JP2000118231A - Refrigerating cycle - Google Patents

Refrigerating cycle

Info

Publication number
JP2000118231A
JP2000118231A JP10294920A JP29492098A JP2000118231A JP 2000118231 A JP2000118231 A JP 2000118231A JP 10294920 A JP10294920 A JP 10294920A JP 29492098 A JP29492098 A JP 29492098A JP 2000118231 A JP2000118231 A JP 2000118231A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
flow path
sub
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10294920A
Other languages
Japanese (ja)
Inventor
Kazuo Eitai
和男 永躰
Keiichi Matsuda
慶一 松田
Shinichi Hara
真一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to JP10294920A priority Critical patent/JP2000118231A/en
Publication of JP2000118231A publication Critical patent/JP2000118231A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability of a compressor by preventing stagnation of a refrigerant and lubricating oil even in case of stopping a specific evaporator, in a refrigerating cycle provided with a plurality of the evaporators arranged in parallel. SOLUTION: Solenoid valves 11, 12 opening/closing flow paths 7b, 8b of a refrigerant are provided respectively in both the upstream and the downstream of an auxiliary evaporator 4b for cooling a rear seat side of a vehicle arranged in parallel to a main evaporator 4a for cooling a front seat side of the vehicle, and the solenoid valve 12 in the downstream is closed after the solenoid valve 11 in the upstream is closed in case of stopping supply of the refrigerant to the auxiliary evaporator 4b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、1つの冷凍サイク
ル内に並列に配置された複数の蒸発器を備えた冷凍サイ
クルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle having a plurality of evaporators arranged in parallel in one refrigeration cycle.

【0002】[0002]

【従来の技術】図5は、車室容量の大きな車両に用いら
れる、エバポレータ(蒸発器)を2個備えたデュアルタ
イプの車両用空調装置の冷凍サイクルを示す図である。
この冷凍サイクルにおいて、車両の前席側に冷風を送る
ための主エバポレータ4aと車両の後席側側に冷風を送
るための副エバポレータ4bとが共に稼動している場合
には、コンプレサ1で圧縮され高温高圧となった冷媒
は、コンデンサ2で冷却されて凝縮し、受液器5を通っ
た後、分岐点7において2つの流路7a,7bに分か
れ、主エバポレータ4a側と副エバポレータ4b側とに
それぞれ送られる。上記凝縮された冷媒は、膨張弁3
a,3bを通過する際に急激に膨張させられ低温低圧と
なる。この低温低圧の冷媒は、主エバポレータ4a及び
副エバポレータ4b内で気化された後、主エバポレータ
4aと副エバポレータ4bの出口側の冷媒流路8a,8
bが再び合体する分岐点8において合流し、コンプレサ
1に吸引される。
2. Description of the Related Art FIG. 5 is a diagram showing a refrigeration cycle of a dual-type vehicle air conditioner provided with two evaporators, which is used for a vehicle having a large cabin capacity.
In this refrigeration cycle, when the main evaporator 4a for sending cool air to the front seat side of the vehicle and the sub-evaporator 4b for sending cool air to the rear seat side of the vehicle are both operating, the compressor 1 compresses. The high-temperature and high-pressure refrigerant is cooled and condensed by the condenser 2, passes through the receiver 5, and is divided into two flow paths 7 a and 7 b at a branch point 7, where the main evaporator 4 a and the sub-evaporator 4 b And sent to each. The condensed refrigerant is supplied to the expansion valve 3
When it passes through a and 3b, it is rapidly expanded and becomes low temperature and low pressure. After the low-temperature and low-pressure refrigerant is vaporized in the main evaporator 4a and the sub-evaporator 4b, the refrigerant flow paths 8a and 8 on the outlet side of the main evaporator 4a and the sub-evaporator 4b are formed.
b merge again at the junction 8 where they merge, and are sucked into the compressor 1.

