer, image forming apparatus, process cartridge, and image forming method
US7664439B2 (en) 2005-12-08 2010-02-16 Ricoh Company, Ltd. Image forming apparatus, and carrier, toner and developer used therein for reducing foggy images
JP2008233119A (en) * 2007-03-16 2008-10-02 Ricoh Co Ltd Single-component developing device
JP2011008243A (en) * 2009-05-27 2011-01-13 Mitsubishi Chemicals Corp Toner for electrostatic charge image development
JP2016057538A (en) * 2014-09-11 2016-04-21 富士ゼロックス株式会社 Developing device, image forming apparatus, developing method, image forming method, and developer set

Similar Documents

Publication Publication Date Title
JP4076681B2 (en) Method for producing toner for developing electrostatic latent image
JP3927693B2 (en) Magnetic fine particle dispersed resin carrier, two-component developer, and image forming method
JP4120153B2 (en) Toner for developing electrostatic image, electrostatic image developer, developing method, image forming method and image forming apparatus
JP2011090168A (en) Toner for developing electrostatic charge image, developer for developing electrostatic charge image and image forming apparatus
JP2003140402A (en) Image forming method, toner for supply used in the same and its producing method, and toner cartridge incorporating carrier
JP3047900B1 (en) Toner for electrostatic latent image development
JP2002072799A (en) Cleaning blade for latent image carrier, and apparatus and method for image formation
JP6024532B2 (en) Electrostatic image developer, process cartridge, image forming apparatus and image forming method
JPH08227171A (en) Toner for developing electrostatic charge image
JP3336838B2 (en) Electrostatic image developing toner, electrostatic image developer, and image forming method
JP3575203B2 (en) Electrostatic image developer, image forming method and image forming apparatus
JP2004347654A (en) Electrostatic latent image developer and image forming method
JP2000122336A (en) Negative charge type toner for developing electrostatic latent image
JP3962487B2 (en) Two-component developer and image forming method
JP2008070719A (en) Toner for electrostatic latent image development, image forming apparatus and process cartridge
JP3700263B2 (en) One-component developer and image forming method
JP6750241B2 (en) Toner for developing electrostatic image, electrostatic image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP4225203B2 (en) Electrostatic latent image developing toner, electrostatic latent image developing developer, and image forming method using the same
JPH1039549A (en) Magnetic coated carrier, two-component developing agent and developing method
JP2000199983A (en) Binary developer and image forming method
JP2001083731A (en) Electrostatic charge image developing dry developer and method for developing electrostatic charge image
JP2000122337A (en) Positive charge type toner for developing electrostatic latent image
JP2001083733A (en) Electrostatic charge image developing toner, its manufacturing method, developer and image forming method
JP4010435B2 (en) Non-magnetic one-component developing toner
US20230099642A1 (en) Toner for developing electrostatic charge image, electrostatic charge image developer, and toner cartridge

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110