JP2000116089A - Permanent magnet motor - Google Patents

Permanent magnet motor

Info

Publication number
JP2000116089A
JP2000116089A JP27760398A JP27760398A JP2000116089A JP 2000116089 A JP2000116089 A JP 2000116089A JP 27760398 A JP27760398 A JP 27760398A JP 27760398 A JP27760398 A JP 27760398A JP 2000116089 A JP2000116089 A JP 2000116089A
Authority
JP
Japan
Prior art keywords
magnet
cylindrical magnet
cylindrical
motor
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27760398A
Other languages
Japanese (ja)
Inventor
Koji Sato
孝治 佐藤
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP27760398A priority Critical patent/JP2000116089A/en
Priority to EP99402202A priority patent/EP0996216B1/en
Priority to DE69914850T priority patent/DE69914850T2/en
Priority to US09/396,420 priority patent/US6262507B1/en
Publication of JP2000116089A publication Critical patent/JP2000116089A/en
Priority to US09/826,825 priority patent/US6633100B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet motor of high performance by suppressing a variation in magnetic flux density between magnetic poles of a magnet, which is a cylindrical magnet oriented in one direction vertical to the axis of the cylinder through a vertical magnetic field molding method and magnetized into multiple poles and reducing the variation in torque. SOLUTION: A cylindrical magnet 1, oriented in one direction vertical to the axis of the cylinder, is manufactured by a vertical magnetic field molding method. When the number of poles magnetized in the circumferential direction of the cylindrical magnet 1 is 2n ((n) is a positive integer larger than 1 and smaller than 50), the number of teeth 2 of a stator to be combined with the cylindrical magnet 1 is 3k ((k) is a positive integer larger than 1 and smaller than 33) and where 2n≠3k.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はサーボモータ、スピ
ンドルモータ等の永久磁石モータの改良に係わるもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in permanent magnet motors such as servo motors and spindle motors.

【0002】[0002]

【従来の技術】フェライトや希土類合金のような結晶磁
気異方性材料を粉砕し、特定の磁場中でプレス成型を行
い作製される異方性磁石は、スピーカ、モータ、計測
器、その他の電気機器等に広く使用されている。このう
ち特にラジアル方向に異方性を有する希土類焼結磁石
は、磁気特性に優れ、軸方向への自由な着磁が可能であ
り、またセグメント磁石のような磁石固定用の補強の必
要もないため、ACサーボモータ、DCブラシレスモー
タ等に使用されている。特に近年はモータの高性能化に
ともない、長尺のラジアル異方性磁石が求められてき
た。ラジアル配向を有する磁石は磁場中成型または後方
押し出しにより製造されるが、磁場中成型法はコアを介
して磁場を対抗方向から印加しラジアル配向を得るがコ
ア形状により配向可能な磁石高さが決まってしまい、長
尺品を製造することが難しい。また、後方押し出し法は
設備が大掛かりで、歩留まりが悪く、安価な磁石を製造
することが困難であった。このようにラジアル異方性磁
石は、いかなる方法においても製造が困難であり、安く
大量に製造することは難しくラジアル異方性磁石を用い
たモータも非常にコストが高くなってしまうという不利
があった。
2. Description of the Related Art Anisotropic magnets made by crushing crystalline magnetic anisotropic materials such as ferrites and rare earth alloys and pressing them in a specific magnetic field are used to produce loudspeakers, motors, measuring instruments, and other electric machines. Widely used for equipment and the like. Of these, rare earth sintered magnets that have anisotropy in the radial direction in particular have excellent magnetic properties, can be freely magnetized in the axial direction, and do not require reinforcement for fixing magnets such as segment magnets. Therefore, they are used for AC servomotors, DC brushless motors, and the like. In particular, in recent years, a long radial anisotropic magnet has been demanded as the performance of a motor becomes higher. Magnets with radial orientation are manufactured by molding in a magnetic field or by backward extrusion.In the molding method in a magnetic field, a magnetic field is applied from the opposite direction through a core to obtain radial orientation, but the magnet height that can be oriented is determined by the core shape. It is difficult to manufacture long products. In addition, the backward extrusion method requires large facilities, has a low yield, and it is difficult to manufacture an inexpensive magnet. As described above, it is difficult to manufacture the radial anisotropic magnet by any method, and it is difficult to mass-produce it inexpensively, and there is a disadvantage that the cost of the motor using the radial anisotropic magnet is very high. Was.