【0003】ところで、上記冷凍サイクルにおいて、上
記主エバポレータ4aのみを稼動させ、車両の前席側の
みに冷風を送るようにした場合には、副エバポレータ4
b側に液化した状態の冷媒が滞留する、いわゆる寝込み
といわれる現象が起こる。エバポレータは、冷媒の流路
に対して容積が大きいので、冷媒が副エバポレータ4b
内に寝込むことにより、主エバポレータ4aの冷凍サイ
クルを循環する冷媒及び冷媒に混合された潤滑油が不足
し、コンプレサ1が潤滑不良になるなど、コンプレサ1
の信頼性が低下するという問題点があった。そこで、図
6に示すように、主エバポレータ4a側と副エバポレー
タ4b側とが連結されている上流側の冷媒流路7bに、
上記冷媒流路7bを開閉する電磁弁6を設け、副エバポ
レータ4bを休止させる場合には、上記電磁弁6を閉じ
て上記冷媒流路7bからの凝縮された冷媒の供給を停止
させることにより、副エバポレータ4bを閉鎖状態と
し、冷媒を主エバポレータ4a側のみに送るようにして
いる。なお、同図の破線で示すように、電磁弁6を、主
エバポレータ4a側と副エバポレータ4b側とが連結さ
れている下流側の冷媒流路8bに設けて副エバポレータ
4bを閉鎖状態としてもよい。
In the above-mentioned refrigerating cycle, when only the main evaporator 4a is operated and cold air is sent only to the front seat side of the vehicle, the sub-evaporator 4a is not operated.
A phenomenon called so-called stagnation occurs in which the liquefied refrigerant stays on the b side. Since the evaporator has a large volume relative to the flow path of the refrigerant, the refrigerant is supplied to the sub-evaporator 4b.
When the compressor 1 is laid inside, the refrigerant circulating through the refrigeration cycle of the main evaporator 4a and the lubricating oil mixed with the refrigerant run short, and the compressor 1 becomes poorly lubricated.
There is a problem that the reliability of the device is reduced. Therefore, as shown in FIG. 6, a refrigerant flow path 7b on the upstream side where the main evaporator 4a side and the sub-evaporator 4b side are connected,
When the electromagnetic valve 6 that opens and closes the refrigerant flow path 7b is provided and the sub-evaporator 4b is stopped, by stopping the supply of the condensed refrigerant from the refrigerant flow path 7b by closing the electromagnetic valve 6, The sub-evaporator 4b is closed, and the refrigerant is sent only to the main evaporator 4a. As shown by the broken line in the figure, the solenoid valve 6 may be provided in the downstream refrigerant flow path 8b where the main evaporator 4a side and the sub evaporator 4b side are connected to close the sub evaporator 4b. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例では、電磁弁6は、冷媒流路7b,8bの一方にし
か設けられていないため、副エバポレータ4bの休止時
に、副エバポレータ4b側を十分に閉鎖状態とすること
ができなかった。例えば、電磁弁6を冷媒流路7bのみ
に設けた場合には、主エバポレータ4aで気化された冷
媒が冷媒流路8bから副エバポレータ4b側に浸入して
液化し、寝込みを起こしてしまう。また、電磁弁6を冷
媒流路8bのみに設けた場合には、凝縮された冷媒が冷
媒流路7bから膨張弁3bを通って副エバポレータ4b
内に浸入してしまうので、主エバポレータ4aの冷凍サ
イクルでの冷媒不足及び潤滑油不足を十分抑制すること
ができないという問題点があった。
However, in the above-mentioned conventional example, the solenoid valve 6 is provided only in one of the refrigerant flow paths 7b and 8b, so that when the sub-evaporator 4b is stopped, the sub-evaporator 4b side is sufficiently provided. Could not be closed. For example, when the solenoid valve 6 is provided only in the refrigerant flow path 7b, the refrigerant vaporized in the main evaporator 4a enters the sub-evaporator 4b side from the refrigerant flow path 8b to be liquefied, causing stagnation. When the solenoid valve 6 is provided only in the refrigerant flow path 8b, the condensed refrigerant flows from the refrigerant flow path 7b through the expansion valve 3b to the sub evaporator 4b.
Therefore, there is a problem that the shortage of the refrigerant and the shortage of the lubricating oil in the refrigeration cycle of the main evaporator 4a cannot be sufficiently suppressed.

【0005】本発明は、従来の問題点に鑑みてなされた
もので、並列に配置された複数の蒸発器を備えた冷凍サ
イクルにおいて、特定の蒸発器が休止している場合で
も、冷媒や潤滑油の寝込みを防止し、圧縮機の信頼性を
向上させることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the conventional problems, and in a refrigeration cycle having a plurality of evaporators arranged in parallel, even if a specific evaporator is at rest, the refrigerant or lubrication is not possible. An object of the present invention is to prevent oil stagnation and improve the reliability of a compressor.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に記載
の冷凍サイクルは、並列に配置された複数の蒸発器の
内、特定の蒸発器の上流側と下流側との双方に冷媒の流
路を開閉する電磁弁を設けたものである。
According to a first aspect of the present invention, there is provided a refrigeration cycle comprising a plurality of evaporators arranged in parallel, wherein a refrigerant is supplied to both an upstream side and a downstream side of a specific evaporator. An electromagnetic valve for opening and closing the flow path is provided.