【0003】[0003]

【発明が解決しようとする課題】ラジアル異方性磁石を
用いずとも円筒磁石に多極着磁が行え、磁束密度が高
く、かつ極間における磁束密度のばらつきが小さけれ
ば、高性能の永久磁石モータ用の磁石となりうる。磁石
を垂直磁場プレスにより円筒軸垂直の一方向に配向して
おき、着磁のみを多極にすることによりラジアル異方性
磁石を用いずに永久磁石モータ用円筒多極磁石を作製す
る方法が提案された(電気学会マグネティクス研究会資
料MAG−85−120,1985)。垂直磁場成型に
より製造された、円筒軸垂直の一方向に配向した円筒磁
石(以下、径方向配向円筒磁石と呼ぶ)はプレス機のキ
ャビティが許すかぎりの長尺化(50mm以上)に加え
て多連プレスが行えるので、1度のプレスで多数個の成
型体が得られ、高価なラジアル異方性磁石の代わりに廉
価にモータ用円筒磁石を供給することができる。しか
し、実際に垂直磁場プレスにより作製された径方向配向
円筒磁石に多極着磁を行った磁石は配向方向近傍の極で
は磁束密度が高く、配向方向に垂直な極では磁束密度が
小さいため、モータに組みモータを回転させると極間の
磁束密度のばらつきを反映したトルクむらが生じてしま
い、実用に耐えうるモータ用磁石とは言えなかった。
If a cylindrical magnet can be multipolar magnetized without using a radial anisotropic magnet, the magnetic flux density is high, and the variation in magnetic flux density between the poles is small, a high-performance permanent magnet can be used. It can be a magnet for a motor. A method of manufacturing a cylindrical multipole magnet for a permanent magnet motor without using a radial anisotropic magnet by orienting the magnet in one direction perpendicular to the cylindrical axis by a vertical magnetic field press and making only the magnetization multipole. Proposed (MAG-85-120, 1985). Cylindrical magnets manufactured by vertical magnetic field molding and oriented in one direction perpendicular to the cylinder axis (hereinafter referred to as radially-oriented cylindrical magnets) are as long as the cavity of the press machine allows (in addition to 50 mm or more), in addition to many. Since continuous pressing can be performed, a large number of molded bodies can be obtained by one press, and a cylindrical magnet for a motor can be supplied at a low cost instead of an expensive radial anisotropic magnet. However, magnets that are multipole magnetized on a radially oriented cylindrical magnet actually produced by a vertical magnetic field press have a high magnetic flux density at poles near the orientation direction and a low magnetic flux density at poles perpendicular to the orientation direction. When the motor is assembled with the motor and the motor is rotated, uneven torque reflecting the variation in the magnetic flux density between the poles occurs, and it cannot be said that the magnet is a motor magnet that can withstand practical use.

【0004】[0004]

【課題を解決するための手段】本発明者らはかかる課題
を解決するために鋭意努力を重ねた結果、本発明に至っ
たもので、本発明の永久磁石モータは、(1)垂直磁場
成型法によって作製された、円筒軸に垂直な一方向に配
向された円筒磁石における周方向の着磁極数が2n(n
は1より大きく50より小さい正の整数)個のとき、こ
の円筒磁石と組み合わせるステータの歯数が3k(kは
1より大きく33より小さい正の整数)個であり、かつ
2n≠3kであることを特徴としている、(2)円筒軸
に垂直な一方向に配向した円筒磁石のスキュー角度は円
筒磁石一極分の1/10から2/3で、2n(nは1よ
り大きく50より小さい正の整数)個の多極スキュー着
磁からなっている、(3)ステータ歯のスキュー角度は
円筒磁石一極分の角度の1/10から2/3で、3k
(kは1より大きく33より小さい正の整数)個のスキ
ュー歯を有している。本発明により、高性能の同期式磁
石モータを低コストで大量に供給することができる。
Means for Solving the Problems The present inventors have made intensive efforts to solve the above problems, and as a result, the present invention has been achieved. The permanent magnet motor of the present invention has the following features. The number of magnetic poles in the circumferential direction of a cylindrical magnet manufactured by the method and oriented in one direction perpendicular to the cylindrical axis is 2n (n
Is greater than 1 and less than 50), the number of teeth of the stator combined with the cylindrical magnet is 3k (k is a positive integer greater than 1 and less than 33), and 2n ≠ 3k (2) The skew angle of a cylindrical magnet oriented in one direction perpendicular to the cylindrical axis is 1/10 to 2/3 of one pole of the cylindrical magnet, and 2n (n is larger than 1 and smaller than 50 (3) The skew angle of the stator teeth is 1/10 to 2/3 of the angle of one pole of the cylindrical magnet, and is 3k.
(K is a positive integer greater than 1 and less than 33) skew teeth. According to the present invention, a high-performance synchronous magnet motor can be supplied in large quantities at low cost.

【0005】[0005]

【発明の実施の形態】本発明の作用を、NdFeB磁石
の径方向配向円筒磁石について以下に説明するが、本発
明はNdFeB磁石に限るものではない。図1は、垂直
磁場プレスで作製したNd系円筒磁石を、6極着磁した
時の表面磁束密度の測定結果である。このように径方向
配向させた円筒磁石を6極着磁すると、配向方向のB、
C、E、F極では大きな表面磁束が得られるが、配向に
垂直な方向のA、D極表面付近では磁束密度が小さくな
る。したがって、各極から得られる総磁束量も極間でバ
ラツキが生じ、モータに組み込まれたときには、回転む
らや振動、騒音の原因となりうる。そこで本発明におい
ては、径方向に配向した円筒磁石の多極着磁極数を2n
(nは1から50までの正の整数)としたときに、これ
と組み合わせるステータの歯数を3k(kは1より大き
くて33より小さい正の整数)とし、かつまた2n≠3
kにすることによって、配向方向の磁束密度が高い磁石
極と、配向方向ではなくて磁束密度の低い極とが同一位
相において互いに組み合わされ、その結果トータルの磁
束量は平均化され、モータトルクも平均化されることに
なる。したがって、このような組み合わせで作られたモ
ータのトルクリップルは小さく、安価な磁石を用いて高
性能な同期式磁石モータを製造することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the present invention will be described below for a radially oriented cylindrical magnet of an NdFeB magnet, but the present invention is not limited to an NdFeB magnet. FIG. 1 shows a measurement result of the surface magnetic flux density when a Nd-based cylindrical magnet produced by a vertical magnetic field press is magnetized in six poles. When the cylindrical magnet thus radially oriented is magnetized in six poles, B in the orientation direction,
A large surface magnetic flux is obtained at the C, E, and F poles, but the magnetic flux density becomes small near the A and D pole surfaces in a direction perpendicular to the orientation. Therefore, the total amount of magnetic flux obtained from each pole also varies between the poles, and when incorporated into a motor, may cause uneven rotation, vibration, and noise. Therefore, in the present invention, the number of multipolar magnetized poles of the cylindrical magnet oriented in the radial direction is 2n.
When (n is a positive integer from 1 to 50), the number of stator teeth to be combined with this is 3k (k is a positive integer greater than 1 and less than 33), and 2n ≠ 3
By setting k, the magnet pole having a high magnetic flux density in the orientation direction and the pole having a low magnetic flux density instead of the orientation direction are combined with each other in the same phase. As a result, the total magnetic flux amount is averaged, and the motor torque is also reduced. It will be averaged. Therefore, the torque ripple of the motor made by such a combination is small, and a high-performance synchronous magnet motor can be manufactured using inexpensive magnets.