【0007】請求項2に記載の冷凍サイクルは、上記特
定の蒸発器に対する冷媒の供給を停止する場合には、上
流側の電磁弁を閉じた後に下流側の電磁弁を閉じるよう
にしたものである。
In the refrigeration cycle according to the present invention, when the supply of the refrigerant to the specific evaporator is stopped, the downstream electromagnetic valve is closed after the upstream electromagnetic valve is closed. is there.

【0008】請求項3に記載の冷凍サイクルは、上記電
磁弁の一方あるいは双方を、リリーフ弁機構を備えた電
磁弁から構成したものである。
According to a third aspect of the present invention, in the refrigeration cycle, one or both of the solenoid valves is constituted by a solenoid valve having a relief valve mechanism.

【0009】請求項4に記載の冷凍サイクルは、上記電
磁弁の一方あるいは双方の内部にバイパス流路を設ける
とともに、上記リリーフ弁機構を上記バイパス流路内に
設けたものである。
In a refrigeration cycle according to a fourth aspect of the present invention, a bypass passage is provided inside one or both of the solenoid valves, and the relief valve mechanism is provided in the bypass passage.

【0010】請求項5に記載の冷凍サイクルは、上流側
の電磁弁と下流側の電磁弁との間の冷媒流路に、冷媒を
上流側の電磁弁の上流側または下流側の電磁弁の下流側
に開放するバイパス流路を設けるとともに、このバイパ
ス流路にリリーフ弁を設けたものである。
[0010] In the refrigeration cycle according to the present invention, the refrigerant is supplied to the refrigerant flow path between the upstream solenoid valve and the downstream solenoid valve through the upstream or downstream solenoid valve of the upstream solenoid valve. In addition to the provision of a bypass passage open to the downstream side, a relief valve is provided in the bypass passage.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面に基づき説明する。図1は本発明の実施の形態
に係わる冷凍サイクルのを示す図で、この冷凍サイクル
は、車室容量の大きな車両に用いられる、エバポレータ
(蒸発器)を2個備えたデュアルタイプの車両用空調装
置に用いられる。同図において、1は低圧の冷媒を圧縮
するコンプレサ(圧縮機)、2は圧縮され高温高圧の気
体となった冷媒を冷却し凝縮させるコンデンサ(凝縮
器)、3a,3bは上記冷媒を急激に膨張させ冷媒を低
温低圧の液体とする膨張弁、4a,4bは低温となった
冷媒と周囲の空気とを図外の熱交換器を介して熱交換
し、上記空気を冷却するとともに上記冷媒を気化させる
エバポレータ(蒸発器)で、4aは車両の前席側を冷房
するための主エバポレータ、4bは車両の後席側側を冷
房するための副エバポレータである。また、5はコンプ
レサ1からの凝縮された冷媒を一時貯蔵する受液器であ
る。上記2つのエバポレータ4a,4bは、コンプレサ
1に対して並列に配置されており、上記受液器5からの
冷媒の流路は、分岐点7において、主エバポレータ4a
側への流路7aと副エバポレータ4b側への流路7bと
に分離し、分岐点8において、主エバポレータ4aの出
口側からの流路8aと副エバポレータ4bの出口側から
の流路8bとが合流するように構成されている。また、
上記分岐点7と上記膨張弁3bとの間の冷媒流路7bに
は、上記冷媒流路7bを開閉する第1の電磁弁(以下、
上流側の電磁弁という)11が、上記副エバポレータ4
bの出口側と上記合流点8との間の冷媒流路8bには上
記冷媒流路8bを開閉する第2の電磁弁(以下、下流側
の電磁弁という)12が設けられている。デュアルタイ
プの車両用空調装置においては、通常、車両の前席側の
みの冷房と、前席側と後席側の双方の冷房を行う場合が
多く、後席側のみを冷房する例は少ない。したがって、
主エバポレータ4aは冷房時には常に稼動しているが、
副エバポレータ4bは、車両の前席側のみの冷房の場合
には休止される特定のエバポレータ(蒸発器)に相当す
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing a refrigeration cycle according to an embodiment of the present invention. This refrigeration cycle is used for a vehicle having a large cabin capacity, and is a dual-type vehicle air conditioner having two evaporators. Used for equipment. In the figure, 1 is a compressor (compressor) for compressing a low-pressure refrigerant, 2 is a condenser (condenser) for cooling and condensing the refrigerant that has been compressed and turned into a high-temperature and high-pressure gas, and 3a and 3b rapidly cool the refrigerant. The expansion valves 4a and 4b expand the refrigerant into a low-temperature and low-pressure liquid by exchanging heat between the low-temperature refrigerant and the surrounding air through a heat exchanger (not shown) to cool the air and to remove the refrigerant. An evaporator (evaporator) 4a is a main evaporator for cooling the front seat side of the vehicle, and 4b is a sub-evaporator for cooling the rear seat side of the vehicle. Reference numeral 5 denotes a liquid receiver for temporarily storing the condensed refrigerant from the compressor 1. The two evaporators 4 a and 4 b are arranged in parallel with the compressor 1, and the flow path of the refrigerant from the liquid receiver 5 at the branch point 7 is the main evaporator 4 a
At the branch point 8, the flow path 8a from the outlet side of the main evaporator 4a and the flow path 8b from the outlet side of the sub-evaporator 4b. Are configured to merge. Also,
A first solenoid valve (hereinafter, referred to as a valve) that opens and closes the refrigerant flow path 7b is provided in the refrigerant flow path 7b between the branch point 7 and the expansion valve 3b.
The upstream evaporator 4 is called an upstream electromagnetic valve.
A second electromagnetic valve (hereinafter, referred to as a downstream electromagnetic valve) 12 that opens and closes the refrigerant flow path 8b is provided in the refrigerant flow path 8b between the outlet side of b and the junction 8. In a dual-type air conditioner for a vehicle, cooling only on the front seat side of the vehicle and cooling on both the front seat side and the rear seat side are usually performed in many cases, and there are few examples of cooling only on the rear seat side. Therefore,
The main evaporator 4a is always operating during cooling,
The sub-evaporator 4b corresponds to a specific evaporator (evaporator) that is stopped in the case of cooling only on the front seat side of the vehicle.