【0006】さらに、この円筒磁石にスキュー着磁を円
筒磁石一極分の角度の1/10から2/3で行うか、ス
テータ極の形状を円筒磁石一極分の角度の1/10から
2/3の角度でスキューするかによって、コギングトル
クを小さくすることができる。円筒磁石及びステータ歯
のスキュー角度が、円筒磁石1極分の角度の1/10未
満であるとスキュー着磁によるコギングトルク低下の効
果が小さく、円筒磁石1極分の角度の2/3より大きい
とモータのトルクの低下が大きくなるため、スキュー角
度は円筒磁石1極分の角度の1/10から2/3の角度
が好ましい。
Further, the skew magnetization of the cylindrical magnet is performed at 1/10 to 2/3 of the angle of one pole of the cylindrical magnet, or the shape of the stator pole is changed to 1/10 to 2/3 of the angle of one pole of the cylindrical magnet. The cogging torque can be reduced depending on whether the skew is performed at an angle of 3. If the skew angle of the cylindrical magnet and the stator teeth is less than 1/10 of the angle of one pole of the cylindrical magnet, the effect of lowering the cogging torque due to the skew magnetization is small, and is larger than two thirds of the angle of one pole of the cylindrical magnet. Therefore, the skew angle is preferably 1/10 to 2/3 of the angle of one pole of the cylindrical magnet.

【0007】[0007]

【実施例】(実施例1)それぞれ純度99.7重量%の
Nd、Dy、Fe、Co、M(MはAl、Si、Cu)
と純度99.5重量%のBを用い、真空溶解炉で溶解鋳
造してインゴットを作製した。このインゴットをジョウ
クラッシャーで粗粉砕し、更に窒素気流中ジェットミル
粉砕により平均粒径3.5μmの微粉末を得た。この粉
末を垂直磁場プレスにて12kOeの磁場中において
1.0t/cm2 の成型圧にて成型した。この成型体は
Arガス中1090℃で1時間焼結を行い、引き続き5
80℃で1時間の熱処理を行った。その後加工を行いφ
30mm×φ25mm×L30mmの円筒磁石を得た。
本円筒磁石と同一磁石粉を用い、垂直磁場プレスにて1
2kOeの磁場中において1.0t/cm2 の成型圧に
て成型し、Arガス中1090℃で1時間焼結を行い、
引き続き580℃で1時間の熱処理をして本円筒磁石と
同一条件で作製したブロック磁石の特性は、Br:1
3.0kG、iHc:15kOe、(BH)max:4
0MGOeであった。上記の径方向配向円筒磁石に10
極に多極着磁を行った。図2に示されるようにこの10
極着磁磁石1をステータの歯2の数12、コイル3の巻
数100のモータに組み込んだ。このモータのU−V、
V−W、W−Uの各相間の磁束量をフラックスメータを
用いて測定した。結果を表1に示す。表より各極の磁束
量はほぼ等しく、磁石の極ごとの磁束量のばらつきはモ
ータにすることで十分緩和されることがわかる。またこ
のモータを1000rpmで回転させた際の誘起電圧及
び、同モータを1〜5rpmで回転させた際の荷重計に
よるトルクリップルの大きさを測定した。表2に誘起電
圧の絶対値の最大及びトルクリップルの最大最小の差を
示す。この表から、本モータは使用上十分な誘起電圧量
を有し、十分小さなトルクリップルであることがわか
る。
EXAMPLES (Example 1) Nd, Dy, Fe, Co, M (M is Al, Si, Cu) each having a purity of 99.7% by weight.
And B having a purity of 99.5% by weight was melt-cast in a vacuum melting furnace to prepare an ingot. The ingot was coarsely pulverized with a jaw crusher, and further subjected to jet mill pulverization in a nitrogen stream to obtain a fine powder having an average particle size of 3.5 μm. This powder was molded with a vertical magnetic field press at a molding pressure of 1.0 t / cm 2 in a magnetic field of 12 kOe. This molded body was sintered at 1090 ° C. for 1 hour in Ar gas,
Heat treatment was performed at 80 ° C. for 1 hour. After that, processing
A cylindrical magnet of 30 mm × φ25 mm × L30 mm was obtained.
Using the same magnet powder as this cylindrical magnet,
Molding was performed at a molding pressure of 1.0 t / cm 2 in a magnetic field of 2 kOe, and sintering was performed at 1090 ° C. for 1 hour in Ar gas.
Subsequently, the properties of the block magnet produced by performing a heat treatment at 580 ° C. for 1 hour under the same conditions as those of the cylindrical magnet were as follows: Br: 1
3.0 kG, iHc: 15 kOe, (BH) max: 4
It was 0MGOe. 10 to the above radially oriented cylindrical magnet
The poles were multipolar magnetized. As shown in FIG.
The pole magnetized magnet 1 was incorporated into a motor having 12 stator teeth 2 and 100 coils 3. UV of this motor,
The amount of magnetic flux between the VW and WU phases was measured using a flux meter. Table 1 shows the results. From the table, it can be seen that the magnetic flux amount of each pole is almost equal, and the variation of the magnetic flux amount for each pole of the magnet is sufficiently mitigated by using a motor. In addition, the induced voltage when this motor was rotated at 1000 rpm and the magnitude of the torque ripple by a load meter when the motor was rotated at 1 to 5 rpm were measured. Table 2 shows the difference between the maximum value of the absolute value of the induced voltage and the maximum value and the minimum value of the torque ripple. From this table, it can be seen that this motor has a sufficient amount of induced voltage in use and has sufficiently small torque ripple.

【0008】(実施例2)実施例1の径方向配向円筒磁
石を着磁する際、スキュー角度を磁石1極分の角度の1
/3の12度でスキュー着磁を行い、該磁石を実施例1
のモータに組み込み、実施例1と同様に誘起電圧および
トルクリップルを測定した値を表2に示す。表よりトル
クリップルの量がスキュー無し品よりさらに小さく、誘
起電圧の低下はわずかであり、実用に適しているのがわ
かる。
(Embodiment 2) When magnetizing the radially oriented cylindrical magnet of Embodiment 1, the skew angle is set to one angle of one pole of the magnet.
Skew magnetization at 12 degrees of
Table 2 shows the values obtained by measuring the induced voltage and the torque ripple in the same manner as in Example 1 by assembling the motor. From the table, it can be seen that the amount of torque ripple is smaller than that of the product without skew, and the induced voltage is slightly reduced, which is suitable for practical use.

【0009】(実施例3)径方向配向円筒磁石を実施例
1と同様に着磁し、スキュー角度が磁石1極分の角度の
1/3の12度であるステータ歯を持つ、実施例1と同
寸法のモータに組み込み、実施例2と同様に誘起電圧お
よびトルクリップルを測定した値を表2に示す。表より
トルクリップルの量がスキュー無し品よりさらに小さ
く、誘起電圧の低下はわずかであり、実用に適するのが
わかる。
(Embodiment 3) A first embodiment in which a radially oriented cylindrical magnet is magnetized in the same manner as in Embodiment 1 and has a stator tooth with a skew angle of 12 degrees which is 1/3 of the angle of one magnet. Table 2 shows the values obtained by measuring the induced voltage and the torque ripple in the same manner as in Example 2 by incorporating the motor into the motor having the same dimensions as in Example 1. From the table, it can be seen that the amount of torque ripple is even smaller than that of the product without skew, and the induced voltage is slightly reduced, which is suitable for practical use.

【0010】(比較例1)実施例1の径方向配向円筒磁
石を着磁する際、スキュー角度を磁石1極分の角度の5
/6の30度でスキュー着磁を行い、該磁石を実施例1
のモータに組み込み実施例2と同様に誘起電圧およびト
ルクリップルを測定した値を表2に示す。表よりトルク
リップルの量はスキュー無し品より小さいが、誘起電圧
の低下が大きく実用に適さないのがわかる。
(Comparative Example 1) When the radially oriented cylindrical magnet of Example 1 was magnetized, the skew angle was 5 times the angle of one pole of the magnet.
Skew magnetization at 30 degrees of / 6
Table 2 shows values obtained by measuring the induced voltage and the torque ripple in the same manner as in Example 2 by assembling the motor. From the table, it can be seen that although the amount of torque ripple is smaller than that of the non-skewed product, the induced voltage is so large that it is not suitable for practical use.