【0012】次に、本実施の形態の冷凍サイクルで、主
エバポレータ4aのみを稼動させ、副エバポレータ4b
を休止(リア側A/Cオフ)させて、車両の前席側のみ
に冷風を送るようにした場合の動作について説明する。
なお、上記冷凍サイクルにおいて、主エバポレータ4a
と副エバポレータ4bとが共に稼動している場合の動作
は従来例と同様であるので説明を省略する。特定の蒸発
器である副エバポレータ4bに対する冷媒の供給を停止
する場合には、まず、上流側の電磁弁11を閉鎖し、副
エバポレータ4b側への凝縮された冷媒の供給を停止
し、その後、約2〜3分経過してから下流側の電磁弁1
2を閉鎖する。この処理により、副エバポレータ4b内
に供給されてた冷媒は、冷媒流路8bを介してコンプレ
ッサ1により吸引されコンプレッサ1に戻されるので、
副エバポレータ4b内に残留する冷媒の量が低減され、
寝込み防止することができる。また、下流側の電磁弁1
2の閉鎖後は、主エバポレータ4aで気化された冷媒が
冷媒流路8bから副エバポレータ4b側に浸入すること
がないので、副エバポレータ4b内の寝込みを確実に防
止することができ、コンプレッサ1の信頼性を向上させ
ることができる。なお、上記処理により、副エバポレー
タ4b内に残留する冷媒の量を少なくできるので、電磁
弁11,12を閉鎖しても、温度上昇による副エバポレ
ータ4b側の圧力上昇も少ない。
Next, in the refrigeration cycle of the present embodiment, only the main evaporator 4a is operated and the sub-evaporator 4b is operated.
Will be described when the vehicle is stopped (rear A / C off) so as to send cool air only to the front seat side of the vehicle.
In the refrigerating cycle, the main evaporator 4a
The operation when both the sub-evaporator 4b and the sub-evaporator 4b are operating is the same as that of the conventional example, and the description is omitted. When stopping the supply of the refrigerant to the sub-evaporator 4b which is a specific evaporator, first, the electromagnetic valve 11 on the upstream side is closed, and the supply of the condensed refrigerant to the sub-evaporator 4b is stopped. After about 2 to 3 minutes have passed, the downstream solenoid valve 1
2 is closed. By this processing, the refrigerant supplied into the sub-evaporator 4b is sucked by the compressor 1 through the refrigerant flow passage 8b and returned to the compressor 1, so that
The amount of the refrigerant remaining in the sub-evaporator 4b is reduced,
Sleeping can be prevented. Also, the downstream solenoid valve 1
After the closure of the compressor 2, since the refrigerant vaporized by the main evaporator 4a does not enter the sub-evaporator 4b side from the refrigerant flow path 8b, stagnation in the sub-evaporator 4b can be reliably prevented, and the compressor 1 Reliability can be improved. In addition, since the amount of the refrigerant remaining in the sub-evaporator 4b can be reduced by the above-described processing, even if the solenoid valves 11 and 12 are closed, the pressure increase on the sub-evaporator 4b side due to the temperature rise is small.

【0013】ところで、高温下でかつ空調装置を停止し
た状態で車両を放置した場合には、車室内の温度が上昇
し、エバポレータ4a,4b内の冷媒が蒸発膨張する
が、主エバポレータ4a側には、外気温にさらされてい
るコンデンサ2や受液器5等があるため、主エバポレー
タ4a内の冷媒が蒸発しても主エバポレータ4a側の圧
力はあまり上昇しない。しかし、副エバポレータ4b側
では、副エバポレータ4bの上流側と下流側との双方が
電磁弁11,12により閉鎖されているため、副エバポ
レータ4b内に残留する冷媒の量が少ないとはいえ、車
両の放置状態等によっては、上記冷媒の蒸発により、副
エバポレータ4b側の圧力が上昇して副エバポレータ4
bの耐圧を越えてしまい、副エバポレータ4bが破裂す
る危険性がある。そこで、本実施の形態においては、後
述するように、上流側の電磁弁11または下流側の電磁
弁12の一方または双方にリリーフ弁機構を設けて、副
エバポレータ4bの破裂を防止するようにしている。
When the vehicle is left at a high temperature and with the air conditioner stopped, the temperature in the passenger compartment rises and the refrigerant in the evaporators 4a and 4b evaporates and expands. Since there is the condenser 2 and the liquid receiver 5 exposed to the outside air temperature, the pressure on the main evaporator 4a side does not increase so much even if the refrigerant in the main evaporator 4a evaporates. However, on the side of the sub-evaporator 4b, both the upstream side and the downstream side of the sub-evaporator 4b are closed by the electromagnetic valves 11 and 12, so that the amount of the refrigerant remaining in the sub-evaporator 4b is small. In some cases, the pressure on the side of the sub-evaporator 4b increases due to the evaporation of the refrigerant, and
b, the sub evaporator 4b may be ruptured. Therefore, in the present embodiment, as described later, a relief valve mechanism is provided on one or both of the upstream solenoid valve 11 and the downstream solenoid valve 12 so as to prevent the sub-evaporator 4b from bursting. I have.

【0014】図2は、リリーフ弁機構を備えた電磁弁と
して、下流側の電磁弁12を例にとり、流路を一般化し
て説明する。流路9と流路10との間に設けられた電磁
弁12は、電磁コイル13中に一端に弁体14を直結し
た可動鉄心15を配置し、上記電磁コイル13に流れる
励磁電流を制御することにより、上記弁体14を上下さ
せ流路9と流路10とを連結または分離するものであ
る。上記可動鉄心15の上記弁体14と反対側には、上
記可動鉄心15を閉側(同図の下方)に付勢するバネ1
6が取付けられている。このバネ16は、図3に示すよ
うに、流路10の内圧が所定圧力以上に高くなると上記
内圧によって縮み、そのため弁体14が上方に持ち上げ
られて流路10内の流体が流路9内に流れ込むように設
計されている。すなわち、この電磁弁12は、リリーフ
弁(安全弁)の機能を有しており、上方に持ち上げられ
た弁体14と流路10との隙間の空間が流路9,10内
の流体のバイパス流路を形成する。したがって、上記流
路9を冷媒流路8bの主エバポレータ4a側、流路10
を副エバポレータ4b側とすれば、副エバポレータ4b
側の圧力が上昇し、電磁弁12のリリーフ弁機構が作動
する所定の圧力に達した場合には、電磁弁12の弁体1
4が持ち上げられ、副エバポレータ4b側の冷媒が主エ
バポレータ4a側に流れ込むので、副エバポレータ4b
側の圧力は減少し、副エバポレータ4bの破裂を防止す
ることができる。なお、上記リリーフ弁機構が作動する
所定の圧力は、副エバポレータ4bの耐圧の約1/2〜
1/3程度の圧力に設定する。
FIG. 2 illustrates a generalized flow path, taking a downstream electromagnetic valve 12 as an example of an electromagnetic valve having a relief valve mechanism. An electromagnetic valve 12 provided between the flow path 9 and the flow path 10 has a movable core 15 having a valve body 14 directly connected to one end of an electromagnetic coil 13, and controls an exciting current flowing through the electromagnetic coil 13. Thus, the valve element 14 is moved up and down to connect or separate the flow path 9 and the flow path 10. A spring 1 for urging the movable core 15 to the closed side (downward in the figure) is provided on the opposite side of the movable core 15 to the valve element 14.
6 are attached. As shown in FIG. 3, when the internal pressure of the flow path 10 becomes higher than a predetermined pressure, the spring 16 contracts due to the internal pressure, so that the valve element 14 is lifted upward and the fluid in the flow path 10 Designed to flow into. That is, the solenoid valve 12 has a function of a relief valve (safety valve), and the space between the valve body 14 and the flow path 10 that is lifted upward is a bypass flow of the fluid in the flow paths 9 and 10. Form a road. Accordingly, the flow path 9 is connected to the main evaporator 4a side of the refrigerant flow path 8b and the flow path 10
Is the sub-evaporator 4b side, the sub-evaporator 4b
Side pressure rises and reaches a predetermined pressure at which the relief valve mechanism of the solenoid valve 12 operates, the valve element 1 of the solenoid valve 12
4 is lifted, and the refrigerant on the sub-evaporator 4b side flows into the main evaporator 4a side.
The pressure on the side is reduced, and the rupture of the sub-evaporator 4b can be prevented. The predetermined pressure at which the relief valve mechanism operates is about one-half of the withstand pressure of the sub-evaporator 4b.
Set the pressure to about 1/3.