【0011】[0011]

【表1】 [Table 1]

【表2】 [Table 2]

【0012】[0012]

【発明の効果】本発明によれば、生産性が低く高価なラ
ジアル異方性磁石を用いずに、多連、長尺品が容易に生
産可能で、安価で大量に安定して供給できる垂直磁場プ
レスによる径方向配向円筒磁石を用いて高性能の永久磁
石モータを実現することができ、ACサーボモータ、D
Cブラシレスモータ等の高性能モータの低価格化に有用
であり、産業上その利用価値は極めて高い。
According to the present invention, a multi-unit, long product can be easily produced without using a radially anisotropic magnet which is low in productivity and can be supplied stably at low cost and in large quantities. A high-performance permanent magnet motor can be realized using a radially oriented cylindrical magnet by a magnetic field press.
It is useful for lowering the price of high-performance motors such as C brushless motors, and has a very high industrial utility value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】垂直磁場プレスにより作製したNd−Fe−B
系円筒磁石に6極着磁を行った際の表面磁束密度を示し
た図である。
FIG. 1 Nd—Fe—B produced by a vertical magnetic field press
FIG. 6 is a diagram showing a surface magnetic flux density when a six-pole magnetization is performed on a system cylindrical magnet.

【図2】10極に多極着磁した円筒磁石と12個のステ
ータ歯を組み合わせた3相モータの平面図を示したもの
である。
FIG. 2 is a plan view of a three-phase motor in which a cylindrical magnet multipolarized to 10 poles and 12 stator teeth are combined.

【符号の説明】[Explanation of symbols]

1.径方向配向円筒磁石 2.モータステータ歯 3.モータコイル 1. 1. Radially oriented cylindrical magnet 2. motor stator teeth Motor coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 垂直磁場成型法によって作製された、円
筒軸に垂直な一方向に配向された円筒磁石における周方
向の着磁極数が2n(nは1より大きく50より小さい
正の整数)個のとき、この円筒磁石と組み合わせるステ
ータの歯数が3k(kは1より大きく33より小さい正
の整数)個であり、かつ2n≠3kであることを特徴と
する周方向に多極に着磁した永久磁石モータ。
1. The number of magnetic poles in the circumferential direction of a cylindrical magnet oriented in one direction perpendicular to a cylindrical axis and produced by a perpendicular magnetic field molding method is 2n (n is a positive integer greater than 1 and less than 50). Wherein the number of teeth of the stator combined with the cylindrical magnet is 3k (k is a positive integer greater than 1 and less than 33) and 2n ≠ 3k, and the stator is magnetized in a multipolar manner in the circumferential direction. Permanent magnet motor.
【請求項2】 円筒軸に垂直な一方向に配向した円筒磁
石のスキュー角度が円筒磁石一極分の1/10から2/
3で、2n(nは1より大きく50より小さい正の整
数)個の多極スキュー着磁であることを特徴とする請求
項1記載の永久磁石モータ。
2. The skew angle of a cylindrical magnet oriented in one direction perpendicular to the cylindrical axis is from 1/10 to 2 / of one pole of the cylindrical magnet.
3. The permanent magnet motor according to claim 1, wherein the number of the multi-pole skew is 2n (n is a positive integer greater than 1 and less than 50).
【請求項3】 ステータ歯のスキュー角度が円筒磁石一
極分の角度の1/10から2/3で、3k(kは1より
大きく33より小さい正の整数)個のスキュー歯をもつ
ことを特徴とする請求項1記載の永久磁石モータ。
3. The skew angle of the stator teeth is 1/10 to 2/3 of the angle of one pole of the cylindrical magnet, and 3k (k is a positive integer larger than 1 and smaller than 33) skew teeth. The permanent magnet motor according to claim 1, wherein:
JP27760398A 1998-09-30 1998-09-30 Permanent magnet motor Pending JP2000116089A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP27760398A JP2000116089A (en) 1998-09-30 1998-09-30 Permanent magnet motor
EP99402202A EP0996216B1 (en) 1998-09-30 1999-09-07 Permanent magnet motor and rotor thereof
DE69914850T DE69914850T2 (en) 1998-09-30 1999-09-07 Permanent magnet motor and its rotor
US09/396,420 US6262507B1 (en) 1998-09-30 1999-09-15 Permanent magnet motor and rotor thereof
US09/826,825 US6633100B2 (en) 1998-09-30 2001-04-06 Permanent magnet motor and rotor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27760398A JP2000116089A (en) 1998-09-30 1998-09-30 Permanent magnet motor