【0015】なお、本実施の形態においては、上流側の
電磁弁11または下流側の電磁弁12の一方または双方
にリリーフ弁機構を設けて副エバポレータ4bの破裂を
防止するようにしたが、図3に示すように、電磁弁1
1,12の一方あるいは双方の内部にバイパス流路17
を設け、このバイパス流路にリリーフ弁18を設けて
も、同様の効果が得られる。また、冷媒を上流側の電磁
弁11の上流側または下流側の電磁弁12の下流側に開
放するバイパス流路を設けるとともに、このバイパス流
路にリリーフ弁を設けるようにしてもよい。図4は、そ
の一例で、12は下流側の電磁弁、流路9は冷媒流路8
bの主エバポレータ4a側、流路10は副エバポレータ
4b側の流路で、上記流路9,10間に上記電磁弁12
をバイパスするバイパス流路19を設けるとともに、こ
のバイパス流路19内に、上記流路10内の圧力上昇に
より、上記バイパス流路19を開放するリリーフ弁20
を設けることにより、副エバポレータ4bの破裂を防止
することができる。
In this embodiment, one or both of the upstream solenoid valve 11 and the downstream solenoid valve 12 are provided with a relief valve mechanism to prevent the sub-evaporator 4b from bursting. As shown in FIG.
A bypass passage 17 is provided inside one or both of
The same effect can be obtained by providing a relief valve 18 in this bypass flow path. In addition, a bypass flow path that opens the refrigerant upstream of the electromagnetic valve 11 on the upstream side or downstream of the electromagnetic valve 12 on the downstream side may be provided, and a relief valve may be provided in the bypass flow path. FIG. 4 shows an example thereof, in which 12 is a solenoid valve on the downstream side, and the flow path 9 is a refrigerant flow path 8.
b is a flow path on the side of the main evaporator 4a, and a flow path 10 is a flow path on the side of the sub-evaporator 4b.
And a relief valve 20 for opening the bypass passage 19 in the bypass passage 19 due to a pressure increase in the passage 10.
, The rupture of the sub-evaporator 4b can be prevented.

【0016】[0016]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、1つの冷凍サイクル内に並列に配置され
た複数の蒸発器の内、特定の蒸発器の上流側と下流側と
の双方に冷媒の流路を開閉する電磁弁を設けたので、上
記特定の蒸発器への凝縮された冷媒の浸入を防止するこ
とができるとともに、他の蒸発器からの気化された冷媒
の浸入を防止することができるので、上記特定の蒸発器
内の寝込みを確実に防止することができ、圧縮機の信頼
性を向上させることができる。
As described above, according to the first aspect of the present invention, of a plurality of evaporators arranged in parallel in one refrigeration cycle, an upstream side and a downstream side of a specific evaporator. The electromagnetic valve for opening and closing the refrigerant flow path is provided on both of the above, so that the infiltration of the condensed refrigerant into the specific evaporator can be prevented, and the vaporized refrigerant from the other evaporators can be prevented from entering. Since intrusion can be prevented, stagnation in the specific evaporator can be reliably prevented, and reliability of the compressor can be improved.

【0017】請求項2に記載の発明によれば、特定の蒸
発器に対する冷媒の供給を停止する場合には、上流側の
電磁弁を閉じた後に下流側の電磁弁を閉じるようにし、
特定の蒸発器に内に供給された冷媒を圧縮機に戻っすよ
うにしたので、上記蒸発器内に残留する冷媒の量が低減
され、冷媒の寝込みを防止を更に確実に行うことができ
る。
According to the second aspect of the invention, when the supply of the refrigerant to the specific evaporator is stopped, the downstream electromagnetic valve is closed after the upstream electromagnetic valve is closed.
Since the refrigerant supplied to the specific evaporator is returned to the compressor, the amount of the refrigerant remaining in the evaporator is reduced, and the stagnation of the refrigerant can be more reliably prevented.

【0018】請求項3記載の発明によれば、電磁弁の一
方あるいは双方を、リリーフ弁機構を備えた電磁弁から
構成したので、車室内の温度が上昇して蒸発器内の圧力
が上昇した場合には上記リリーフ弁機構が作動し、蒸発
器の破裂を防止することができる。
According to the third aspect of the present invention, one or both of the solenoid valves is constituted by a solenoid valve having a relief valve mechanism, so that the temperature in the vehicle compartment rises and the pressure in the evaporator rises. In this case, the relief valve mechanism operates to prevent the evaporator from bursting.

【0019】請求項4記載の発明によれば、上記電磁弁
の一方あるいは双方の内部にバイパス流路を設けるとと
もに、上記バイパス流路内にリリーフ弁を設けたので、
蒸発器内の圧力が上昇した場合でも、蒸発器の破裂を防
止することができる。
According to the fourth aspect of the present invention, a bypass passage is provided inside one or both of the solenoid valves, and a relief valve is provided inside the bypass passage.
Even when the pressure in the evaporator rises, it is possible to prevent the evaporator from bursting.

【0020】請求項5に記載の発明によれば、上流側の
電磁弁と下流側の電磁弁との間の冷媒流路に、冷媒を上
流側の電磁弁の上流側または下流側の電磁弁の下流側に
開放するバイパス流路を設けるとともに、このバイパス
流路にリリーフ弁を設けたので、蒸発器内の圧力上昇に
よる蒸発器の破裂を防止することができる。
According to the fifth aspect of the present invention, the refrigerant is supplied to the refrigerant flow path between the upstream solenoid valve and the downstream solenoid valve in the upstream or downstream of the upstream solenoid valve. Since a bypass flow path is provided downstream of the evaporator and a relief valve is provided in the bypass flow path, the evaporator can be prevented from being ruptured due to a rise in pressure in the evaporator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係わる冷凍サイクルを示す
図である。
FIG. 1 is a diagram showing a refrigeration cycle according to an embodiment of the present invention.

【図2】本発明の実施形態に係わるリリーフ機構を示す
図である。
FIG. 2 is a view showing a relief mechanism according to the embodiment of the present invention.

【図3】リリーフ機構の他の例を示す図である。FIG. 3 is a view showing another example of a relief mechanism.

【図4】リリーフ機構の他の例を示す図である。FIG. 4 is a diagram showing another example of the relief mechanism.

【図5】従来の冷凍サイクルを示す図である。FIG. 5 is a view showing a conventional refrigeration cycle.

【図6】従来の冷凍サイクルの他の例を示す図である。FIG. 6 is a view showing another example of a conventional refrigeration cycle.

【符号の説明】[Explanation of symbols]

1 コンプレサ、2 コンデンサ、3a,3b 膨張
弁、4a 主エバポレータ、4b 副エバポレータ、5
受液器、7 分岐点、8 合流点、11 第1の電磁
弁、12 第2の電磁弁
Reference Signs List 1 compressor, 2 condenser, 3a, 3b expansion valve, 4a main evaporator, 4b sub-evaporator, 5
Liquid receiver, 7 branch point, 8 junction point, 11 first solenoid valve, 12 second solenoid valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 並列に配置された複数の蒸発器を備えた
冷凍サイクルにおいて、上記蒸発器の内、特定の蒸発器
の上流側と下流側との双方に冷媒の流路を開閉する電磁
弁を設けたことを特徴とする冷凍サイクル。
In a refrigeration cycle having a plurality of evaporators arranged in parallel, an electromagnetic valve for opening and closing a refrigerant flow path both upstream and downstream of a specific evaporator among said evaporators. A refrigeration cycle comprising:
【請求項2】 上記特定の蒸発器に対する冷媒の供給を
停止する場合には、上流側の電磁弁を閉じた後に下流側
の電磁弁を閉じるようにしたことを特徴とする請求項1
記載の冷凍サイクル。
2. The method according to claim 1, wherein when the supply of the refrigerant to the specific evaporator is stopped, the downstream electromagnetic valve is closed after the upstream electromagnetic valve is closed.
Refrigeration cycle as described.
【請求項3】 上記電磁弁の一方あるいは双方を、リリ
ーフ弁機構を備えた電磁弁から構成したことを特徴とす
る請求項1又は請求項2記載の冷凍サイクル。
3. The refrigeration cycle according to claim 1, wherein one or both of the solenoid valves is constituted by a solenoid valve having a relief valve mechanism.
【請求項4】 上記電磁弁の一方あるいは双方の内部に
バイパス流路を設けるとともに、このバイパス流路内に
リリーフ弁を設けたことを特徴とする請求項1又は請求
項2記載の冷凍サイクル。
4. The refrigeration cycle according to claim 1, wherein a bypass passage is provided inside one or both of the solenoid valves, and a relief valve is provided in the bypass passage.
【請求項5】 上記2つの電磁弁間の冷媒流路に、冷媒
を上流側の電磁弁の上流側または下流側の電磁弁の下流
側に開放するためのバイパス流路を設けるとともに、こ
のバイパス流路にリリーフ弁を設けたことを特徴とする
請求項1又は請求項2記載の冷凍サイクル。
5. A refrigerant flow path between the two solenoid valves is provided with a bypass flow path for releasing the refrigerant upstream of the upstream electromagnetic valve or downstream of the downstream electromagnetic valve. The refrigeration cycle according to claim 1 or 2, wherein a relief valve is provided in the flow path.
JP10294920A 1998-10-16 1998-10-16 Refrigerating cycle Pending JP2000118231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10294920A JP2000118231A (en) 1998-10-16 1998-10-16 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10294920A JP2000118231A (en) 1998-10-16 1998-10-16 Refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2000118231A true JP2000118231A (en) 2000-04-25