Publications (1)

Publication Number Publication Date
JP2000116089A true JP2000116089A (en) 2000-04-21

Family

ID=17585739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27760398A Pending JP2000116089A (en) 1998-09-30 1998-09-30 Permanent magnet motor

Country Status (1)

Country Link
JP (1) JP2000116089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308970A2 (en) * 2001-10-31 2003-05-07 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US20190245406A1 (en) * 2018-02-08 2019-08-08 Sunonwealth Electric Machine Industry Co., Ltd. Stator of a Waterproof Motor and Method for Manufacturing the Same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308970A2 (en) * 2001-10-31 2003-05-07 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
KR20030035852A (en) * 2001-10-31 2003-05-09 신에쓰 가가꾸 고교 가부시끼가이샤 Radial Anisotropic Sintered Magnet and Its Preparation Process, and Magnet Rotor and Motor
EP1308970A3 (en) * 2001-10-31 2004-12-29 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US6984270B2 (en) 2001-10-31 2006-01-10 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
EP2063439A1 (en) 2001-10-31 2009-05-27 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet, its production method, and magnet rotor or motor using said sintered magnet
EP2063438A1 (en) 2001-10-31 2009-05-27 Shin-Etsu Chemical Co., Ltd. Production method of a radial anisotropic sintered magnet, and magnet rotor or motor using said sintered magnet
US7618496B2 (en) 2001-10-31 2009-11-17 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US7948135B2 (en) 2001-10-31 2011-05-24 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US20190245406A1 (en) * 2018-02-08 2019-08-08 Sunonwealth Electric Machine Industry Co., Ltd. Stator of a Waterproof Motor and Method for Manufacturing the Same
US11043871B2 (en) * 2018-02-08 2021-06-22 Sunonwealth Electric Machine Industry Co., Ltd. Stator of a waterproof motor and method for manufacturing the same
US11387703B2 (en) 2018-02-08 2022-07-12 Sunonwealth Electric Machine Industry Co., Ltd. Stator of a waterproof motor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7618496B2 (en) Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
KR101402451B1 (en) Permanent magnet and permanent magnet rotating machine
JP4650643B2 (en) Manufacturing method of radial anisotropic ring magnet
US6262507B1 (en) Permanent magnet motor and rotor thereof
JP5089979B2 (en) Radial anisotropic cylindrical sintered magnet, manufacturing method thereof, and permanent magnet motor
JPWO2005124800A1 (en) Manufacturing method of radial anisotropic cylindrical sintered magnet and cylindrical multipolar magnet for permanent magnet motor
JP4133686B2 (en) Radial anisotropic ring magnet and manufacturing method thereof
JP4238971B2 (en) Manufacturing method of radial anisotropic sintered magnet
JP4890620B2 (en) Mold, magnetic field molding machine, and method for manufacturing permanent magnet
JP3683442B2 (en) Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor
JP5353976B2 (en) Radial anisotropic sintered magnet and magnet rotor
JP4471698B2 (en) Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet
JP2000116089A (en) Permanent magnet motor
JP2000116090A (en) Permanent magnet motor
JP5448314B2 (en) Permanent magnet and permanent magnet rotating machine
JP2000175384A (en) Permanent magnet motor
KR20070023644A (en) Methods of producing radial anisotropic cylinder sintered magnet and permanet magnet motor-use cylinder multi-pole magnet
KR101123169B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040726