Family

ID=17813976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10294920A Pending JP2000118231A (en) 1998-10-16 1998-10-16 Refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2000118231A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214703A (en) * 2005-02-07 2006-08-17 Fuji Electric Retail Systems Co Ltd Refrigerant circuit and beverage supply device
US7866378B2 (en) 2004-11-09 2011-01-11 Denso Corporation Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same
US8966936B2 (en) 2010-08-12 2015-03-03 Halla Visteon Climate Control Corporation Expansion valve and air conditioner for vehicles having the same
US8978412B2 (en) 2009-12-04 2015-03-17 Halla Visteon Climate Control Corporation Air conditioner for vehicles
WO2018193518A1 (en) * 2017-04-18 2018-10-25 三菱電機株式会社 Air conditioner
US11435124B2 (en) 2018-02-28 2022-09-06 Carrier Corporation Refrigeration system with leak detection

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866378B2 (en) 2004-11-09 2011-01-11 Denso Corporation Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same
US9669499B2 (en) 2004-11-09 2017-06-06 Denso Corporation Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same
JP2006214703A (en) * 2005-02-07 2006-08-17 Fuji Electric Retail Systems Co Ltd Refrigerant circuit and beverage supply device
US8978412B2 (en) 2009-12-04 2015-03-17 Halla Visteon Climate Control Corporation Air conditioner for vehicles
US8966936B2 (en) 2010-08-12 2015-03-03 Halla Visteon Climate Control Corporation Expansion valve and air conditioner for vehicles having the same
WO2018193518A1 (en) * 2017-04-18 2018-10-25 三菱電機株式会社 Air conditioner
JPWO2018193518A1 (en) * 2017-04-18 2019-11-21 三菱電機株式会社 Air conditioner
CN110494701A (en) * 2017-04-18 2019-11-22 三菱电机株式会社 Air conditioner
RU2743727C1 (en) * 2017-04-18 2021-02-25 Мицубиси Электрик Корпорейшн Air conditioning unit
US11204191B2 (en) 2017-04-18 2021-12-21 Mitsubishi Electric Corporation Air-conditioning apparatus provided with refrigerant circuit capable of performing heating operation
US11435124B2 (en) 2018-02-28 2022-09-06 Carrier Corporation Refrigeration system with leak detection

Similar Documents

Publication Publication Date Title
US20100180612A1 (en) Refrigeration device
EP1120611A1 (en) Refrigerating device
EP2910871B1 (en) Refrigeration device
US11364770B2 (en) Refrigeration system for a vehicle, comprising a refrigerant circuit having a heat exchanger, and heat exchanger for such a refrigeration system
JP2007271201A (en) Supercritical cycle and expansion valve used for refrigeration cycle
CN107401849A (en) Multiple on-line system and its control method and device that loop valve body is subcooled
JP5157580B2 (en) Refrigeration equipment
JP2006170500A (en) Air conditioner and its operating method
JP2000118231A (en) Refrigerating cycle
JPH09318166A (en) Refrigerating apparatus
JP4031560B2 (en) Air conditioner
JP3458058B2 (en) Refrigeration equipment
JP3495899B2 (en) Screw refrigerator
CN113424000B (en) Thermal management device for an electric or hybrid motor vehicle
JP2000180026A (en) Refrigerating unit for refrigerator
JPH06174319A (en) Air conditioner for vehicle
JP2006317024A (en) Refrigerating device
JP3754272B2 (en) Air conditioner
JPH02192559A (en) Dual refrigerator
JP2000094953A (en) Cooling equipment for automobile
JPH08166183A (en) Air-conditioning equipment
JP2003336917A (en) Cooling device
JPH025336Y2 (en)
JPH0420752A (en) Double-element type freezer device
EP1260776A1 (en) A heat exchanger for an air conditioning system